基于STM32F的电动汽车交流充电桩控制系统设计

合集下载

电动汽车充电桩控制系统研究

电动汽车充电桩控制系统研究

电动汽车充电桩控制系统研究发布时间:2023-07-28T07:47:30.152Z 来源:《科技潮》2023年15期作者:沈金虎[导读] 为了改善传统电动汽车充电桩控制系统存在的不足,提出以蓝牙作为通信工具,设计新的控制系统。

江苏明茂新能源科技有限公司摘要:为了优化充电桩控制系统,选取 STM32F407ZET6 作为处理器,将充电桩控制模块、云服务器、用户 APP 客服端组合到一起,开发新的系统方案。

该系统通过蓝牙建立用户手机与充电桩之间的通信,利用 4G/5G/wifi 创建服务器与移动终端之间的通信,建立服务器与用户手机之间的通信。

系统应用测试结果显示,本系统能够通过蓝牙连接,将该充电桩的充电枪与此用户的电动汽车充电接口连接,按照预约先后顺序安排充电,可以根据设定的充电服务要求,为电动汽车按时充电 /某时段充电,可作为电动汽车充电桩控制工具。

关键词:蓝牙;充电桩;电动汽车为了改善传统电动汽车充电桩控制系统存在的不足,提出以蓝牙作为通信工具,设计新的控制系统。

1 系统总体设计1. 1 系统总体框架结构设计本系统主要由 3 部分组成,分别是充电桩控制模块、云服务器、用户 APP 客服端,结构如图 1 所示。

图1系统总体框架结构该结构中,充电桩控制模块作为现场充电机与用户之间的充电控制命令、充电状态传输桥梁,通过搭建控制电路,与充电机控制终端连接,实现对充电机作业状态的实时监测。

如果发现充电机作业发生故障,该模块会向用户发送提示消息。

正常作业情况下,按照用户设置的充电参数和时间,为电动汽车充电。

APP客服端用于创建人机交互体系,用户在客服端注册个人信息,借助此终端向充电桩控制电路发送操控命令。

另外,通过 APP,可以读取充电状态信息,所有的充电消费者记录也可以从中查询。

云服务器用于接收数据并加以存储,从而为运营商和用户之间的业务往来提供足够空间。

1. 2 系统网络通信设计在传统充电桩控制系统的基础上,改进网络通信体系,选取蓝牙作为充电桩与用户手机之间的通信工具,以此满足复杂环境下的通信需求。

电动汽车智能充电桩的设计与实现

电动汽车智能充电桩的设计与实现

电动汽车智能充电桩的设计与实现随着全球气候变化和环境问题的日益严重,越来越多的人们开始电动汽车及其相关技术。

作为一种清洁、环保的交通工具,电动汽车的市场份额逐年增长,对充电设施的需求也随之增加。

在这种背景下,电动汽车智能充电桩的设计与实现显得尤为重要。

本文将介绍智能充电桩的核心思想、需求分析、设计方案、实现过程、结果分析及总结。

电动汽车智能充电桩的核心思想是实现充电的智能化、高效化和安全化。

通过引入先进的物联网、大数据和人工智能技术,智能充电桩能够自动识别电动汽车型号,适配不同车型的充电需求,确保充电过程的安全和稳定。

智能充电桩还具备能源管理、远程监控等功能,为电力系统的稳定运行提供有力支持。

随着电动汽车市场的不断扩大,用户对充电设施的需求也日益增长。

传统充电桩存在充电速度慢、缺乏智能管理等问题,难以满足用户的实际需求。

因此,开发一种具有智能化、高效化、安全化特点的充电桩成为市场迫切需求。

同时,智能充电桩应具备实时监控、远程控制等功能,以提高充电设施的运营效率和安全性。

智能充电桩的设计方案主要包括硬件和软件两大部分。

硬件部分包括充电接口、电源模块、通信模块等,以满足不同电动汽车的充电需求;软件部分则涉及充电管理、能源管理、远程监控等功能,通过引入物联网、大数据和人工智能等技术实现智能化管理。

