混凝土碱骨料反应的机理及预防方法
如何预防混凝土碱集料反应

如何预防混凝土碱集料反应简介混凝土碱集料反应(AAR)是一种常见的混凝土结构病害,其会对结构的耐久性和安全性产生负面影响。
碱集料反应是指混凝土中的氢氧化物与含有反应性硅酸盐的集料发生化学反应,导致混凝土膨胀、开裂和强度降低。
本文将介绍一些常见的预防混凝土碱集料反应的方法。
1. 合理选择材料1.1 选择低碱度水泥选择低碱度水泥是预防碱集料反应的基础,因为水泥是混凝土中最主要的碱性物质来源。
低碱度水泥的碱含量应符合国家相关标准,同时也可以选择使用矿渣、粉煤灰等掺合料来减少碱含量。
1.2 选择抗碱集料选用抗碱集料也是预防碱集料反应的重要措施。
一些反应性较低的集料如玄武岩、闪长岩等被广泛应用于抗碱集料中。
1.3 控制骨料含水率保持骨料干燥是预防碱集料反应的关键,因为潮湿的骨料会促使混凝土中的碱溶解并与反应性集料发生反应。
所以,在使用骨料前,应先进行适当的干燥处理。
2. 控制混凝土配合比2.1 减少水灰比降低混凝土的水灰比可以有效控制混凝土中碱溶解的程度。
较低的水灰比有助于减少混凝土孔隙度,降低碱离子的扩散速度。
2.2 控制胶凝材料用量过量的胶凝材料会导致混凝土中碱含量的增加,从而增加碱集料反应的风险。
因此,在配合混凝土时,应根据设计要求准确控制胶凝材料的用量。
3. 防止潮湿环境碱集料反应的发生与潮湿环境密切相关,因此,为了预防碱集料反应,应尽量避免混凝土长时间暴露在潮湿环境中。
在施工期间,可以使用防水剂或其他涂料进行表面防潮处理。
4. 监测和维护监测混凝土结构是预防碱集料反应的重要手段。
定期进行结构检测,尤其是在碱集料反应风险较高的地区。
如果发现了碱集料反应的迹象,应及时采取修复措施。
结论预防混凝土碱集料反应是确保混凝土结构耐久性和安全性的重要措施。
通过合理选择材料、控制混凝土配合比、防止潮湿环境和定期监测维护,可以有效降低混凝土碱集料反应的风险。
混凝土碱骨料反应问题及预防措施

混凝土碱骨料反应问题及预防措施由于我国过去水泥含碱量一般不高,加以自50年代起30余年来一直生产高混合材水泥,例如在七十年代曾大量生产使用的矿渣400号水泥,其中矿渣含量高达60-70%,有这么多的活性混合材,即使某厂水泥熟料当时含碱量稍高,砂石中有相当数量的活性成分,由于活性混合材可以起到消化缓解碱的作用,因而在八十年代以前我国一般土建工程尚未见碱骨料反应对工程损害的报告,以致许多设计、施工工程技术人员对碱骨料反应问题还比较生疏,有必要作一些基本情况的介绍。
一、什么是水泥混凝土的碱骨料反应碱骨料反应是混凝土原材料中的水泥、外加剂、混合材和水中的碱(Na2O或K2O)与骨料中的活性成分反应,在混凝土浇筑成型后若干年(数年至二、三十年)逐渐反应,反应生成物吸水膨胀,使混凝土产生内部应力,膨胀开裂,导致混凝土失去设计性能。
由于活性骨料经搅拌后大体上呈均匀分布,所以一旦发生碱骨料反应,混凝土内各部分均产生膨胀应力,将混凝土自身膨胀,发展严重的只能拆除,无法补救,因而被称为混凝土的癌症。
二、碱骨料反应的分类和机理1、碱硅酸反应1940年美国加利福尼亚州公路局的斯坦敦,首先发现碱骨料反应,引起世界混凝土工程界的重视,这种反应就是碱酸反应。
