合成氨催化剂PPT课件
合集下载
合成氨催化剂PPT课件

合成氨催化剂的发展
1
1 合成氨的历史回顾
1908年7月,德国化 学家弗里茨·哈伯在实 验室用N2和H2在 600℃、200个大气压, 以锇为催化剂的条件 下下合 成了氨,虽然 产率仅 有8%,却 也是一项重 大突 破。
2
➢ 哈伯认为若能使反应 气体在高压下循环加 工,并从这个循环中 不断地把反应生成的 氨分离出来,则这 个 工艺过程是可行的。 于是他成功地设计了 原料气的循环工艺。 这就是合成氨的哈伯 法。
28
3.6 纳米三氧化钼
MoO3是合成氨脱硫工序催化剂的活性组 分。
有学者以低品位钼精矿为原料,用热分解 法制备出了接近纳米级的MoO3微粒。
29
由于纳米材料的小尺寸及特殊的表面结构, 使得纳米催化剂具有特殊性能。和传统催 化剂相比,纳米催化剂的平均选择性提高 5~10倍,活性提高2~7倍。纳米催化剂的 这些优异性必将得到更好的开发利用。
11
1.2 亚铁型催化剂
FeO具有化学非整比性 氧化性和亚稳 定性在常温下FeO的氧化反应和歧化反 应速度很缓慢。含多种助剂的Fe1-XO基 催化剂在动力学上是稳定的,母体中只 有一种铁氧化物(Fe1-XO )和一种晶体 结构(Wustite),只有维氏体单独存在 于催化剂中时才具有高活性。
12
研究发现具有维氏体(WÜstite, Fe1-XO , 0.04≦x≦0.10)相结构的氧 化亚铁基氨合成催化剂具有最高活性 (氧化态 XRD谱如下图1),否定了 磁铁矿(Fe3O4 )相还原得到的催化 剂具有最高活性的经典结论。
16
铁基催化剂的双峰形活性曲线
17
结果表明:在7.0~7.5MPa等压合成氨工 艺条件下,A301催化剂的氨净值为10~12%, 在8.5MPa或10MPa微加压合成氨工艺条件 下,氨净 7.0~7.5MPa 可高达12~15%,可 以满足合成氨工业经济性对氨净值的要求。 目前我国生产的A301催化剂起始温度在 280~300℃,主期温度在400~480℃,使 用温度在300~520℃,使用压力在 8.0~32Mpa,氨净值为12~17%。因此采 用A301催化剂实现等压或微加压合成氨是可 行的,并且可获得显著的经济效益。
1
1 合成氨的历史回顾
1908年7月,德国化 学家弗里茨·哈伯在实 验室用N2和H2在 600℃、200个大气压, 以锇为催化剂的条件 下下合 成了氨,虽然 产率仅 有8%,却 也是一项重 大突 破。
2
➢ 哈伯认为若能使反应 气体在高压下循环加 工,并从这个循环中 不断地把反应生成的 氨分离出来,则这 个 工艺过程是可行的。 于是他成功地设计了 原料气的循环工艺。 这就是合成氨的哈伯 法。
28
3.6 纳米三氧化钼
MoO3是合成氨脱硫工序催化剂的活性组 分。
有学者以低品位钼精矿为原料,用热分解 法制备出了接近纳米级的MoO3微粒。
29
由于纳米材料的小尺寸及特殊的表面结构, 使得纳米催化剂具有特殊性能。和传统催 化剂相比,纳米催化剂的平均选择性提高 5~10倍,活性提高2~7倍。纳米催化剂的 这些优异性必将得到更好的开发利用。
11
1.2 亚铁型催化剂
FeO具有化学非整比性 氧化性和亚稳 定性在常温下FeO的氧化反应和歧化反 应速度很缓慢。含多种助剂的Fe1-XO基 催化剂在动力学上是稳定的,母体中只 有一种铁氧化物(Fe1-XO )和一种晶体 结构(Wustite),只有维氏体单独存在 于催化剂中时才具有高活性。
12
研究发现具有维氏体(WÜstite, Fe1-XO , 0.04≦x≦0.10)相结构的氧 化亚铁基氨合成催化剂具有最高活性 (氧化态 XRD谱如下图1),否定了 磁铁矿(Fe3O4 )相还原得到的催化 剂具有最高活性的经典结论。
16
