二维图形几何变换

合集下载

实验.四二维图形的基本几何变换

实验.四二维图形的基本几何变换

实验报告学院:计算机学号:姓名:实验四 二维图形的基本几何变换一、实验目的1.掌握二维图形基本的几何变换原理及变换矩阵; 2.掌握矩阵运算的程序设计。

二、实验内容实现二维图形的基本变换,包括平移、旋转、比例、对称变换。

三、实验环境硬件平台:PC运行环境: Windows 平台,Visual C++四、算法描述二维图形齐次坐标变换矩阵一般表达式 T = 这 3×3 矩阵中各元素功能一共可分成四块,即a 、b 、c 、d 四项用于图形的比例、对称、错切、旋转等基本变换; k 、m 用于图形的平移变换;p 、q 用于图形的透视变换; s 用于图形的全比例变换。

平移变换 旋转变化放缩变换五、实验过程5.1打开Visualc++6.0程序5.2新建一个C++项目⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s m kq dc p b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡''1),(110010011y x t t T y x t t y x y x y x 记为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡''1)(11000cos sin 0sin cos 1y x R y x y x θθθθθ记为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡''1),(11000001y x s s S y x s s y x y x y x记为5.3单击完成,双击源文件里的二维图形几何变换View.cpp,出现下图5.5找到其中的OnDraw函数,并将其改成如下,使其实现了一条直线的平移。

void C二维图形几何变换View::OnDraw(CDC* pDC){C二维图形几何变换Doc* pDoc = GetDocument();ASSERT_VALID(pDoc);if (!pDoc)return;// TODO: 在此处为本机数据添加绘制代码int a[3][3];int i,j;for(i=0;i<3;i++)for(j=0;j<3;j++)a[i][j]=0;for(i=0;i<3;i++)a[i][i]=1;int x0=80,x1=350,y0=120,y1=120;pDC->MoveTo(x1,y1);E:\c++6.0安装\MSDev98\MyProjects\pDC->LineTo(x0,y0);a[2][0]=80;//使直线在行方向上平移了80个单位a[2][1]=50;//使直线在列方向上平移了50个单位x0=x0*a[0][0]+y0*a[1][0]+a[2][0];y0=x0*a[0][1]+y0*a[1][1]+a[2][1];x1=x1*a[0][0]+y1*a[1][0]+a[2][0];y1=x1*a[0][1]+y1*a[1][1]+a[2][1];pDC->MoveTo(x1,y1);pDC->LineTo(x0,y0);}5.6单击运行程序并有如下结果5.7找到其中的OnDraw函数,并将其改成如下,使其实现了一条直线的平移和缩放。

计算机图形学-变换

计算机图形学-变换
1
第3章 变换
基本的二维几何变换 二维复合变换 其他二维变换 三维几何变换 OpenGL几何变换函数 三维图形的显示流程 投影 裁剪
2
几何变换
应用于对象几何描述并改变它的位置、方 向或大小的操作称为几何变换(geometric transformation) 基本的二维几何变换包括平移、旋转和缩 放
8
矩阵表示和齐次坐标
许多图形应用涉及到几何变换的顺序 需要用一个通式来表示平移、旋转和缩放
P M1 P M 2
将2×2矩阵扩充为3×3矩阵,可以把二维几 何变换的乘法和平移项组合为单一矩阵表示
9
二维平移矩阵
x 1 0 t x x y 0 1 t y y 1 0 0 1 1
三维坐标轴旋转
X轴坐标不变,循环替代x、y、z三个 轴可以得到绕x轴旋转的公式
z
y ' y cos z sin
y
z ' y sin z cos x' x
x
35
三维坐标轴旋转
y轴坐标不变,循环替代x、y、z三个 轴可以得到绕y轴旋转的公式
x
z
y
z ' z cos x sin x' z sin x cos y' y
glMatrixMode (GL_MODELVIEW); glColor3f (0.0, 0.0, 1.0); glRecti (50, 100, 200, 150); //显示蓝色矩形
glColor3f (1.0, 0.0, 0.0); glTranslatef (-200.0, -50.0, 0.0); glRecti (50, 100, 200, 150); //显示红色、平移后矩形