碱硅酸反应是水泥中的碱与骨料中的活性氧化硅成分反应产生碱硅酸盐凝胶或称碱硅凝胶,碱硅凝胶固相体积大于反应前的体积,而且有强烈的吸水性,吸水后膨胀引起混凝土内部膨胀应力;而且碱硅凝胶吸水后进一步促进碱骨料反应的进展,使混凝土内部膨胀应力增大,导致混凝土开裂,发展严重的会使混凝土结构崩溃。
能与碱发生反应的活性氧化硅矿物有蛋白石,玉髓、鳞石英、方英石、火山玻璃及结晶有缺欠的石英以及微晶、隐晶石英等,而这些活性矿物广泛存在于多种岩石中,因而迄今为止,世界各国发生的碱骨料反应绝大多数为碱硅酸反应。
2、碱碳酸盐反应1955年加拿大金斯敦城人行路面发生大面积开裂,怀疑是碱骨料反应,用美国ASTM标准的砂浆棒法和化学法试验,属于非活性骨料。
混凝土中碱骨料反应的机理及预防措施研究

混凝土中碱骨料反应的机理及预防措施研究一、简介混凝土是建筑工程中常用的材料,它的主要成分是水泥、砂子、石子和水等。
然而,在混凝土使用过程中,可能会出现碱骨料反应,导致混凝土的损坏和失效,这对工程质量和安全构成潜在威胁。
因此,本文将研究混凝土中碱骨料反应的机理及预防措施。
二、机理在混凝土中,碱骨料反应是指碱性成分与某些骨料中的含有反应性成分(如硅酸钙、硅酸镁等)反应,形成胶状物,导致混凝土开裂、膨胀、失去强度和耐久性等问题。
碱骨料反应主要有以下几个阶段:1. 硅酸盐骨料与水泥中的碱性成分发生反应,生成孔隙溶液。
2. 孔隙溶液中的Na+、K+等离子与骨料中的反应性成分反应,生成胶状物。
3. 胶状物的体积膨胀导致混凝土内部应力增大,产生裂缝和损坏。
三、预防措施为了避免混凝土中碱骨料反应,可以采取以下预防措施:1. 选择合适的骨料。
应当选择反应性较小的骨料,如玄武岩、花岗岩等,避免使用易反应的骨料,如含有蛇纹石的石灰岩、含有透辉石的辉绿岩等。
2. 控制混凝土中的碱性含量。
应当尽量控制水泥中的碱性含量,降低混凝土中的碱性含量,如使用低碱性水泥或添加碱性控制剂等。
3. 控制湿度。
混凝土中的湿度对碱骨料反应的发生有很大的影响,应当控制混凝土的湿度,避免过度干燥或过度湿润。
4. 增加氧化物含量。
氧化物能够抑制碱骨料反应的发生,应当适当增加混凝土中的氧化物含量,如添加氧化铁等。
四、结论混凝土中碱骨料反应是一个复杂的化学反应过程,会对混凝土的性能和耐久性产生很大的影响。
为了预防碱骨料反应的发生,应当选择合适的骨料、控制混凝土中的碱性含量、控制湿度、增加氧化物含量等。
这些措施的实施可以有效预防混凝土中碱骨料反应的发生,保障工程的质量和安全。
混凝土中碱-骨料反应原理及防控

混凝土中碱-骨料反应原理及防控一、混凝土中碱-骨料反应的概念和表现混凝土中碱-骨料反应是指水泥混凝土中的碱性化学物质与含有高硅酸盐的骨料发生反应,导致混凝土的体积膨胀和裂缝形成,严重影响混凝土的力学性能和耐久性能。
碱-骨料反应是一种极具破坏性的化学反应,主要表现为混凝土表面出现龟裂、脱落、开裂、剥落等现象,也会引起混凝土的膨胀和变形,影响混凝土的承载能力和使用寿命。
二、混凝土中碱-骨料反应的原理碱-骨料反应的本质是水泥中的碱性化学物质和骨料中的硅酸盐发生化学反应,形成一种新的胶凝物质——碱硅酸盐凝胶。
这种胶凝物质会不断地吸收水分,导致混凝土的体积膨胀,并在混凝土内部形成一个类似于海绵的结构,从而引起混凝土的开裂和脱落。