铁基催化剂的双峰形活性曲线
17
结果表明:在7.0~7.5MPa等压合成氨工 艺条件下,A301催化剂的氨净值为10~12%, 在8.5MPa或10MPa微加压合成氨工艺条件 下,氨净 7.0~7.5MPa 可高达12~15%,可 以满足合成氨工业经济性对氨净值的要求。 目前我国生产的A301催化剂起始温度在 280~300℃,主期温度在400~480℃,使 用温度在300~520℃,使用压力在 8.0~32Mpa,氨净值为12~17%。因此采 用A301催化剂实现等压或微加压合成氨是可 行的,并且可获得显著的经济效益。
合成氨催化剂的发展p

FeO具有化学非整比性 氧化性和亚稳 定性在常温下FeO的氧化反应和歧化反应 速度很缓慢。含多种助剂的Fe1-XO基催 化剂在动力学上是稳定的,母体中只有 一种铁氧化物(Fe1-XO )和一种晶体结 构(Wustite),只有维氏体单独存在于 催化剂中时才具有高活性。
研究发现具有维氏体(WÜstite, Fe1-XO , 0.04≦x≦0.10)相结构的氧 化亚铁基氨合成催化剂具有最高活性 (氧化态 XRD谱如下图1),否定了 磁铁矿(Fe3O4 )相还原得到的催化 剂具有最高活性的经典结论。
➢大多数铁系催化剂都是用经过精选 的天然磁铁矿通过熔融法制备的, 习惯称熔铁催化剂。
铁系催化剂活性组分为金属铁。 未还原前为FeO和Fe2O3,其 中FeO质约为 0.5,一般在0.47~0.57之间, 成分可视为Fe3O4,具有尖晶
石结构。
之后人们通过大量试 验发现,铁比值与熔 铁基合成氨催化剂的 性能有着密切的关系, 并一致认为最佳铁比 值为0.5、最佳母体 相为磁铁矿,铁比值 与活性的关系呈火山 形分布。目前为止世 界上所有工业铁基合 成氨催化剂的主要成 份都是Fe3O4。
➢开发低温高活性的新型催化剂,降低反应 温度, 提高氨的平衡转化率和单程转化 率或实现低压合成氨,一直是合成氨工业 的追逐目标。从最初的钌基催化剂的发 明,到铁基催化剂体系的创立和三元氮 化物催化剂的问世,都说明了人们在探 索合成氨道路上所作出的不懈努力。
1.1 熔铁催化剂
长期以来,人们对氨合成催化剂作了大量 的研究,发现对氨合成有活性的一系列金 属为Os,U,Fe,Mo,Mn,W等,其中一 铁为主体的铁系催化剂,因其价廉易得、 活性良好、使用寿命长等特点,在合成氨 工艺中被广泛使用。
工艺过程是可行的。 于是他成功地设计了 原料气的循环工艺。 这就是合成氨的哈伯 法。
研究发现具有维氏体(WÜstite, Fe1-XO , 0.04≦x≦0.10)相结构的氧 化亚铁基氨合成催化剂具有最高活性 (氧化态 XRD谱如下图1),否定了 磁铁矿(Fe3O4 )相还原得到的催化 剂具有最高活性的经典结论。
➢大多数铁系催化剂都是用经过精选 的天然磁铁矿通过熔融法制备的, 习惯称熔铁催化剂。
铁系催化剂活性组分为金属铁。 未还原前为FeO和Fe2O3,其 中FeO质约为 0.5,一般在0.47~0.57之间, 成分可视为Fe3O4,具有尖晶
石结构。
之后人们通过大量试 验发现,铁比值与熔 铁基合成氨催化剂的 性能有着密切的关系, 并一致认为最佳铁比 值为0.5、最佳母体 相为磁铁矿,铁比值 与活性的关系呈火山 形分布。目前为止世 界上所有工业铁基合 成氨催化剂的主要成 份都是Fe3O4。
➢开发低温高活性的新型催化剂,降低反应 温度, 提高氨的平衡转化率和单程转化 率或实现低压合成氨,一直是合成氨工业 的追逐目标。从最初的钌基催化剂的发 明,到铁基催化剂体系的创立和三元氮 化物催化剂的问世,都说明了人们在探 索合成氨道路上所作出的不懈努力。
1.1 熔铁催化剂