为确保数据的安全性和可靠性,智能充电桩还需设计完善的数据通信协议。

在实现过程中,首先需要根据设计方案制作相应的设计图纸,并完成硬件和软件的选型与调试。

随后,编写充电桩的软件代码,包括充电管理、能源管理、远程监控等功能模块。

完成编码后,进行严格的实验测试,以确保智能充电桩在各种条件下能够稳定运行。

通过实验测试,我们发现智能充电桩在功能完备性、稳定性及可靠性方面均表现出色。

与传统的充电桩相比,智能充电桩具有更快的充电速度、更高效的能源管理以及更便捷的远程监控功能。

智能充电桩还能够自动识别电动汽车型号,自动调整充电参数,为用户提供更加个性化的服务。

基于STM32的电动汽车交流充电桩的设计与实现[1]

基于STM32的电动汽车交流充电桩的设计与实现[1]

software design
separately introduced,including the circuit design of the microprocessor unit,the design of the
main program of the control system,the software design of the human-computer interface,the interface and software design of the settlement
use.
Keywords:STM32 processor’STM32F 1 03ZET6,AC charging,interactive,IC card,GPRS
浙江工业大学硕士学位论文


摘 第1章
1.1 1.2 1.3 1.4

论…。
研究的背景及意义…………………………………………………………………………………..1 常用电动汽车充电方式和设施介绍………………………………………………………………..2 电动汽车交流充电桩的研究现状…………………………………………………………………..2 本文的主要工作和章节安排………………………………………………………………………..3
control system.Finally,the AC charging system tests are conducted.And the results show that
浙江工业大学硕士学位论文
the charging pile is reliable and functional,and it can be put imo practical

基于STM32的智能充电桩嵌入式控制系统设计

基于STM32的智能充电桩嵌入式控制系统设计

基于STM32的智能充电桩嵌入式控制系统设计摘要:随着越来越多的新能源汽车逐渐走进人们的生活,充电相关的难题也随之而来,因此一个稳定而高效的充电桩对人们的生活能够起到非常关键的作用。

基于此,本文首先简要阐述基于STM32智能充电桩嵌入式控制系统的设计理念以及开发环境的建立,其次,通过对硬件部分、软件部分等方面的实现进行简要分析,并提出自己一点看法。

关键词:智能充电桩;STM32;嵌入式控制系统引言:STM32是具备低耗、功能强等优点的处理器内核,将STM32引入智能充电桩嵌入式控制系统中,能够有效提升系统的稳定性以及控制能力。

随着环保能源理念的推广普及,电动汽车应运而生。

电动汽车具有排放量低、成本低、噪音小等优点,但是其续航能力以及充电问题是目前电动汽车的发展难点问题,因此,对电动汽车智能充电桩的研究,已经具备非常重要的意义。

1基于STM32智能充电桩嵌入式控制系统的设计1.1嵌入式控制系统的整体设计理念想要设计一个基于STM32的嵌入式控制系统,首先需要对系统的整体结构以及功能进行分析,并且通过S3C2440本身具备的AD系统功能对智能嵌入式控制系统进行同步采样。

智能充电桩控制系统设计主要分为硬件以及软件两个部分的设计。

在软件设计中,主控模块是控制系统的核心模块;信号检测模块主要功能为充电信号的接入、电源的设计以及嵌入式智能控制电路三部分组成;在硬件设计中,主要依靠AD控制电路、同步时钟、ARM主控的电路板以及充电信号调整等,以此便能够构成嵌入式控制系统的整体设计构架。

在进行设计过程中还需要注意参数范围的设定。

智能充电桩嵌入式控制系统电压输入范围参数为:±220V、±360V;具备16位的定点STM32内核,因此稳定采样速率为600kHz,最高可达250kHz;可配置4路组合Cache,从而保障系统具备低功耗的特点;通过提供片外同步的存储器,保证系统稳压状态下功耗小于140mW。