碱-骨料反应的反应式如下:Na2O·nSiO2 + H2O → NaOH + Na2O·2SiO2·nH2O其中,Na2O·nSiO2代表硅酸盐,H2O代表水分,NaOH代表氢氧化钠,Na2O·2SiO2·nH2O代表碱硅酸盐凝胶。
三、混凝土中碱-骨料反应的影响因素1.水泥中的碱含量水泥中的碱含量是影响碱-骨料反应的主要因素之一。
当水泥中的碱含量过高时,会增加混凝土中碱性物质的含量,从而加剧混凝土的膨胀和龟裂。
2.骨料中的硅酸盐含量骨料中的硅酸盐含量也是影响碱-骨料反应的重要因素。
当骨料中的硅酸盐含量过高时,会增加混凝土中碱性物质的反应面积,从而加剧混凝土的膨胀和裂缝。
3.混凝土中的水分含量混凝土中的水分含量也会影响碱-骨料反应。
当混凝土中的水分含量过高时,会加速碱硅酸盐凝胶的形成速度,从而加剧混凝土的膨胀和开裂。
4.环境条件环境条件也会影响碱-骨料反应。
例如,高温、高湿等条件会加速碱硅酸盐凝胶的形成速度,从而加剧混凝土的膨胀和开裂。
四、混凝土中碱-骨料反应的防控措施1.降低水泥中的碱含量降低水泥中的碱含量是防止碱-骨料反应的有效措施之一。
混凝土碱-骨料反应原理

混凝土碱-骨料反应原理一、前言混凝土碱-骨料反应是一种广泛存在的问题,它会导致混凝土的耐久性降低,从而影响混凝土结构的使用寿命。
本文将详细介绍混凝土碱-骨料反应的原理,包括反应机理、影响因素、识别方法和预防措施等方面。
二、混凝土碱-骨料反应的反应机理混凝土碱-骨料反应是一种碱性溶液与骨料中的硅酸盐矿物发生反应的化学过程。
混凝土中的水化产物(如氢氧化钙和水化硅酸钙等)会释放出氢氧根离子(OH-),使混凝土的碱度增加。
当碱度超过一定的阈值时,碱性溶液将渗入到骨料中,与其中的硅酸盐矿物发生反应,形成一种强碱性胶状物质——碱硅胶(alkali-silica gel)。
碱硅胶的生成是混凝土碱-骨料反应的关键步骤。
碱硅胶具有高度膨胀性和极强的吸水性,它会破坏混凝土中的孔隙结构,导致混凝土的耐久性降低。
此外,碱硅胶的生成还会产生大量的热量,进一步加速混凝土的老化过程。
三、混凝土碱-骨料反应的影响因素混凝土碱-骨料反应的发生与否受多种因素的影响,主要包括以下几个方面:1. 骨料的种类和含量不同种类的骨料对混凝土碱-骨料反应的敏感程度不同。
含有大量硅酸盐矿物的骨料(如玄武岩和流纹岩)容易与碱性溶液发生反应,而含有较少硅酸盐矿物的骨料(如石灰石和花岗岩)则不易受到影响。
此外,骨料的含量也会影响混凝土的碱度,从而间接影响混凝土碱-骨料反应的发生。
2. 混凝土的碱度混凝土的碱度是混凝土碱-骨料反应发生与否的决定性因素。
当混凝土的碱度超过一定的阈值时,碱性溶液将渗入到骨料中,引发碱硅胶的生成。
因此,控制混凝土的碱度是预防混凝土碱-骨料反应的关键。
3. 环境条件混凝土的环境条件也会影响混凝土碱-骨料反应的发生。
例如,高温和高湿度的环境有利于碱硅胶的生成,从而加速混凝土的老化过程。
此外,氧气和二氧化碳等气体也会对混凝土的老化产生影响。
四、混凝土碱-骨料反应的识别方法混凝土碱-骨料反应的识别是混凝土工程中非常重要的一环。
一般来说,可以通过以下几种方法来识别混凝土碱-骨料反应的存在:1. 实地观察混凝土碱-骨料反应会导致混凝土表面出现裂缝和破坏迹象。
