第三章 matlab的simulink建模与仿真
matlab_simulink电力系统建模与仿真大纲

matlab_simulink电力系统建模与仿真大纲标题:MATLAB Simulink电力系统建模与仿真大纲正文:一、引言电力系统的建模与仿真是电气工程中的重要内容之一。
通过使用MATLAB Simulink工具,可以方便快捷地进行电力系统的建模与仿真,以评估系统性能、优化控制策略等。
本文将介绍电力系统建模与仿真的大纲,以帮助读者了解该领域的基本知识和相关技术。
二、电力系统建模1.电力系统概述:介绍电力系统的基本概念和组成部分,包括发电机、变压器、传输线路和负荷等。
2.电力系统参数:讲解电力系统中常用的参数,如电压、电流、功率等,并介绍如何进行测量和计算。
3.母线和节点建模:介绍母线和节点的概念,并详细说明如何进行建模和连接。
4.发电机建模:介绍发电机的建模方法,包括动态模型和静态模型。
5.变压器建模:讲解变压器的建模方法,包括理想变压器模型和实际变压器模型。
6.传输线路建模:介绍传输线路的建模方法,包括电气距离模型和传输线模型。
7.负荷建模:讲解负荷的建模方法,包括恒阻抗负荷模型和恒功率负荷模型。
三、电力系统仿真1.仿真模型的构建:介绍如何在MATLAB Simulink中构建电力系统仿真模型,包括模块的选择和参数的配置。
2.仿真参数的设置:讲解仿真参数的设置,包括仿真时间、步长等。
3.仿真结果的分析:说明如何对仿真结果进行分析,包括波形显示、频谱分析等。
4.仿真案例:通过几个典型的电力系统案例,演示如何进行建模和仿真,以及如何分析仿真结果。
四、总结本文简要介绍了MATLAB Simulink电力系统建模与仿真的大纲。
通过学习和实践,读者可以掌握电力系统建模与仿真的基本方法和技巧,并应用于实际工程中。
希望本文能为读者提供有益的指导,进一步探索和研究电力系统领域。
MATLAB-SIMULINK讲解完整版

图3-5 模块的基本操作示例
、按键 、按键 和按键 。
(5) 窗口切换类:包括 6 个按键,分别是按键 、按键
、按键 、按键 、按键 和按键 。
工具栏中各个工具图标及其功能说明见附录 B。
3.2 SIMULINK的基本操作 3.2.1 模块及信号线的基本操作
1. 模块的基本操作 模块是系统模型中最基本的元素,不同模块代表了不同 的功能。各模块的大小、放置方向、标签、属性等都是可以 设置调整的。表3-1列出了SIMULINK中模块基本操作方法 的简单描述。
善模型的外观
标左键
可改变折线的走向, 选中目标节点,按住鼠标左键,拖曳到目标位置,松开鼠
改善模型的外观
标左键
从一个节点引出多 条信号线,应用于不同 目的
方法 1:先按住“Ctrl”键,再选中信号引出点,按住鼠标 左键,拖曳到下级目标模块的信号输入端,松开鼠标左键;
方法 2:先选中信号引出线,然后在信号引出点按住鼠标 右键,拖曳到下级目标模块的信号输入端,松开鼠标右键
如图3-6所示,在模型中加入注释文字,使模型更具可 读性。
图3-6 添加注释文字示例 (a) 未加注释文字;(b) 加入注释文字
3.2.3 子系统的建立与封装 1. 子系统的建立 一般而言,电力系统仿真模型都比较复杂,规模很大,
包含了数量可观的各种模块。如果这些模块都直接显示在 SIMULINK仿真平台窗口中,将显得拥挤、杂乱,不利于用 户建模和分析。可以把实现同一种功能或几种功能的多个模 块组合成一个子系统,从而简化模型,其效果如同其它高级 语言中的子程序和函数功能。
MATLAB控制系统数学模型建模与simulink仿真