基于STM32的电动汽车动力电池管理系统设计

基于STM32的电动汽车动力电池管理系统设计

基于STM32的电动汽车动力电池管理系统设计随着对环境保护和汽车技术的不断追求,电动汽车逐渐取代传统燃油汽车成为人们的首选。

作为电动汽车的核心组成部分之一,动力电池的管理系统在保证车辆性能和安全的同时起着至关重要的作用。

本文将基于STM32单片机介绍电动汽车动力电池管理系统的设计。

一、电动汽车动力电池管理系统的概述动力电池管理系统是电动汽车控制系统中的一个重要模块,主要用于监测、控制和保护动力电池组。

其主要功能包括电池组的电压、电流、温度的监测与采集,对电池组进行均衡和充放电控制,以及电池过充、过放和过温等异常条件的检测和保护。

二、STM32单片机的选择STM32单片机具有功耗低、性能强大、集成度高等特点,是嵌入式系统设计的理想选择。

在电动汽车动力电池管理系统设计中,STM32单片机可以实现对电池组各种参数的高精度采集与控制,具备良好的可靠性和稳定性。

三、电池组参数的采集与控制1. 电池组电压采集:通过电压分压电路和模数转换器实现对电池组电压的采集,并通过STM32单片机进行精确测量和数据处理。

2. 电池组电流采集:采用电流传感器和模数转换器对电池组电流进行实时监测,实现对电池组的充放电控制。

3. 电池组温度采集:通过温度传感器实时测量电池组温度,并结合STM32单片机的温度补偿功能,对电池组的温度进行精确控制。

4. 电池组均衡控制:根据对电池组电压的监测和比较,通过控制均衡电路,实现对电池组各个单体电池的均衡充放电,从而提高电池组的使用寿命和性能。

四、电池异常状态的监测与保护1. 过充保护:当电池组电压超过设定阈值时,系统会自动切断充电电路,避免电池过度充电造成安全隐患。

2. 过放保护:当电池组电压低于设定阈值时,系统会自动切断负载电路,保护电池组避免过度放电。

3. 过温保护:通过温度传感器实时监测电池组温度,当温度超过设定阈值时,系统会自动采取保护措施,如切断充电和放电电路,保证电池组的安全运行。

基于STM32的充电系统设计

基于STM32的充电系统设计

基于STM32的充电系统设计摘要:在一些重要的公共建筑的场合,如电梯、大型通讯网络、银行、医疗系统等,不可以轻易断电,否则可能会造成重大的财产损失以及人员伤亡等问题。

这时,后备电源可以暂时提供电能从而起到应急的作用。

基于此背景,制作了一个基于STM32的充电保障电源箱。

主要包含两大模块,一个是充电模块,以及锂电池监测模块。

基于AD/DC-DC/DC逆变技术,充电模块根据锂电池的充电特性以及最佳充电方法,设置了专用的TP5100充电板来输出合适的充电电压、电流提供给锂电池,并设计了过充、过流、过压等保护功能。

锂电池监测模块采用STM32单片机来监控电池电量;采用LCD1602显示屏显示锂电池的充电电压、电量;采用蜂鸣器实现电路报警的作用。

经过实测验证,该充电保障电源箱可以实现预期的后备电池管理、监测功能。

关键词:充电装置;STM32;锂电池;电压电量监测1 引言本设计是基于传统的应急电源上,设计出一款更加便携式的储能电源的充电研究系统。

与市场上的一般应急电源相比,接入了交流输入、直流输入的充电模块、以及显示的电路设计,并设计完善的保护和检测系统,可以通过LCD液晶显示屏看到锂电池的充电电压、电量等情况。