混凝土碱骨料反应的机理及预防方法

碱骨料反应的预防方法发布: 2011-1-13 16:33 | 编辑: 小平 |【水泥人网】碱骨料反应条件是在混凝土配制时形成的,即配制的混凝土中只有足够的碱和反应性骨料,在混凝土浇筑后就会逐渐反应,在反应产物的数量吸水膨胀和内应力足以使混凝土开裂的时候,工程便开始出现裂缝。
这种裂缝和对工程的损害随着碱骨料反应的发展而发展,严重时会使工程崩溃。
有人试图用阻挡水分来源的方法控制碱骨料反应的发展,例如笔者见过的日本从大孤到神户的高速公路松原段陆地立交桥,桥墩和梁发生大面积碱骨料反应开裂,日本曾采取将所有裂缝注入环氧树脂,注射后又将整个梁、桥墩表面全用环氧树脂涂层封闭,企图通过阻止水分和湿空气进入的方法控制碱骨料反应的进展,结果仅仅经过一年,又多处开裂。
因此世界各国都是在配制混凝土时采取措施,使混凝土工程不具备碱骨料反应的条件。
主要有以下几种措施。
1、控制水泥含碱量自1941年美国提出水泥含量低于0.6%氧气化钠当量(即Na2O+0.658K2O)为预防发生碱骨料反应的安全界限以来,虽然对有些地区的骨料在水泥含量低于0.4%时仍可发生碱骨料反应对工程的损害,但在一般情况下,水泥含量低于0.6%作为预防碱骨料反应的安全界限已为世界多数国家所接受,已有二十多个国家将此安全界限列入国家标准或规范。
许多国家如新西兰、英国、日本等国内大部分水泥厂均生产含碱量低于0.6%的水泥。
加拿大铁路局则规定,不讼是否使用活性骨料,铁路工程混凝土一律使用含碱量低于0.6%的低碱水泥。
2、控制混凝土中含碱量由于混凝土中碱的来源不仅是从水泥,而且从混合材、外加剂、水,甚至有时从骨料(例如海砂)中来,因此控制混凝土各种原材料总碱量比单纯控制水泥含碱量更重要。
对此,南非曾规定每m3混凝土中总碱量不得超过2.1kg,英国提出以每m3混凝土全部原材料总碱量(Na2O当量)不超过3kg,已为许多国家所接受。
3、对骨料选择使用如果混凝土含碱量低于3kg/m3,可以不做骨料活性检验,如果水泥含碱量高或混凝土总碱量高于3kg/m3,则应对骨料进行活性检测,如经检测为活性骨料,则不能使用,或经与非活性骨料按一定比例混合后,经试验对工程无损害时,方可按试验规定的比例混合使用。
混凝土的碱骨料反应
混凝土的碱骨料反应混凝土是一种常见的建筑材料,广泛应用于各种建筑结构中。
其中,碱骨料反应是混凝土中常见的问题之一。
本文将探讨混凝土的碱骨料反应相关知识,并分析其原因、影响以及预防措施。
一、碱骨料反应的定义及原理碱骨料反应是指混凝土中的碱性水泥与一些碱性骨料(如某些骨灰、页岩或含碳酸盐的粉煤灰)在湿润环境中发生化学反应。
这种反应会产生一种膨胀物质 - 碱骨料胶凝物,导致混凝土产生膨胀、开裂等质量问题。
二、碱骨料反应的影响1. 结构质量问题:碱骨料反应会导致混凝土内部产生膨胀,使得结构发生变形、开裂,从而降低了混凝土的强度和耐久性。
2. 美观问题:由于碱骨料反应引起的膨胀和开裂,会破坏混凝土表面的平整度和美观性,影响建筑物的外观。
3. 经济问题:碱骨料反应对混凝土结构的损害可能导致维修和改造的额外费用。
三、碱骨料反应的预防措施为了降低或避免碱骨料反应对混凝土的负面影响,以下是一些常用的预防措施:1.合理选材:选择低碱度水泥和可以抑制碱骨料反应的骨料,合理配比材料。