计算机图形学第五章图形变换

计算机图形学第五章图形变换

第五章图形变换重 点:掌握二维几何变换、二维观察变换、三维几何变换以及三维观察变换。

难 点:理解常用的平移、比例、旋转变换,特别是复合变换。

课时安排:授课4学时。

图形变换包括二维几何变换, 二维观察变换,三维几何变换和三维观察变换。

为了能使各种几何变换(平移、旋转、比例等)以相同的矩阵形式表示,从而统一使用矩阵乘法运算来实现变 换的组合,现都采用齐次坐标系来表示各种变换。

有齐次坐标系齐次坐标系:n 维空间中的物体可用 n+1维齐次坐标空间来表示。

例如二维空间直线 ax+by+c=O ,在齐次空间成为 aX+bY+cW=0 ,以X 、Y 和W 为三维变量,构成没有常数项的 三维平面(因此得名齐次空间)。

点P (x 、y )在齐次坐标系中用P (wx,wy,w )表示,其中 W 是不为零的比例系数。

所以从 n 维的通常空间到 n+1维的齐次空间变换是一到多的变换,而其反变换 是多到一的变换。

例如齐次空间点P (X 、Y 、W )对应的笛卡尔坐标是 x=X/W 和y=Y/W 。

将通一地用矩阵乘法来实现变换的组合。

常笛卡尔坐标用齐次坐标表示时, W 的值取1。

采用齐次坐标系可以将平移、比例、旋转这三种基本变换都以相同的矩阵形式来表示,并统齐次坐标系在三维透视变换中有更重要的作用, 示形它使非线形变换也能采用线形变换的矩阵表式。

图形变换平移变换图示如图所示,它使图形移动位置。

新图 p'的每一图元点是原图形 p 中每个图元点在向分别移动Tx 和Ty 产生,所以对应点之间的坐标值满足关系式x'=x+Tx y'=y+Ty可利用矩阵形式表示成:[x' y' ] = : x y ] + : Tx Ty ]简记为:P'= P+T , T= : Tx Ty ]是平移变换矩阵(行向量)二堆几何变换1 1二维观察变換三维几诃变换平移变换 比例变换 陡转变换 对称变换 错切变换 仿肘变换 复合变换平移变换 比例变换 旋转变换 绕空间任意轴離转 对称变换 蜡切变换三维观察变5.1二维几何变换二维几何变换就是在平面上对二维点的坐标进行变换,从而形成新的坐标。

计算机图形学之图形变换

计算机图形学之图形变换

4 T
3
2 p
1
0
012 34 567 8
线段和多边形的平移可以通过顶点的
平移来实现。同样线段和多边形的其它几 何变换也可以通过对顶点的几何变换来实 现。
2. 旋转变换(Rotation) 二维旋转有两个参数:
旋转中心: 旋转角:

6 P’
5
4
3
P
2
1
0
012 34 567 8
设OP与x轴的夹角为 则:
由于采用齐次坐标矩阵表示几何变换, 多个变换的序列相应地可以用矩阵链乘来表 示。
需要注意:先作用的变换其矩阵在右边, 后作用的变换其矩阵在左边。
变换函数
平移变换 void glTanslate{fd}(TYPE x, TYPE y, TYPE z);
旋转变换 void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z); 绕矢量v=(x,y,z)T逆时针方向旋转angle指定的角度。 旋转角度的范围是0~360度。当angle=0时, glRotate()不起作用。
二维旋转有两个参数: 旋转中心: 旋转角:
上述变换可以分解为三个基本变换:
•平移:
•旋转:
•平移: 回原位。
使旋转中心移到坐标原点; 使旋转中心再移
二维旋转有两个参数: 旋转中心: 旋转角:
因此上述变换可以写成矩阵乘积形式:
4. 5 基本三维几何变换(Basic three-dimensional geometric transformation)
1. 矩阵表示(Matrix representation) 前面三种变换都可以表示为如下的矩
阵形式