可以为需要使用紧急电能的用户提供便利、安全且干净的电能[1]。

本文所设计的充电保障电源箱的充电系统,可以作为手机、充电宝、USB接口风扇等小型电子设备提供电能。

可以任意满足直流和交流充电的需求,也可以用于发生故障或者供电中断的硬件系统临时充电,为解决故障与问题做出了充足的准备。

2系统总体设计系统由一块控制芯片和其他电路组成。

主要包括主控模块、输入交流电源、输入直流电源模块、锂电池及充电电路、检测电路、显示模块、报警电路。

给锂电池充电的输入电压有两种方式:1、由电网220V交流电经过降压、整流输出合适的直流为锂电池充电板提供电压。

实现AC/DC的功能。

2、输入任意5-35V直流电,经过稳压电路输出合适的直流电锂电池充电板提供电压[2]。

基于STM32f103RC的交流充电控制器设计

基于STM32f103RC的交流充电控制器设计

基于STM32f103RC的交流充电控制器设计摘要:随着电动汽车的普及,公共停车区域的充电桩越来越无法满足广大电动汽车用户的充电需求。

较小功率的交流充电枪成为大众的选择,只需要一个220V交流电源,通过充电枪和车载充电机就能完成充电。

本文设计了包含MCU电路、系统电源电路、通信电路、电流调控电路的交流充电控制器,通过调整充电过程不同阶段的充电电流,提高电池的一次充电量,减轻极化现象,延长电池使用寿命。

关键词:交流充电,MCU,电流传感器1实现原理本设计的硬件系统包括:MCU电路、电源电路、通信电路、电流调控电路等。

开关电源技术十分成熟,通过开关电源的变压、整流等完成220V交流电到各个级别的直流电的转变,为整个硬件系统供电。

电流控制电路与电压传感器、电流传感器及MCU电路协同工作,实现对充电回路中充电电压、电流的实时调控。

对于电池系统,车载充电机不仅为电池组提供充电用直流电,还通过CAN总线与电池管理系统(BMS)进行信息交流。

车载充电机可以根据BMS方面传来的电池信息,适当调整充电参数。

可调开关电源为交流充电机的充电回路和控制电路提供直流电源。

充电过程中,单片机通过可调开关电源与功率管实现对充电回路的控制。

电流传感器和电压传感器向单片机实时传输供电回路电压与电流信息,单片机根据BMS提供的电池状态信息,通过功率管限制充电电流大小,使其不超过电池能够承受的最大充电电流,以此减少电能损耗,提高充电效率。

2MCU电路MCU电路采用STM32f103RC单片机作为核心控制芯片,用以接收信息,处理信息并控制系统做出反应。

该芯片是融合了实时性、低功耗、低电压、数字信号处理以及高性能于一身的单片机,其高集成度和开发简易的特点使其成为各类中小项目和完整平台解决方案的理想选择,在各类检测设备和PC外设中被广泛使用[1]。

MCU电路利用JTAG借口调试,在较为复杂环境下工作,其CPU要配两个晶振,一个给芯片提供晶振,一个用作备用。

基于STM32的多功能充电桩系统设计

基于STM32的多功能充电桩系统设计

基于STM32的多功能充电桩系统设计
张恒园;宁超魁;陈威乐
【期刊名称】《电子制作》
【年(卷),期】2024(32)9
【摘要】本文研究并提供一款基于STM32的多功能充电桩系统,本设计以STM32为控制核心,通过各种传感器实时监测充电状态和环境因素,同时通过WiFi模块将采集的数据上传至云平台。

当检测到充电电流、环境温度等参数超出正常范围时,系统会通过蜂鸣器报警并将警告信息发送到用户端,以便于及时采取措施,确保充电过程的安全和稳定。

此外,该系统还可以实现充电计量信息统计、远程监控、定时充电等功能,提高充电服务的智能化和便捷性,满足充电用户的需求。

【总页数】4页(P46-49)
【作者】张恒园;宁超魁;陈威乐
【作者单位】平顶山学院信息工程学院
【正文语种】中文
【中图分类】TM9
【相关文献】
1.基于STM32的智能充电桩嵌入式控制系统设计
2.基于STM32的三相交流充电桩控制系统设计
3.基于stm32的智能充电桩嵌入式控制系统设计
4.基于STM32的集中式多枪交流充电桩系统设计
5.基于STM32的太阳能多功能充电模拟系统设计
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于STM32F的电动汽车交流充电桩控制系统设计0 引言
随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的方向,发展电动汽车将是解决这两个难题的最佳途径。