目录MATLAB/Simulink 与控制系统仿真课程设计 (1)一、课题设计目的 (3)二、课题设计要求 (3)1.实现单回路控制系统的设计及仿真 (3)2.实现串联控制系统的设计与仿真 (3)3.实现反馈前馈控制系统设计及仿真 (3)三、课题设计内容与步骤 (3)1.实现单回路控制系统的设计及仿真 (3)(1)原始单回路的单位阶跃曲线: (4)(2) P 调节 (4)(3) PI 调节 (5)(4) PID 调节 (5)(5) 总结: (6)2. 实现串联控制系统的设计与仿真 (6)(1).建立开环传递函数 (6)(2).设计串联校正器的滞后环节 (8)(3).设计串联校正器的超前环节 (8)(4).对照校正先后的系统频率响应 (9)(5).系统校正先后的阶跃响应曲线 (10)(6)结论: (12)3.实现反馈前馈控制系统设计及仿真 (12)(1).开环传递函数模型 (12)(2).分析系统的频率响应特性 (13)(3).设计反馈校正器环节 (13)(4).设计前馈校正器环节 (14)(5).设计前向通道 (15)(6).设计前向通道与前馈通道并联连接 (16)(7).设计反馈前馈校正器环节 (16)(8).对照校正先后的系统频率响应 (17)(9).系统校正先后的阶跃响应曲线 (18)(10).总结: (20)四、心得体味 (20)进行PID 控制器设计与应用1.实现单回路控制系统的设计及仿真2.实现串联控制系统的设计与仿真3.实现反馈前馈控制系统设计及仿真P 调节器公式Wc (s) =20.经P 控制后的单回路的单位阶跃曲线:P 控制只改变系统的增益而不影响相位,它对系统的影响主要反映在系统的稳态误差和稳定性上,增大比例系数可提高系统的开环增益、减小系统的稳态误差,从而提高系统的控制精度,但这会降低系统的相对稳定性。
PI 调节器公式Wc (s) =20+3/s.经PI 控制后的单回路的单位阶跃曲线:PI 控制器可以使系统在进入稳态后无稳态误差。
第3章 Simulink建模与仿真

将仿真数据写入 mat 文件 将仿真数据写入. mat文件 将仿真数据输出到 将仿真数据输出到 Matlab 工作空间 MATLAB 工作空间 使用 Matlab 使用MATLAB 图形显示数据 图形显示数据
图3.10 系统输出模块库及其功能
第3章 Simulink建模与仿真
模块功能说明:
模块功能说明: 有限带宽白噪声
求取输入信号的数学函数值 对输入信号进行内插运算
求取输入信号的数学函数值 对输入信号进行内插运算 输入信号的一维线性内插
输入信号的一维线性内插
输入信号的二维线性内插 输入信号的二维线性内插 输入信号的 n 维线性内插 输入信号的n维线性内插
M函数(对输入进行运算输出结果) M 函数,对输入进行运算输出结果 多项式求值
第3章 Simulink建模与仿真
模块功能说明: 模块功能说明 : 连续信号的数值微分 连续信号的数值微分 输入信号的连续时间积分 输入信号的连续时间积分 单步积分延迟,输出为前一个输入 单步积分延迟,输出为前一个输入 线性连续系统的状态空间描述 线性连续系统的状态空间描述
线性连续系统的传递函数描述 线性连续系统的传递函数描述 对输入信号进行固定时间延迟 对输入信号进行固定时间延迟 对输入信号进行可变时间延迟 对输入信号进行可变时间延迟 线性连续系统的零极点模型 线性连续系统的零极点模型
合并输入信号块控制信息 信号组合器信号组合器 信号探测器信号探测器 信号维数改变器 选择或重组信号 信号线属性修改 输入信号宽度
信号维数改变器 选择或重组信号 信号线属性修改 输入信号宽度
第3章 Simulink建模与仿真
模块功能说明: 对信号进行分配
Target模块库:主要提供各种用来进行独立可执行代码 或嵌入式代码生成,以实现高效实时仿真的模块。它 们和RTW、TLC有着密切的联系。 (6) Stateflow库:对使用状态图所表达的有限状态 机模型进行建模仿真和代码生成。有限状态机用来描 述基于事件的控制逻辑,也可用于描述响应型系统。
第三章 Simulink基础