计算机图形学_ 二维图形变换_53 二维图形变换原理及齐次坐标_

计算机图形学_ 二维图形变换_53 二维图形变换原理及齐次坐标_
普通坐标×h→齐次坐标 齐次坐标÷h→普通坐标 当h = 1时产生的齐次坐标称为“规格化坐标”,因为前n个 坐标就是普通坐标系下的n维坐标
为什么要采用齐次坐标?
在笛卡儿坐标系内,向量(x,y)是位于z=0的平面上的点 ;而向量(x,y,1)是位于z=1的等高平面上的点
对于图形来说,没有实质性的差别,但是却给后面矩阵运 算提供了可行性和方便性
假如变换前的点坐标为(x,y),变换后的点坐标为(x*,y* ),这个变换过程可以写成如下矩阵形式:
x*, y*x,
x* a1x b 1 y c1
y•M
x*, y*x
a1
y
1
b 1
c1
a2 b2 c2
上两式是完全等价的。对于向量(x,y,1),可以在几何意义 上理解为是在第三维为常数的平面上的一个二维向量。
这种用三维向量表示二维向量,或者一般而言,用一个n+1维 的向量表示一个n维向量的方法称为齐次坐标表示法
n维向量的变换是在n+1维的空间进行的,变换后的n维结果 是被反投回到感兴趣的特定的维空间内而得到的。
如n维向量(p1,p2,...,pn)表示为(hp1,hp2,...,hpn,h), 其中h称为哑坐标。 普通坐标与齐次坐标的关系为“一对多”:
变换图形就是要变换图形的几何关系,即改变顶点的坐 标;同时,保持图形的原拓扑关系不变
仿射变换(Affine Transformation或 Affine Map)是一 种二维坐标到二维坐标之间的线性变换 (1)“平直性”。即:直线经过变换之后依然是直线
(2)“平行性”。即:平行线依然是平行线,且直线上 点的位置顺序不变)
采用了齐次坐标表示法,就可以统一地把二维线形变换表示 如下式所示的规格化形式:

计算机图形学 5.1二维变换

计算机图形学 5.1二维变换

a11b13 a12b23 a13b33 a 21b13 a 22b23 a 23b33 (5-1) a n1b13 a n 2 b23 a n3b33
由线性代数知道,矩阵乘法不满足交换律,只有左矩 阵的列数等于右矩阵的行数时,两个矩阵才可以相乘。 特别地,对于二维变换的两个3×3的方阵A和B,矩阵 相乘公式为:
5.1.1 规范化齐次坐标
为了使图形几何变换表达为图形顶点集合矩阵与 某一变换矩阵相乘的问题,引入了规范化齐次坐标。 所谓齐次坐标就是用n+1维矢量表示n维矢量。 例如,在二维平面中,点P(x,y)的齐次坐标表示为 (wx,wy,w)。类似地,在三维空间中,点P(x,y,z) 的齐次坐标表示为(wx,wy,wz,w)。这里,w为任一 不为0的比例系数,如果w=1就是规范化的齐次坐标。 二维点P(x,y)的规范化齐次坐标为〔x,y,1〕,三维 点P(x,y,z)的规范化齐次坐标为〔x,y,z,1〕。不 能写成下标形式,w和x,w和y,w和z是乘法的关系。 定义了规范化齐次坐标以后,图形几何变换可以 表示为图形顶点集合的规范化齐次坐标矩阵与某一变换 矩阵相乘的形式。
x1 x P 2 xn y1 y2 yn 1 1 1
变换后图形顶点集合的规范化齐次坐标矩阵为:
x'1 x' ' P 2 x' n y '1 y' 2 y'n 1 1 1
a b 二维变换矩阵为: T c d l m
a11b11 a12b21 a13b31 a11b12 a12b22 a13b32 a b a b a b a 21b12 a 22b22 a 23b32 21 11 22 21 23 31 a n1b11 a n 2 b21 a n3b31 a n1b12 a n 2 b22 a n3b32

第4章二维变换

第4章二维变换

• 性质
U •V = V •U U •V = 0 ⇔ U ⊥ V U •U = 0 ⇔ U = 0
变换的数学基础(3/4) 变换的数学基础
– 矢量的长度
• 单位矢量 • 矢量的夹角
2 U = U • U = u x + u y + u z2 2
U •V cos θ = U •V
– 矢量的叉积
i U ×V = ux vx
– 在世界坐标系( 在世界坐标系(WCS)中指定的矩形区域 , ) 用来指定要显示的图形 。
2. 视区
– 在设备坐标系(屏幕或绘图纸) 在设备坐标系(屏幕或绘图纸)上指定的矩形区域 , 用来指定窗口内的图形在屏幕上显示的大小及位置。 用来指定窗口内的图形在屏幕上显示的大小及位置。
3. 窗口到视区的变换
P′=P+Tm 等价于
[x’ y’]=[x y] +[Mx My]
图形变换的特点( 4.3.1 图形变换的特点(续)
比例变换 P′=P×Ts
Sx 0 Ts= 0 Sy Sx、Sy分别表示比例因子。 cosθ sinθ Tr= -sinθ cosθ θ>0时为逆时针旋转 θ<0时为顺时针旋转
旋转变换 P'=P×Tr
变换后的 顶点坐标
P
变换前的 顶点坐标