我国高度重视电动汽车的发展,国家相继出台了一系列标准来扶持和规范电动汽车的发展。

但要实现电动汽车大面积普及我国还有很长的路要走,需要解决的问题还有很多。

在最近发布的《节能与新能源汽车产业规划》草案中指出将以纯电动汽车作为主要战略取向。

有关专家指出纯电动汽车的发展存在三大瓶颈问题:一是标准的缺失,二是配套政策的不完善,三是基础设施的规划和建设的有序推进。

本文所研究的电动汽车交流充电桩作为充电基础设施的一部分对于推进电动汽车的普及具有重要的意义。

1 电动汽车交流充电桩介绍
交流充电桩,又称交流供电装置,是指固定在地面或墙壁,安装于公共建筑(办公楼宇、商场、公共停车场等)和居民小区停车场或充电站内,采用传导方式为具有车载充电机的电动汽车提供人机交互操作界面及交流充电接口,并具备相应测控保护功能的专用装置。

交流充电桩采用大屏幕LCD彩色触摸屏作为人机交互界面,可选择定电量、定时间、定金额、自动(充满为止)四种模式充电,具备运行状态监测、故障状态监测、充电分时计量、历史数据记录和存储等功能。

充电桩的交流工作电压(220±15%)V,额度输出电流(AC)为32 A(七芯插座),普通纯电动轿车用交流充电桩充满电大约需要6~8 h,充电桩更适用于慢速充电。

交流充电桩一般由桩体、电气模块、计量模块、账务管理模块四部分组成。

根据安装方式的不同,桩体可分为落地式和壁挂式两种。

落地式充电桩适合在各种停车场和路边停车位进行地面安装;壁挂式充电桩适合在空间拥挤、周边有墙壁等固定建筑物上进行壁挂安装,如地
下停车场或车库。

2 交流充电桩系统工作原理
依据GB/T 20234.2-2011《电动汽车传导充电用连接装置;交流充电接口》中相关规定的要求,采用控制导引电路的方式来作为充电连接装置的连接状态及额定电流参数的判断装置。

其典型的控制导引电路如图1所示。

供电设备插头与插座连接后,供电控制装置通过图1所示的检测点4的电压值判断供电插头与供电插座是否已完全连接。

同时电动汽车车辆控制装置通过测量检测点3与PE间的电阻值判断车辆插头与车辆插座是否已完全连接。

在完成插头与插座连接状态检测后,操作人员对供电设备完成充电启动设置,则开关S1从连接+12V状态切换至PWM连接状态,供电控制装置发出PWM信号。

供电控制装置通过测量检测点1的电压值判断充电连接装置是否已完全连接。

车辆控制端检测无误后闭合S2,供电控制装置通过再次测量检测点1的电压值判断车辆是否准备就绪,如满足要求则通过闭合K使交流供电回路导通。

3 交流充电桩系统方案
系统由LCD触摸屏、打印机、RS-485接口的电能表、漏电保护断路器、交流接触器、读
卡器和LED灯等基本部分组成。

LCD触摸屏可以提供友好的人机操作界面和快捷简单的操作方式,满足客户按照不同的方式对电动汽车进行充电的要求,可以显示当前充电状态、充电电量和充电费用,友好的用户界面可以让客户进行相应的选择。

当采集的电压超过过压保护定值或低于欠压保护定值,充电桩停止充电。

漏电保护断路器可保证在充电过程中发生漏电等紧急故障情况下停止充电。

当发生意外状况需要紧急停止充电时,可以通过急停按钮来中断充电。

系统的电气连接示意图如图2所示。

4 控制系统单元电路
4.1 主控制器选择
主控制器选择意法半导体的STM32F107VCT6微控制器。

STM32F107VC互联型系列使用高性能的ARM Cortex-M3 32位的RISC内核,工作频率为72 MHz。

该器件包含2个12位的ADC、4个通用16位定时器和1个PWM定时器,还包含标准和先进的通信接口:多达2个I2C,3个SPI,2个I2S,5个USART、一个USB和2个CAN,该器件同时提供了以太网接口,极大的方便了电路设计。