长期以来,人们对氨合成催化剂作了大量 的研究,发现对氨合成有活性的一系列金 属为Os,U,Fe,Mo,Mn,W等,其中一 铁为主体的铁系催化剂,因其价廉易得、 活性良好、使用寿命长等特点,在合成氨 工艺中被广泛使用。
工艺过程是可行的。 于是他成功地设计了 原料气的循环工艺。 这就是合成氨的哈伯 法。
催化剂课件ppt

Vg=πr2·L Sg=2πr·L
r=2Vg/Sg
46
(5) 孔径分布
0.4
SZA/MCM-41 MCM-41
0.3
Pore Volume,(cm g-A)
0.2
0.1
0.0
10
20
30
40
50
Pore Diameter,()
47
3 酸碱催化剂及其催化作用
3.1 酸碱催化剂的应用及类型 3.2 酸碱的定义及其酸碱中心的形成 3.3 固体酸的性质及其测定 3.4 酸碱催化作用及其催化机理 3.5 分子筛催化剂及其催化作用 3.6 典型酸催化反应剖析
ml/g
式中W 1―表示催化剂的重量;
W 2―表示催化剂孔内充满四氯化碳后的重量;
d―四氯化碳密度。
44
(3) 孔隙率
催化剂颗粒内孔的体积占颗粒总体积的分数
θ =V孔/(V孔+ V真) =(1/ρ假-1/ρ真)/ 1/ρ假 = 1- ρ假/ρ真 = Vg·ρ假
45
(4)平均孔半径
假设所有的孔均为半径为r、长度为L 的圆柱形孔,则:
固体催化剂的组成
固体催化剂是工业催化过程中最普遍的一类 催化剂 按组分的多少分成单组分(元)和多组分(元)催化剂 单组分催化剂:氨氧化制硝酸的铂催化剂 多组分催化剂:主催化剂、助催化剂和载体
5
固体催化剂的组成
主催化剂(活性组分)
没有它就没有所需要的催化作用 如:加氢催化剂Ni/Al2O3中的Ni
合成氨催化剂Fe-Al2O3-K2O中的Fe
剂所得到的产物量。 单程收率 总收率
23
催化剂活性的表示方法
反应速率常数
kc=r/f(c) kp=r/f(p)
工业合成氨课件

提__高_很__少__,__但__需_要__的__动__力__更_大__,__对__设__备_的__要__求__更__高_。
5、在合成氨反应中,入口气体体 积比 N2:H2:NH3 为6:18:1,出口 气体体积比为9:27:8,则H2的转
化率为___2_5_%___。
起始
N2+3H2 6 18
2NH3 1
施来提高反应速率?
2、压强的选择
①合成氨反应是气态物质系数减小的气体 反应,增大压强既可以增大反应速率,又能使 平衡正向移动,所以理论上压强越大越好。
②但是压强越大,对设备的要求高、压缩 H2和N2所需要的动力大,因此选择压强应符合 实际科学技术。
综合以上两点:根据反应器钢材质量 及综合指标,一般选择中压生产。
弗里茨·哈伯:
给人类带来丰收和 喜悦的天使,用空 气制造面包的圣人。
合成氨反应: N2(g)+3H2(g) 2NH3(g)
假如你是一个合成氨工厂的老板,对工业生 产你会考虑哪些问题?
反应的可能性要强 原料的利用率要高 单位时间内产率高
化学反应的方向性
增大化学反应限度 加快化学反应速率
另外还要考虑生产中的能源消耗、原料 来源、设备条件、环境保护等因素。
(D)合成氨工业采用20 MPa ---- 50MPa ,是因该条 件下催化剂的活性最好
4.已知2SO2(g)+O2(g)
2SO3 (g) △H<0。
催化剂的温度是_4_5_0_℃__。 (2)应采用的压强是__常__压__,理由是__因__为_常__压__下__SO2 __的__转__化_率__已__经__很__高_,__若__采__用__较_大__压__强__,__S_O_2_的__转__化_率_
5、在合成氨反应中,入口气体体 积比 N2:H2:NH3 为6:18:1,出口 气体体积比为9:27:8,则H2的转
化率为___2_5_%___。
起始
N2+3H2 6 18
2NH3 1
施来提高反应速率?