同一模型中复制模块 (1)按下ctrl键,选中要复制的模块 (2)拖到喜欢的位置 删除模块 选中后,点击右健中的clear 或按键盘的delete 断开模块连接 按下shitf键,选中模块并从模型中的原始位置 拖支模块即可。 改变模块的方向 Format菜单中选择flip block命令旋转180度,或 者rotate block顺时针旋转90度。
数学运算模块(math)
求绝对值或求模 建立逻辑真值表 求复数的幅值与相角 求复数的实部和虚部 求点乘(内积) 增益(对输入信号乘上一个常数) 逻辑操作符 由幅值与相角求复数 数学运算函数
求极大与极小值 对输入信号求积或商 比较操作符 取整操作 取输入的正负符号 以滑动形式改变增益 对输入信号求代数和 三角函数
输入源模块(source)
带限白噪声 产生一个频率不断变化的正弦波 显示当前仿真时间 生成一个常值 在规定的采样间隔显示当前仿真时间 从工作空间中定义的矩阵读取数据 从文件中读取数据 接地线模块 整个系统的输入子端
固定时间间隔的脉冲发生器 斜坡信号 正态分布的随机信号 产生规律重复的线性信号 产生各种不同的波型 产生一个正弦波 产生一个阶跃函数 均匀分布随机数
4、选择对象(包括模块和连线) 选择一个对象 单击鼠标左键即可选中 选择一个以上对象
逐个选择法:按住shift键 用方框选择
选择整个模型: Ctrl+A 或edit菜单下的select all
5、两个窗口之间模块的复制和移动 用鼠标复制模块 (1)打开相应的库或模型窗口 (2)把要复制的模块拖到自己的目标窗口 中。 用菜单中的命令复制、粘贴模块 模块的命名 选中模块的名称,然后输入新的字符 在同一模块中移动模块 (1)选中需要移动的模块和连线 (2)拖动到适当的地方,然后释放鼠标
MatlabSimulink系统建模和仿真

图:电容的充电、放电过程的仿真结果。在充电仿真中,输出信号 为系统的零状态响应。在放电过程仿真中,输出信号为系统的零输 入响应。 如果要仿真系统输入信号为任意函数的情况,只需要修改仿 真程序中的输入信号设臵即可。
“实例2.3”单摆运动过程的建模和仿真。 (1)单摆的数学模型 设单摆摆线的固定长度为l ,摆线的质量忽略不计,摆锤质 量为m ,重力加速度为g ,设系统的初始时刻为t=0 ,在任 意 t 0 时刻摆锤的线速度为v(t) ,角速度为 w(t ) ,角位移 为 (t ) 。以单摆的固定位臵为坐标原点建立直角坐标系, 水平方向为x 轴方向。如下图所示。
图:电容的充电电路以及等价系统
(1)数学分析
首先根据网络拓扑和元件伏安特性建立该电路方程组
dy (t ) i (t ) C dt
dy (t ) 1 1 x(t ) y (t ) dt RC RC
y(t ) x(t ) Ri (t )
并化简得
该方程也称为系统的状态方程。在方程中,变量y 代表电 容两端的电压,是电容储能的函数。本例中它既是系统的 状态变量,又是系统的输出变量。
7.1 Matlab编程仿真的方法
7.1.1 概述 通过编程的形式建立计算机仿真模型是最基本的 计算机建模方法。Matlab编程仿真过程就是用编 写脚本文件或函数文件来描述数学模型,并实现 计算机数值求解的过程。 我们把外界对系统产生作用的物理量称为输入 信号或激励,把由于系统内部储存的能量称为系 统的状态,而将系统对外界的作用物理量称为系 统的输出信号或响应。
图:模拟真实示波器显示的调幅仿真波形,仿真中考虑了输 入信号与示波器扫描不同步,载波相位噪声以及加性信道噪 声的影响
7.1.3 连续动态系统的Matlab编程仿真 7.1.3.1 几个实例
基于matlab simulink的直流微电网的建模和仿真