4.2 串行接口电路
系统共使用了四个串行接口分别与LCD触摸屏、热敏打印机、读卡器和RS-485接口的电能表通信。

LCD触摸屏和热敏打印机为RS-232电平,经过电平转换与MCU通信,LCD 触摸屏与MCU的通信协议采用Modbus RTU通信协议,MCU作为主机,LCD触摸屏作为从机。

热敏打印机根据打印机模块提供的协议进行通信。

读卡器为TTL电平,可以直接与MCU相连,采用读卡器模块提供的协议进行通信。

充电计量的电能表采用多功能单相表,电表选用2.0等级的电能表,电流规格为5(40)A。

电表提供RS-485接口,通过DL/T 645-2007通信协议与MCU通信。

通过读取电能表的电能值作为充电桩的电能计量值,通过读取电表电流和电压值来判断充电过程中是否出现过流和过压的情况,并加以处理。

电能表接口的电路图如图3所示。

4.3 CAN总线接口电路
根据《电动汽车车载充电机与交流充电桩通讯协议》征求意见稿中的相关说明,该征求意见稿推荐车载充电机与交流充电桩之间的通信系统采用CAN总线,所以设计CAN总线接口。

数据链路层为物理连接之间提供可靠数据传输,本系统车载充电机与交流充电桩之间的数据
帧格式符合CAN总线2.0B版本的规定,使用CAN扩展帧的29位标识符。

具体每个位分配的相应定义和传输协议等功能符合SAE J1939—21的规定。

4.4 充电电压测量电路
电压测量首先需要通过测量互感器将电压和电流转换为可以测量的小信号。

例如对220V的电压信号的测量,采用的互感器变比为2 mA/5 mA,采用图4所示的电路,可知在220V 时互感器的输出恰好为5mA。

忽略大电阻分流的影响,则27 Ω相当于是一个采样电阻。

由于采样的信号为交流电,信号有正负之分,而A/D转换器的输入范围为0~3.6V,所以不能直接将采样电压输入到A/D转换器中。

在运放的正输入端接入一个正的参考电压,再选择合适的放大倍数,使输出能够在A/D转换器的输入范围即可很好的解决该问题。

采用准同步采样后,数据采用矩形自卷积窗算出其有效值。

4.5 控制导引电路
控制导引电路完成充电前充电桩与电动汽车的连接确认、供电功率及充电连接装置载流能力的识别和充电过程的监测等任务。

MCU通过检测点不同的电压值来判断所处状态,其电路原理图如图5所示。

5 桩体电气部分设计
交流充电桩的电气部分主要完成充电的控制与充电过程的保护等功能。

具有漏电保护、短路保护、过流、过压、欠压保护等保护功能。

除短路和漏电保护外,其他保护功能通过充电控制器控制接触器实现,以实现自恢复;短路和漏电保护选用带漏电保护的微型断路器实现。

此外系统还具有防雷模块,防雷模块标称放电电流不小于20kA,保护电压水平小于等于1.5 kV。

单相供电时防雷模块的接线方式选用P+N接线方式。

充电桩具备急停按钮,以便在紧急情况时能够强行终止充电。

6 软件设计
充电桩通过触摸屏完成交互式控制,运行时如果进行刷卡操作则触发中断进行读卡,确定卡的类型进行相关操作。

充电模式提供多种选择可以设置按时间、电量、金额充电,也可设置成直接充满为止。

程序的整体流程图如图6所示。

7 结论本文分析了交流充电桩控制系统的硬件设计与软件设计,叙述了充电桩电气部分的设计。

该系统以STM32F107VCT6为控制核心,实现了人机交互、充电控制、电能计量、IC卡付费、票据打印、运行状态监测、充电保护和充电信息存储和上传等多种完善的功能。

该系统能满足电动汽车一般的慢速充电要求,作为充电基础设施的一部分对于推进电动汽车的普及具有重要的意义。

相关文档
最新文档