2.添加掺合料:加入掺合料(如粉煤灰、硅灰等)来稀释混凝土内的碱度,减少碱骨料反应的发生。
3.使用表面覆盖层:在混凝土表面加上合适的覆盖层,可以减少外界水分和碱性物质对混凝土的侵蚀,从而降低碱骨料反应的发生。
4.适当控制养护条件:合理控制混凝土的养护条件,包括温度、湿度等,以减少碱骨料反应的可能性。
5.定期检测和维护:对于已施工的混凝土结构,定期进行检测,及时采取维护措施,以确保其持久性和耐久性。
总结:混凝土的碱骨料反应是一个需要引起重视的问题,它对混凝土的质量、外观和经济性都有一定的影响。
为了减少这一问题带来的负面影响,我们可以通过合理选材、使用掺合料、加强养护以及定期检测和维护等方式来进行预防和处理。
只有在有效地预防和控制碱骨料反应的情况下,才能保证混凝土结构的质量和寿命,从而确保建筑物的安全和经济效益。
(总字数:545字,可酌情增加附图、具体案例等增加字数)。
混凝土中碱-骨料反应原理
混凝土中碱-骨料反应原理混凝土中的碱-骨料反应是一种常见的混凝土病害,它会导致混凝土结构的破坏和损失。
本文将详细介绍混凝土中碱-骨料反应的原理、影响因素、预防和治理措施等内容。
一、碱-骨料反应的原理碱-骨料反应是指混凝土中碱性成分与骨料中的硅酸盐矿物质作用,产生一种新的物质——胶凝物,从而引起混凝土膨胀和开裂。
碱-骨料反应的化学反应式为:Na2O·Al2O3·(6~8)SiO2 + H2O → Na2O·Al2O3·(6~8)SiO2·nH2O该反应是一种水化反应,产生的胶凝物不溶于水,具有较强的胶结作用,从而导致混凝土的膨胀和开裂。
二、影响因素碱-骨料反应的发生与以下因素有关:1.水泥中的碱性成分水泥中的主要碱性成分为氧化钠(Na2O)和氧化钾(K2O),它们会在水化反应中释放出碱性离子。
当混凝土中的碱性离子浓度过高时,就会引起碱-骨料反应。
2.骨料中的硅酸盐矿物质碱-骨料反应的发生还与骨料中的硅酸盐矿物质有关。
硅酸盐矿物质中含有较多的硅酸盐,它们能够与水泥中的碱性离子反应产生胶凝物。
3.水化程度水化程度也是影响碱-骨料反应的重要因素。
当混凝土中的水化程度过高时,会加速水泥中的碱性成分的释放,从而加剧碱-骨料反应的发生。
4.环境条件环境条件也会影响碱-骨料反应的发生。
例如,高温和高湿环境会加速碱-骨料反应的发生。
三、预防和治理措施为了预防和治理混凝土中的碱-骨料反应,可以采取以下措施:1.选用低碱性水泥和不易发生碱-骨料反应的骨料选用低碱性水泥和不易发生碱-骨料反应的骨料是预防碱-骨料反应的有效方法。
低碱性水泥的碱性成分含量较低,可以减少碱-骨料反应的发生。
而不易发生碱-骨料反应的骨料则可以减少碱-骨料反应的发生。
2.控制混凝土的水化程度控制混凝土的水化程度也是预防碱-骨料反应的有效方法。
在混凝土的施工过程中,应控制好混凝土的水泥用量和水灰比,避免混凝土的水化程度过高。
混凝土碱-骨料反应原理及防治措施
混凝土碱-骨料反应原理及防治措施一、引言混凝土碱-骨料反应,即混凝土与骨料中的碱金属离子发生反应,导致混凝土的膨胀、开裂,严重时会影响混凝土的使用寿命和安全性。
本文将从混凝土碱-骨料反应的原理、影响因素、防治措施等方面进行阐述。