直流微电网的建模和仿真目录1 引言 (3)1.1 目的 (3)1.2 文档格式 (3)1.3 术语 (3)1.4 参考文献 (3)2 系统概述 (4)3直流微网的能量管理方法 (4)4系统建模 (5)4.1PV电池 (5)4.2 PV电池DCDC变换器建模 (8)4.3蓄电池双向DCDC1变换器建模 (9)4.4逆变器建模 (11)4.5负载建模 (12)4.6蓄电池建模 (13)5仿真验证 (13)6结论 (18)1 引言1.1 目的该文档针对独立智能供电及生活保障系统的需求,给出了提供智能供电的直流微电网系统框架,并根据这一框架搭建理论模型和仿真模型。
验证这一直流微电网系统的功能可行性。
1.2 文档格式本文档按以下要求和约定进行书写:(1)页面的左边距为2.5cm,右边距为2.0cm,装订线靠左,行距为最小值20磅。
(2)标题最多分三级,分别为黑体小三、黑体四号、黑体小四,标题均加粗。
(3)正文字体为宋体小四号,无特殊情况下,字体颜色均采用黑色。
(4)出现序号的段落不采用自动编号功能而采用人工编号,各级别的序号依次为(1)、1)、a)等,特殊情况另作规定。
1.3 术语1.4 参考文献2 系统概述图1 直流微网的系统框图图1为直流微网的系统框图,仿真系统包括以下几个部分:1)PV组件的特性模型2)蓄电池的模型3)PV组件后的DCDC拓扑模型和控制模型4)蓄电池后双向DCDC1的拓扑模型和控制模型5)逆变器包括:单相逆变器和三相逆变器的拓扑模型和控制模型6)交流负载模型7)直流负载模型8)超级电容模型(暂缺)9)超级电容后双向DCDC2的拓扑模型和控制模型(暂缺)10)柴油机模型(暂缺)11)智能控制器2与光伏智能控制器的协调控制模型(暂缺)3直流微网的能量管理方法能量管理思想:管理微网中各分布电源的能量流动,使得微网工作最优状态。
以下为结合我们项目的一个能量管理原则,有了这个管理原则,就可以明确各个分布电源的控制方法。
MATLAB使用Simulink 进行建模与仿真方法

方法/步骤
第一步:我们打开MATLAB软件,然后 在命令窗口中输入simulink或点击左 上角的【新建】,然后选择 【simulink Model】,如下图所示。
方法/步骤
第二步:此时将进入如下图所示的 Simulink界面,我们点击工具栏中的 【Library Browser】,如下图所示。
方法/步骤
第五步:基本的仿真模型需要信号发 生装置,我们可以选择如下图所示的 各种信号发生器,如正弦波信号发生 器,我们将其拖动到仿真模型框图。
方法/步骤
第六步:有了信号发生装置,作为一 个合理的仿真模型则必有信号接收与 显示装置,如下图所示,我们可以选 择Scope进行波形显示。
方法/步骤
第七步:我们选择好基本的输入输出 装置后,如下图所示,我们在仿真模 型框图中布局好装置位置并进行连线。
方法/步骤
第八步:仿真模型连线完毕后,检查 无误后我们就可以按下【Run】按钮, 运行我们的仿真程序了,如下图所示, 我们可以在显示器件中观察仿真结果, 并进行模型调整与修改。
注意事项
Simulink是 MATLAB很强大的系统建模、仿真和分析功能组件,上述方法、步骤只介绍了使用 Simulink搭建最基础的输入输出模型。
参考资料:Matlab/Simulink通信系统建模与仿真实例分析
《Matlab/Simulink通信系统建模与仿真实例分析》是2008年清华大学出版的一本图书,作者是 邵玉斌。
参考资料:基于matlab/simulink的通信系统建模与仿真(十三五)
《基于matlab/simulink的通信系统建模与仿真(十三五)》是2017年10月北京航空航天大学出 版社出版的图书,作者张瑾,周原,姚巧鸽,赵静。本书以MATLAB R2016a为平台,通过大量的 MATLAB、Simulink仿真实例,加深读者对通信系统原理的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、信号组合与分支