2、压强的选择
①合成氨反应是气态物质系数减小的气体 反应,增大压强既可以增大反应速率,又能使 平衡正向移动,所以理论上压强越大越好。
②但是压强越大,对设备的要求高、压缩 H2和N2所需要的动力大,因此选择压强应符合 实际科学技术。
综合以上两点:根据反应器钢材质量 及综合指标,一般选择中压生产。
弗里茨·哈伯:
给人类带来丰收和 喜悦的天使,用空 气制造面包的圣人。
合成氨反应: N2(g)+3H2(g) 2NH3(g)
假如你是一个合成氨工厂的老板,对工业生 产你会考虑哪些问题?
反应的可能性要强 原料的利用率要高 单位时间内产率高
化学反应的方向性
增大化学反应限度 加快化学反应速率
另外还要考虑生产中的能源消耗、原料 来源、设备条件、环境保护等因素。
(D)合成氨工业采用20 MPa ---- 50MPa ,是因该条 件下催化剂的活性最好
4.已知2SO2(g)+O2(g)
2SO3 (g) △H<0。
催化剂的温度是_4_5_0_℃__。 (2)应采用的压强是__常__压__,理由是__因__为_常__压__下__SO2 __的__转__化_率__已__经__很__高_,__若__采__用__较_大__压__强__,__S_O_2_的__转__化_率_
工业合成氨简易流程ppt课件

K p 1 py1 H .y 5 2N y 3N 0 H .5 2(1 yy i Ny 3N H 3) H 2(r p r 1 1 .)5 2
(1yy i Ny3H N3H )2Kpp(rr 1.1 5)2
影响平衡氨含量的要素
a.压力和温度的影响
当r=3时, yi =0时,不同温度、 压力下的平衡氨含量值如下表:
快,外分散影响可忽略,但内分散阻力不能忽视,内分散速率影响氨 合成反响的速率。改动催化剂粒度,调理对反响速率的影响。
第二节 氨合成催化剂
氨合成反响必需用催化剂,没有催化剂,即使 在很高压力下反响速度也很小,生成的氨浓度很低。 可以作氨合成催化剂的物质很多,如锇〔Os〕、 铁(Fe)、锰(Mn)、钨(W)和铀(U)等。但由于以铁为 主体的催化剂具有原料来源广、价钱低廉、在低温 下有较好的活性、抗毒才干强、运用寿命长等优点, 广泛采用。
氧及含氧的化合物 CO、CO2、H2O
毒物
永久毒物
硫及其化合物 氯及其化合物 磷及其化合物
催化剂的改良: ①降低活性温度 ②改动外形降低 催化剂床层阻 力,节省功耗。
砷及其化合物
第三节 氨合成的工艺条件
❖ 前面讨论过氨合成的热力学、动力学及催化剂,实践消费 过程中,反响不能够到达平衡,合成工艺参数的选择除了 思索平衡氨含量外,还要综合思索反响速率、催化剂运用 特性以及系统的消费才干、原料和能量耗费等,以期到达 良好的技术经济目的。需求选择氨合成的工艺参数。
确定复原条件的原那么:
使四氧化三铁充分复原为α-Fe, 使复原生成的铁结晶不因重结晶而长大,以保证有最大的 比外表积和更多的活性中心。
3、影响复原质量的要素
装入氨合成塔的催化剂在运用前需求进展H2复原,使四氧化 三铁变为α-Fe 微晶才有活性。复原条件应使铁充分被复原,复原 后比外表积最大。 ◆复原温度,复原为吸热反响,提高温度利于平衡右移,复原速 度快,但生成的α-Fe 微晶颗粒较大,比外表积降低;复原温度过 低,复原速度慢,复原时间长,复原不彻底。复原温度略低于合 成氨操作温度。 ◆ 复原压力,提高复原压力,相当于提高H2分压,反响速度快, 同时可使氨合成反响进展,放出部分热量弥补电加热器。但也提 高了H2O的分压,添加了催化剂反复氧化复原程度,普通选1020MPa;