二、混凝土碱-骨料反应的原理1.碱-骨料反应混凝土中的碱性物质与骨料中的硅酸盐矿物发生反应,生成含水硅酸盐凝胶,凝胶吸水膨胀,导致混凝土膨胀开裂。
反应的化学方程式如下:Na2O+SiO2+H2O→Na2SiO3·nH2O(水玻璃)Na2SiO3·nH2O+Ca2+→CaSiO3·nH2O+2Na+2.碱-水反应混凝土中的碱性物质与水反应,生成氢氧化物,导致混凝土膨胀开裂。
反应的化学方程式如下:2NaOH+H2O→2Na++2OH-+H2O三、混凝土碱-骨料反应的影响因素1.混凝土配合比混凝土中碱性物质的含量和碱性离子的活性程度与混凝土配合比密切相关。
过多的碱性物质或搅拌不均匀,容易导致混凝土碱-骨料反应。
2.骨料类型不同类型的骨料对混凝土碱-骨料反应的影响不同。
硅酸盐骨料容易与混凝土中的碱性物质发生反应,而碳酸盐骨料和玄武岩骨料对混凝土碱-骨料反应的影响较小。
3.混凝土环境混凝土的环境温度、湿度、PH值等因素对混凝土碱-骨料反应有着重要的影响。
在高温、高湿的环境下,混凝土碱-骨料反应的速度较快。
四、混凝土碱-骨料反应的防治措施1.选用低碱性骨料选择低碱性的骨料可以有效地减少混凝土碱-骨料反应的风险。
碳酸盐骨料和玄武岩骨料是较好的选择。
2.控制混凝土配合比合理控制混凝土的配合比可以有效地减少混凝土中的碱性物质含量和碱性离子活性程度,从而减少混凝土碱-骨料反应的风险。
3.采用掺合料掺入适量的粉煤灰、硅灰、矿渣粉等掺合料可以有效地吸附混凝土中的碱性物质,减少碱性离子的活性程度,从而减少混凝土碱-骨料反应的风险。
4.表面涂层采用适当的表面涂层可以有效地减少混凝土表面的碱性物质和水的渗透,从而减少混凝土碱-骨料反应的风险。
混凝土中的碱-骨料反应原理及防治
混凝土中的碱-骨料反应原理及防治一、混凝土中的碱-骨料反应原理碱-骨料反应(Alkali-Aggregate Reaction,简称AAR)是混凝土中一种常见的结构性破坏形式,也称碱-石反应(Alkali-Silica Reaction,简称ASR)或碱-玻璃反应(Alkali-Glass Reaction,简称AGR)。
该反应是指混凝土中的碱离子与某些含有反应性成分的骨料发生化学反应,导致混凝土体积膨胀、龟裂、开裂等现象,从而影响混凝土的使用寿命、力学性能和耐久性。
1. 碱-骨料反应的成因混凝土中的碱-骨料反应主要与混凝土内部的碱度、骨料种类、骨料反应性以及环境因素等有关。
(1)碱度混凝土中的碱度主要由水泥中的氢氧化钙(Ca(OH)2)和氢氧化钠(NaOH)等碱性化合物产生。
在水泥的水化反应中,氢氧化钙和氢氧化钠会与水反应生成氢氧化物离子(OH-),促进水泥颗粒的硬化和混凝土的凝固。
但当混凝土中的碱度过高时,会导致碱-骨料反应的发生。
因此,控制混凝土中的碱度是预防碱-骨料反应的关键之一。
(2)骨料种类不同种类的骨料对碱-骨料反应的敏感程度不同。
一些具有反应性的骨料,例如含有硅酸盐和碳酸盐等成分的玄武岩、流纹岩、石英砂等,容易与混凝土中的碱性物质反应,引起混凝土的体积膨胀和开裂。
相反,一些不具有反应性的骨料,例如花岗岩、闪长岩等,能够稳定地存在于混凝土中,不会引起碱-骨料反应。
(3)骨料反应性骨料的反应性是指其与混凝土中的碱性物质发生反应的能力。