3、运行仿真
四、simulink子系统介绍
1、子系统生成
在已有的系统模型中建立子系统
先建立空的子系统
2、建立复杂系统模型
自下向上的设计思路
自顶向下的设计思路
3.5 simulink与matlab的接口设计
一、使用工作空间变量设置系统模块参数
二、将信号输出到workspace
3、其它子系统
可配置子系统,代表用 户定义库中的任意模块, 只能在用户定义库中使用。 函数调用子系统。
for循环
信号组合器
信号探测器 信号维数改变器
函数调用发生器
向goto模块传递信号
选择或重组信号
信号属性修改 输入信号宽度
Sinks(系统输出模块库)
以数值形式显示输入信号
悬浮信号显示器
为子系统或模型提供输出端口 信号显示器 当输入非零时停止仿真 中断输出信号 将仿真数据写入.mat文件 将仿真数据输出到matlab工作空间 使用matlab图形显示器
三、从workspace中产生信号源
四、向量与矩阵
五、matlab function与function模块
Fcn: 用于实现简单函数关系 输入总表示成u(可是一向量) 输出是一标量 Matlab Fcn: 用于调用matlab函数实现某一 功能 所调用函数只能有一个输出 (可以是一个向量)
单输入函数只需要使用函数名, 多输入需引用相应的元素
在每个仿真步长内都需要调用 matlab解释器
例:信号平方运算
3.6 simulink子系统技术
一、回顾
1、通用子系统的生成
2、子系统的基本操作
子系统的命名
子系统的编辑
子系统的输入
子系统的输出
子系统的参数设置
二、simulink高级子系统技术
使能子系统
触发子系统
函数调用子系统
1、条件子系统的建立方法
nonlinear control
4、提供仿真库的扩充和定制功能
5、应用领域
通信与卫星系统 航空航天
生物系统
汽车系统
船舶系统
金融系统
3、simulink在matlab家族中的位置
Stateflow Blockset Toolboxes coder RTW compiler
simulink MATLAB
线性连续系统的状态空间描述 线性连续系统传递函数描述 对输入信号进行固定时间延迟 对输入信号进行可变时间延迟 线性连续系统的零极点模型
Discrete(离散系统)
线性离散系统的传递函数描述 线性离散系统的零极点模型描述 线性离散系统的滤波器描述 线性离散系统的状态空间描述
离散时间积分器
离散信号的一阶保持器 单位延迟 离散信号的零阶保持器
幅值与相位转化为复数形式
特定的一些数学函数
Nonlinear(非线性系统模块库)
死区间歇
库仑粘贴信号 死区信号 双输出选择器(手动) 多端口输出选择器 量化器 信号上升、下降速率控制器
信号延迟器
饱和信号 三路选择器(根据输入2控制输出)
Signal &System(信号和系统模块)
对信号进行分配 由输入产生总线信号 总线信号选择器 用户定义的数据存储区 从数据存储区中读取数据 向数据存储区写数据 数据类型选择器 信号分解器 从goto模块中获得信号 Goto模块标记控制器 将信号与特定的偏移值比较 初始化信号 矩阵串联器 合并输入信号为一个输出 模块控制信息
三、连续系统模型表示
例:
t=0:0.1:5;
ut=t+sin(t);
utdot=1+cos(t);
yt=ut+utdot;
plot(yt);grid;
四、混合系统 混合系统一般都是由系统各部分输入与输出间的 数学方程所共同描述的。
例:一混合系统:输入为一离散变量u(n),n=1,2, 3…系统由离散、连续系统串联而成,其中离散系统输 出经过一个零阶保持器后作为连续系统的输入。其中离 散系统的输入输出方程为y(n)=u(n)+1,u(n)=n/2,系 统采样时间为Ts=1s.