《合成氨生产》课件(13)

铁系催化剂为黑色不规则颗粒,有金属光 泽。还原后的催化剂一般为多孔的海绵状结构, 孔呈不规则的树枝状,内表面为4~16 m2/g。 注意事项:避免催化剂受潮及还原后的催 化剂暴露在空气中。
(2)催化剂的还原和使用 氨合成催化剂中的Fe3O4,必须经还原为 α—Fe后才具有催化活性。还原反应: Fe3O4+4H2≒3Fe+4H2O(g) △H﹥0 确定还原条件的原则:一方面是使Fe3O4充 分还原为α-Fe,另一方面是还原生成的铁结晶 不因重结晶而长大,以保证有最大的比表面积 和更多的活性中心。为此,生产上宜选取合适 的还原温度、压力、空速及还原气组成。
2、温度 合成氨反应存在最适宜温度。在最适宜温 度下,氨合成反应速率最快,氨合成率最高。 氨合成反应温度,一般控制在400~500℃, 工业生产中,应严格控制两点温度,即催化剂 床层入口温度及热点温度。催化剂床层入口温 度应等于或略高于催化剂活性温度的下限,热 点温度应小于或等于催化剂活性温度的上限。 到生产后期,由于催化剂活性下降,应适当提 高操作温度。
b、水吸收法 水吸收法是利用气态氨在水中的溶解度很 大,与溶液呈平衡的气相中氨分压很低的特点 进行的,可使气相中氨含量降至0.5%以下。 但气相被水蒸汽饱和,为防止催化剂中毒,循 环气需严格脱水后才能进氨合成塔。 水吸收法得到的产品是浓氨水。由浓氨水制 取液氨须经氨水蒸馏和气氨冷凝等பைடு நூலகம்骤。
(4)未反应氢氮气的处理 未反应氢氮气经循环压缩机加压,与新鲜 氢氮原料气混合,重新进入氨合成塔进行反应。 (5)惰性气体的排放 惰性气体为甲烷和氩气。小部分惰性气体 溶解于液氨中被带出,大部分在循环气中积累 下来。惰性气体进行放空处理,排放位置应选 择在惰性气体含量最大而氨含量最小的地方。 放空气中的氨可用水吸收或冷凝回收。
氨的工业合成(共53张PPT)

课 时 作 业
菜
单
LK ·化学 选修 化学与技术
教 学 目 标 分 析 课 堂 互 动 探 究
1.合成氨反应的化学方程式:N2+3H2
教 学 方 案 设 计
2NH3 。
当 堂 双 基 达 标
2.合成氨反应的特点: (1)可逆反应;(2) 放 热反应;(3)气体总体积 缩小 的反 应。
课 前 自 主 导 学 菜 单
课 时 作 业
LK ·化学 选修 化学与技术
教 学 目 标 分 析 课 堂 互 动 探 究
教 学 方 案 设 计
当 堂 双 基 达 标
课 前 自 主 导 学 菜 单
课 时 作 业
LK ·化学 选修 化学与技术
教 学 目 标 分 析 课 堂 互 动 探 究
教 学 方 案 设 计
当 堂 双 基 达 标
1.合成氨反应的特点: (1)可逆反应;(2)放热 反应;(3)气体体积缩小 的反应。(重点) 2.合成氨适宜条件的选 择:(1)高压;(2)适当 温度;(3)催化剂。(重 点) 3.勒夏特列原理在合成 氨反应中的应用。(重 难点) 4.合成氨工艺流程。(重 点)
课 堂 互 动 探 究
当 堂 双 基 达 标
课 前 自 主 导 学
②影响化学平衡移动的外界因素有哪些? 【提示】 温度、浓度、压强。
课 时 作 业
菜
单
LK ·化学 选修 化学与技术
教 学 目 标 分 析 课 堂 互 动 探 究
③合成氨实际生产中采用高温、高压、催化剂,其中有 利于提高平衡混合物中NH3的百分含量的因素有哪些?