T2D
二维变换矩阵
二维变换矩阵中: a b 是对图形进行缩放、旋转、对称、错切等变换。 c d [ l m] 是对图形进行平移变换
• 计算机图形场景中所有图形对象的空间定位和定义,包括观 计算机图形场景中所有图形对象的空间定位和定义, 察者的位置视线等,是其它坐标系的参照。 察者的位置视线等,是其它坐标系的参照。
2.模型坐标系(Modeling Coordinate System,也称局部坐标系) 模型坐标系

二维图形几何变换

二维图形几何变换

⼆维图形⼏何变换⼀、基本变换1. 平移定义:将物体沿直线路径从⼀个坐标位置移到另⼀个坐标位置的重定位。

不产⽣变形⽽移动物体的刚体变换。

原始坐标位置:(x ,y ),平移距离t x 、t y ,新位置(x ′,y ′),则x ′=x +t x ,y ′=y +t y 表⽰为矩阵形式,令:→P =x y→P ′=x ′y ′→T =t x t y⼆位平移⽅程:→P ′=→P +→T2. 旋转当参考点为(0,0)定义:以某个参考点为圆⼼,将对象上的各点(x ,y )围绕圆⼼转动⼀个逆时针⾓度θ,变成新的坐标(x ′,y ′)的变换。

x ′=rcos (φ+θ)=rcos φcos θ−rsin φsin θy ′=rsin (φ+θ)=rsin φcos θ+rcos φsin θ∵x =rcos φ,y =rsin φ∴x ′=xcos θ−ysin θy ′=xsin θ+ycos θ令:→R =cos θ−sin θ−sin θcos θ写成矩阵形式:→P ′=→R ⋅→P绕任意指定的旋转位置(x r ,y r )旋转的变换⽅程1. 将坐标系原点平移到(x r ,y r )2. 在新的坐标系下做旋转变换3. 将坐标原点平移回原坐标系x ′=x r +(x −x r )cos θ−(y −y r )sin θy ′=y r +(x −x r )sin θ+(y −y r )cos θ3. 变化(缩放)Scaling定义:使对象按⽐例因⼦Sx 和Sy 放⼤或缩⼩的变换。

x ′=x ⋅S xy ′=y ⋅S y令→S =S x 00S y矩阵形式:→P ′=→S ⋅→PS x 、S y 均⼩于1,缩⼩物体尺⼨,S x 、S y 均⼤于1,放⼤物体。