一些反应性比较强的骨料,容易与混凝土中的碱性物质发生反应,导致混凝土的体积膨胀和开裂;反之,一些反应性比较弱的骨料,与混凝土中的碱性物质反应较慢,不容易引起碱-骨料反应。
(4)环境因素环境因素包括温度、湿度、氧气、二氧化碳等因素。
温度和湿度对碱-骨料反应的发生和发展具有重要影响。
较高的温度和湿度会促进反应的进行,加快混凝土的体积膨胀和开裂。
而氧气和二氧化碳则能够减缓反应的速度,缓解混凝土的体积膨胀和开裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碱骨料反应的预防方法
发布: 2011-1-13 16:33 | 编辑: 小平 |
【水泥人网】碱骨料反应条件是在混凝土配制时形成的,即配制的混凝土中只有足够的碱和反应性骨料,在混凝土浇筑后就会逐渐反应,在反应产物的数量吸水膨胀和内应力足以使混凝土开裂的时候,工程便开始出现裂缝。
这种裂缝和对工程的损害随着碱骨料反应的发展而发展,严重时会使工程崩溃。
有人试图用阻挡水分来源的方法控制碱骨料反应的发展,例如笔者见过的日本从大孤到神户的高速公路松原段陆地立交桥,桥墩和梁发生大面积碱骨料反应开裂,日本曾采取将所有裂缝注入环氧树脂,注射后又将整个梁、桥墩表面全用环氧树脂涂层封闭,企图通过阻止水分和湿空气进入的方法控制碱骨料反应的进展,结果仅仅经过一年,又多处开裂。
因此世界各国都是在配制混凝土时采取措施,使混凝土工程不具备碱骨料反应的条件。
主要有以下几种措施。
1、控制水泥含碱量自1941年美国提出水泥含量低于0.6%氧气化钠当量(即Na2O+0.658K2O)为预防发生碱骨料反应的安全界限以来,虽然对有些地区的骨料在水泥含量低于0.4%时仍可发生碱骨料反应对工程的损害,但在一般情况下,水泥含量低于0.6%作为预防碱骨料反应的安全界限已为世界多数国家所接受,已有二十多个国家将此安全界限列入国家标准或规范。
许多国家如新西兰、英国、日本等国内大部分水泥厂均生产含碱量低于0.6%的水泥。
加拿大铁路局则规定,不讼是否使用活性骨料,铁路工程混凝土一律使用含碱量低于0.6%的低碱水泥。
2、控制混凝土中含碱量由于混凝土中碱的来源不仅是从水泥,而且从混合材、外加剂、水,甚至有时从骨料(例如海砂)中来,因此控制混凝土各种原材料总碱量比单纯控制水泥含碱量更重要。
对此,南非曾规定每m3混凝土中总碱量不得超过2.1kg,英国提出以每m3混凝土全部原材料总碱量(Na2O当量)不超过3kg,已为许多国家所接受。
3、对骨料选择使用如果混凝土含碱量低于3kg/m3,可以不做骨料活性检验,如果水泥含碱量高或混凝土总碱量高于3kg/m3,则应对骨料进行活性检测,如经检测为活性骨料,则不能使用,或经与非活性骨料按一定比例混合后,经试验对工程无损害时,方可按试验规定的比例混合使用。
4、掺混合材掺某些活性混合材可缓解、抑制混凝土的碱骨料反应。
根据各国试验资料,掺s—10%的硅灰可以有效的抑制碱骨料反应,据悉冰岛自1979年以来,一直在生产水泥时掺5—7.5%硅灰,以预防碱骨料反应对工程的损害。
另外掺粉煤灰也很有效,粉煤灰的含碱量不同,经试验,即使含碱量高的粉煤灰,如果取代30%的水泥,也可有效地掏碱骨料反应。