Simulink描述为: t=1:0.1:99.9; n=1:100; un=0.5*n; yn=un+1; for i=1:length(n)-1 for j=1:length(t) if t(j)>=n(i)&t(j)<n(i+1) y(j)=sqrt(yn(n(i)))+sin(yn(n(i))); end end end plot(t,y);grid;
Function&Tables(函数与表库)
表数据选择器(从表中选择数据) 求取输入信号的数学函数值 对输入信号进行内插运算 输入信号的一维线性内插 输入信号的二维线性内插
输入信号的n维线性内插
M函数(对输入进行运算输出结果) 多项式求值 查找输入信号所在范围 S-函数模块 S-函数生成器
Math(数学运算库)
第三章 matlab的simulink建模 与仿真
3.1 绪论
一、系统与模型
1、系统
系统是指具有某些特定功能,相互联系、相互作 用的元素集合。 系统的两个基本特征:整体性、相关性
对系统的研究从以下三个方面入手:
1)实体:组成系统的元素,对象
2)属性:实体的特征
3)活动:系统状态变化的过程
系统仿真是研究系统的一种重要手段,而系统模 型是仿真所研究的直接对象。 2、系统模型 实体模型:根据相似性建立 模型 数学模型:原始系统数学模型;仿真系统数学模型
连续系统的输入输出方程为: y(t ) u(t ) sin u(t ) u(t)与y(n)的数学关系为: u(t ) y(n), nTs t (n 1)Ts 整个系统的方程描述:
y (t ) u (n) n / 2, n 1,2,3... y (n) u (n) 1, y (n) sin( y (n)),n t n 1
else
y(I)=u(I).^2;
y(I)=sqrt(U(I));
end
End
Plot(u,y);grid
二、离散系统的simulink描述
例:
y(1)=3;
u(1)=0;
for i=2:11
u(i)=2*i;
y(i)=u(i).^2+2*u(i-1)+2*y(i-1); end plot(u,y);grid;
3)在一个仿真时间步长内,simulink可以多次进出一 个子系统。 原子子系统:
1)子系统作为一个“实际”的模块,需顺序连续执行。
2)子系统作为整体进行仿真。
3)子系统中的模块在子系统中被排序执行。
建立原子子系统:
1)先建立一空的原子子系统。
2)先建立子系统,再强制转换成原子子系统。
Edit/block parameters
二、matlab函数仿真与simulink仿真的区别
1、数据流仿真
按照数据流的顺序,依次执行,即处理的数据首 先通过一个运算阶后在激活下一个运算阶。 例如:m=13; n=15; k=11; fc=10000; fd=1000; fs=100000;
msg=randint(k*100,1);
code=encode(msg,n,k,'bch');
动态模型:描述系统动态变化过程
静态模型:平衡状态下系统特性值之间的关系
二、计算机仿真
1、仿真的概念
以相似性原理、控制理论、信息技术及相关领域 的有关知识为基础,以计算机和各种专用物理设备为工 具,借助系统模型对真实系统进行实验研究的一门综合 性技术。 2、仿真分类 实物仿真:建造实体模型 数学模型:将数学语言编制成计算机程序 半实体模型:数学物理仿真
2、使能子系统
Reset:执行时,系held:统中的状态被重新设置为初始参
Held:执行时,系统的状态保持不变
3、触发子系统
4、触发使能子系统
5、原子子系统
虚子系统:对通用子系统与使能子系统
1)子系统只是系统模型中某些模块组的图形表示
2)子系统中的模块在执行时与其上一级模块统一被排 序,不受子系统限制。
3.4创建simulink模型(简单入门)
一、启用simulink并建立系统模型 启动simulink: (1)用命令方式:simulink (2)
二、simulink模块库简介 1、simulink公共模块库 Continuous(连续系统)
连续信号数值积分 输入信号连续时间积分
单步积分延迟,输出为前一输入
实时仿真:需要专用的实时仿真硬件
欠实时仿真:比实际时钟慢
超实时仿真:比实际时钟快
3、计算机仿真
根据相似性原理,利用计算机逼真模拟研究对象。
模拟机、模拟数字机、数字通用机、仿真专用机。
三、仿真的作用 1)优化系统设计 2)系统故障再现 3)验证系统设计的正确性
4)对系统,子系统进行性能评估
5)训练系统操作员
求信号绝对值 输出强制系统输入为零的代数状态 按位逻辑运算 逻辑真值查找 输出输入复数的幅值与相位 输出系统输入的的实部或需部 点乘运算 信号增益 信号逻辑运算 矩阵增益 求输入的最小、大值 乘法或除法器 从输入实部与虚部构造复数 关系运算器 求整运算器 符号运算 渐变增益 对输入求和或差 三角与双曲函数
Subsystem(子系统模块库)
可配置子系统 原子子系统 使能子系统 使能触发
条件执行子系统
通用子系统
Switch-case子系统 Switch-case动作子系统
For循环
函数调用 If条件
触发子系统
当型循环子系统