【提示】 高温不利于平衡正向移动;催化剂对化学平
教 学 方 案 设 计
升温、增加N2或H2浓度,使用催化剂均能加快反应速率; 加压、降温、及时分离出NH3、增加c(N2)和c(H2)均有利于 平衡正向移动,增大氨的产率。
合成氨PPT课件

反应特点 :
主要副反应
主反应总体上是吸热,体积增大的反应
C4 = H 2 H 2 C 7.9 4 k.m J 1ol 2 C O C2 O C 1.7 4 k2 .m J 1ol C H O 2 = H 2 O C 1.3 3 k 6 1 .m J 1o
16
1.2.1 甲烷蒸汽转化反应的热力学分析
鉴于合成氨工业生产的实现和它的研究对化学 理论发展的推动,1918年,哈伯获得了诺贝 尔化学奖。
哈伯及其实验装置
合成氨发展的三个典型特点: 1. 生产规模大型化。 1000~1500T/日 2. 能量的合理利用。 用过程余热自产蒸汽推动蒸汽机供动力,基本不用电能。 3. 高度自动化。 自动操作、自动控制的典型现代化工厂。
第1章 合 成 氨 Synthesis of Ammonia
授课教师:蔡永伟
1
主要内容
1 1.1 概 述 2 1.2 原料气的制取 3 1.3 原料气的净化 4 1.4 氨的合成
2
1.1 概述 (Preface)
• 空气中含有游离氮(N2:78.03%),但是只有豆科等能 够直接吸收空气中的游离氮。
1908年7月,德国化学家弗里茨·哈伯在实验 室用N2和H2在600℃、200个大气压,以锇 为催化剂的条件下合成了氨,虽然产率仅有 8%,却也是一项重大突破。并成功地设计了 原料气的循环工艺,这就是合成氨的哈伯法。
1913年,德国当时最大的化工企业——巴登 苯胺和纯碱制造公司,组织了以化工专家波施 为首的工程技术人员将哈伯的设计付诸实施, 进行了多达6500次试验,测试了2500种不 同配方的催化剂后,最后选定了含铅镁促进剂 的铁催化剂,将哈伯的合成氨设想变为现实, 一个日产30吨的合成氨工厂建成并投产。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
16
铁基催化剂的双峰形活性曲线
.
17
结果表明:在7.0~7.5MPa等压合成氨工 艺条件下,A301催化剂的氨净值为10~12%, 在8.5MPa或10MPa微加压合成氨工艺条件 下,氨净 7.0~7.5MPa 可高达12~15%,可以 满足合成氨工业经济性对氨净值的要求。目 前我国生产的A301催化剂起始温度在 280~300℃,主期温度在400~480℃,使用 温度在300~520℃,使用压力在8.0~32Mpa, 氨净值为12~17%。因此采用A301催化剂实 现等压或微加压合成氨是可行的,并且可获 得显著的经济效益。
.
4
这标志着农业上所 需氮肥的来源主要 来自有 机物的副产 品,如粪类、种子 饼及绿肥 的时代已 经过去了。工业合 成氨迎来了前所未 有的发展。
.
5
经过一个多世纪的发 展,如今合成氨的技 术已经很成熟。但是 合成氨工业仍然是一 个高耗能的产业。因 而,合成氨工艺和催 化剂的改进将对降低 能耗,提高经济效益 产生巨大的影响。
.
18
同时,与A110—2型、A201型相比, A301型催化剂的还原温度降低了30~50℃, 出水非常快,在出水的同时有大量氨合成。 出水主期温度为400~430℃,最终还原温度 为475~480℃。对于中、小型合成氨厂,正 常还原过程在48~72h内完成。此外,A301 型催化剂的活性温度 比A110系列和A201型 降低了15~30℃,其催化活性(氨净值)也 高。图表3为主要铁基催化剂的性能比较。
.
经典火山活性曲线
10
关于合成氨熔铁催化剂,人们一直都认为R值 (即Fe2+/Fe3+)为0.5时其催化活性达到最佳状 态,这一经典理论沿袭了80多年,直到刘化章 等人找到了性能更佳的新的熔铁催化体 系———维氏体Fe1-XO体系才突破了这一经 典结论,标志着合成氨催化剂进入了一个新 的发展时期。
➢大多数铁系催化剂都是用经过精选 的天然磁铁矿通过熔融法制备的, 习惯称熔铁催化剂。
.
8
铁系催化剂活性组分为金属铁。 未还原前为FeO和Fe2O3,其 中FeO质量分数24%~38%,亚 铁离子与铁离子的比值约为 0.5,一般在0.47~0.57之间, 成分可视为Fe3O4,具有尖晶
石结构。
.
9
之后人们通过大量试 验发现,铁比值与熔 铁基合成氨催化剂的 性能有着密切的关系, 并一致认为最佳铁比 值为0.5、最佳母体 相为磁铁矿,铁比值 与活性的关系呈火山 形分布。目前为止世 界上所有工业铁基合 成氨催化剂的主要成 份都是Fe3O4。
.