另外常用的抑制性混合材还有高炉矿渣,但掺量必须大于50%才能有效地抑制碱骨料反应对工程的损害,现大美、英、德诸国对高炉矿渣的推荐掺量均为50%以上。
5、隔绝水和湿空气的来源如果在担心混凝土工程发生碱骨料反应的部位能有效地隔绝水和空气的来源,也可以取
得缓和碱骨料反应对工程损害的效果。
混凝土碱骨料反应的机理
发布: 2011-1-13 16:31 | 编辑: 小平 |
【水泥人网】摘要:介绍了混凝土中碱与骨料研究的现状,对混凝土碱骨料反应膨胀机理、影响因素等进行了阐述。
碱骨料反应是指混凝土中的碱与骨料中的活性成分之间发生的破坏性膨胀反应,是影响混凝土耐久性最主要的因素之一。
该反应不同于其他混凝土病害,其开裂破坏是整体性的。
1. 碱骨料反应的机理碱骨料反应是水泥(混凝土中)达到一定数量的可溶性碱性氧化物(如Na20、Kz0)与混凝土中某些含有活性矿物的骨料在有水分的条件下发生化学反应,生成的凝胶体体积膨胀,引起已硬化的混凝土开裂破坏。
其中Na20、K2O属于强碱,是水泥炼烧过程中和水化过程中的产物,混凝土的总碱含量等于水泥碱含量、外加剂碱含量、掺合料碱含量以及拌合水碱含量之和。
另外,碱溶性骨料分为两种,一种是硅酸类,指非结晶Si和结晶不完整的Si,具有碱活性的硅酸盐类岩石矿物有蛋白石、玉髓、火山玻璃体;另一类是碳酸盐类,指结晶小的泥灰石灰石、白云石等,具有碱活性的碳酸盐类岩石矿物是细小菱形白云石晶体。
可见,促使这类反应发生必须具备三个条件:即在混凝土中同时存在活性矿物集料、碱性溶液(K0H、NaOH)和水。
2. 碱骨料反应的分类
2.1 碱硅酸反应碱一硅酸反应是水泥中的碱与骨料中的活性氧化硅成分反应产生碱硅酸凝胶或称碱硅凝胶,其体积大于反应前的体积,且有很强的吸水性,吸水后进一步膨胀,引起混凝土内部膨胀应力,而且碱硅凝胶吸水后进一步促进碱骨料反应的发展,使混凝土内部膨胀应力增大,导致混凝土开裂,严重的可导致混凝土结构崩溃。
其反应机理如下:混凝土中的活性骨料与混凝土中的碱集料发生反应:2NaOH+Si02-Na0·Si·H20,当KOH和NaOH浓度较低时,不足以引起混凝土的破坏,一般认为当含碱量小于0.6%时,可不考虑碱骨料反应。
碱一硅酸盐反应的机理与碱一硅酸反应的机理是一致的,只是反应速度比较缓慢。
能与碱发生反应的溶性氧化硅矿物有蛋白石、玉髓、鳞石英、方英石、火山玻璃及结晶有缺乏的石英以及微晶、隐晶石英等,而这些活性矿物广泛存在于多种岩石中。
因而迄今为止世界各国反应的碱骨料反应绝大数为碱硅酸反应。
2.2 碱碳酸盐反应碱一碳酸盐反应引起的混凝土破坏,目前归结为白云石质石灰岩骨料脱白云石引起的体积膨胀。
白云石质石灰集料在碱性溶液中发生的脱白云石反应如下:CoMg(O33)2+2NaOH-Mg(OH)2+CaCO3+maaCO3,式中,Na也可转换作K,这一反应不是发生在集料颗粒与水泥浆的表面,而是发生在集料颗粒的内部。
这样水镁石Mg(0H)2晶体排列的压力和粘土吸水膨胀,引起混凝土内部应力,导致混凝土开裂。
3. 碱骨料反应预防措施混凝土工程发生碱骨料反应需要具备三个条件:
3.1 混凝土的原材料水泥、外加剂及水中碱含量高;
3.2 骨料中有相当数量活性成分;
3.3 潮湿环境,有充分水分或湿气供应。
以上为混凝土碱骨料反应的必要条件和机理阐述。