19
.
20
1.3 稀土做助剂的催化剂
铁基合成氨催化剂添加稀土金属后, 如 CeO2, 它富集于催化剂表面, 经 还原后与Fe形成Ce2Fe金属化物,能促 进附F,e大向大N2 提输高出了电催子化,剂加的速活氮性的;活C性e 吸由 界面向基体迁移速度比K缓慢,使得Ce 比K 能更长时间保留在界面,继续发 挥其促进活性的作用,保证催化剂具 有更长的使用寿命。
.
3
➢ 1913年,德国当时最大的化工企业——巴 登苯胺和纯碱制造公司 ,进行了多达6500 次试验,测试了2500种不同配方的催化剂 后,最后选定了含铅镁促进剂的铁催化剂, 将哈伯的合成氨的设想变为现实,一个日 产30吨的合成氨工厂建成并投产 。
➢鉴于合成氨工业生产的实现和它的 研究对化学理论发展的推动,1918 年,哈伯获得了诺贝尔化学奖。
.
6
➢开发低温高活性的新型催化剂,降低反应 温度, 提高氨的平衡转化率和单程转化 率或实现低压合成氨,一直是合成氨工业 的追逐目标。从最初的钌基催化剂的发 明,到铁基催化剂体系的创立和三元氮 化物催化剂的问世,都说明了人们在探 索合成氨道路上所作出的不懈努力。
.
7
1.1 熔铁催化剂
长期以来,人们对氨合成催化剂作了大量 的研究,发现对氨合成有活性的一系列金 属为Os,U,Fe,Mo,Mn,W等,其中一 铁为主体的铁系催化剂,因其价廉易得、 活性良好、使用寿命长等特点,在合成氨 工艺中被广泛使用。
研究发现具有维氏体(WÜstite, Fe1-XO , 0.04≦x≦0.10)相结构的氧 化亚铁基氨合成催化剂具有最高活性 (氧化态 XRD谱如下图1),否定了 磁铁矿(Fe3O4 )相还原得到的催化 剂具有最高活性的经典结论。
.
13
氧化态催化剂XRD谱图
.
14
多年来,人们一直认为熔铁型合成氨催化剂的活 性随母体相呈火山形曲线变化,且当母体相为Fe3O4时 活领域的研究仅局限于Fe3O4体系。而八十年代中期, 浙江工业大学的刘化章教授在系统研究了合成氨催化 剂活性与其母体相组成的关系后,发现催化剂的活性 随母体相呈双峰形曲线分布,而不是传统的火山形分 布,这一结果的发现突破了合成氨催化剂发展的80多 年中一直束缚人们的传统理论,成为合成氨催化剂历 史上的一次重大突破。合成氨催化剂的发展. Nhomakorabea1
1 合成氨的历史回顾
1908年7月,德国化学 家弗里茨·哈伯在实验 室用N2和H2在600℃、 200个大气压,以锇为 催化剂的条件下下合 成了氨,虽然产率仅 有8%,却也是一项重 大突破。
.
2
➢ 哈伯认为若能使反应 气体在高压下循环加 工,并从这个循环中 不断地把反应生成的 氨分离出来,则这 个 工艺过程是可行的。 于是他成功地设计了 原料气的循环工艺。 这就是合成氨的哈伯 法。
.
15
刘化章等在促进剂为Al2O3—K2O—CaO, 反应压力1.51MPa,反应温度425℃,空速 30000-1h的条件下,系统研究了合成氨铁基 催化剂活性与其母体相组成的关系,发现催 化剂的活性随母体相呈双峰形曲线变化(见 下图2)。当母体相为Fe1—XO时具有最高的 活性和极易还原的性能。刘化章等于90年代 初期研制并批量生产出A301型Fe1—XO基催 化剂。90年代中期对A301型进一步改进, 又开发出性能更加优异的ZA—5型Fe1—XO 基催化剂。
.
11
1.2 亚铁型催化剂
FeO具有化学非整比性 氧化性和亚稳 定性在常温下FeO的氧化反应和歧化反应 速度很缓慢。含多种助剂的Fe1-XO基催 化剂在动力学上是稳定的,母体中只有 一种铁氧化物(Fe1-XO )和一种晶体结 构(Wustite),只有维氏体单独存在于 催化剂中时才具有高活性。
.
12