S x =S y ,则保持物体相对⽐例缩放⼀致。

特殊情况当Sy =−1、Sx =1,按x 轴反射当Sy =1、Sx =−1,按y 轴反射()()()()()当Sy =−1、Sx =−1,按原点(0,0)反射⼆、变换矩阵每个基本变换均可表⽰为普通矩阵形式:→P ′=→M 1→P +→M 2平移将2×2矩阵扩充为3×3矩阵,将⼆维⼏何变换的乘法和平移项组合成单⼀矩阵表⽰平移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3.5 相对任一参考点的二维几何变换
相对某个参考点(xF,yF)作二维几何变换,其变换过程为:
(1) 平移
P’
(2) 针对原点进行二维几何变换。 y
θ
P
(3) 反平移
F(xF,yF)
o
x
相对任一参考点的二维几何变换
例1. 相对点(xF,yF)的旋转变换
y
F(xF,yF)
4.1.3 复合变换
其它二维复合变换
cos sin 0 cos 0 0 1 tg 0 R sin cos 0 0 cos 0 tg 1 0
0 0 1 0 0 1 0 0 1 1 tg 0 cos 0 0 tg 1 0 0 cos 0 0 0 1 0 0 1
复合变换
第4章 图形变换(二维)
提出问题:
❖如何对二维图形进行方向、尺寸和形状 方面的变换
❖如何方便地实现在显示设备上对二维图 形进行观察
基本概念
几何变换
图形的几何变换是指对图形的几何信息经过平移、比 例、旋转等变换后产生新的图形,是图形在方向、尺 寸和形状方面的变换。
二维图形几何变换
平移变换 旋转变换 比例变换
复合变换具有形式:
P' P T P (T1 T2 T3 Tn ) P T1 T2 T3 Tn (n 1)
4.1.3 复合变换
6.3.1 二维复合平移 两个连续平移是加性的。
6.3.2 二维复合比例 连续比例变换是相乘的。
6.3.3 二维复合旋转 两个连续旋转是相加的。可写为:
R R(1) • R(2 ) R(1 2 )
平移是一种不产生变形而移动物体的 刚 体 变 换 ( rigid-body transformation)
Y
P'
T
Ty
P Tx
X 图6-1 平移变换
x' x Tx
y'
y
Ty
平移变换
推导: x’=x+Tx,y’=y+Ty
a b p
x'
y' 1 x
y 1T2D x
y 1 c
d
q
l m s
矩阵: 1 0 0
问题:S>1时缩还是放?
a b p
x'
y' 1 x
y 1T2D x
y 1 c
d
q
l m s
[x’ y’ 1]=[x y s]=[x/s y/s s/s]
旋转变换
二维旋转是指将p点绕坐标原点转动某个角度(逆时针为正, 顺时针为负)得到新的点p’的重定位过程。
Y
P'
r
θr
P
α
X
图6-4 旋转变换
a b p
x'
y' 1 x
y 1T2D x
y 1 c
d
q
l m s
矩阵: Sx 0 0
0
Sy
0
0 0 1
比例变换
Sx=Sy>1 原图
原图
Sx<Sy
Sx=Sy<1
(a) Sx=Sy比例 图6-3
Sx>Sy
(b) 比例变换
Sx<>Sy比例
比例变换
整体比例变换: 1 0 0
0 1 0
0 0 s
(1)沿x方向错切 (2)沿y方向错切 (3)两个方向错切
二维图形几何变换的计算
几何变换均可表示成 P’ = P * T 的形式: 1. 点的变换 2. 直线的变换 3. 多边形的变换 4. 曲线的变换
4.1.3 复合变换
复合变换是指: 图形作一次以上的几何变换,变换结果是每次的变换矩阵相乘。 任何一复杂的几何变换都可以看作基本几何变换的组合形式。
X’ = rcos(a+θ)
y’= rsin(a+θ)
= rcosacosθ-rsinasinθ = rcosasinθ+rsinacosθ
= x cos θ-y sinθ
= x sin θ+y cosθ
矩阵:逆时针旋转θ角 顺时针旋转θ角?
cos sin 0
sin cos 0
0
0 1
旋转变换
P(x,y) X
(c)关于原点对称
X
(c)关于原点对称
1 0 0
0
1 0
0 0 1
Y Y
对称变换
(4)关于y=x轴对称
x=y p(x,y)
p'(y,x) X
(d)关于x=y对称
X (d)关于x=y对称
0 1 0 1 0 0 0 0 1
对称变换
(5)关于y=-x轴对称
x=-y
P(x,y)
X P'(-y,-x)
X’ = rcos(a+θ) = rcosacosθ-rsinasinθ = x cos θ-y sinθ
y’= rsin(a+θ) = rcosasinθ+rsinacosθ = x sin θ+y cosθ
旋转变换
推导:
a b p
x'
y' 1 x
y 1T2D x
y 1 c
d
q
l m s
(e)关于x=-y对称
Y Y
X
(e)关于x=-y对称
0 1 0 1 0 0 0 0 1
错切变换
错切变换,也称为剪切、错位变换,用于产生弹性物体的变 形处理。
Y
Y
Y
X (a) 原图
X
(b) 沿x方向错切
图6-7 错切变换
X (c) 沿y方向错切
错切变换
其变换矩阵为:
1 d 0 b 1 0 0 0 1
基本几何变换都是相对于坐标原点和坐标 轴进行的几何变换
二维变换矩阵
a b p
x'
y' 1 x
y 1T2D x
y
1 c T1 d
Tq3
l
m
T2
s
T4
T1:比例、旋转、对称、错切 T2:平移 T3:投影 T4:整体缩放
平移变换
平移是指将p点沿直线路径从一个坐标位置移到另一个坐标位置的重定位过程。
0
1 0
Tx Ty 1
Tx,Ty称为平移矢量
Y
比例变换
比例变换是指对p点相对于坐标 原点沿x方向放缩Sx倍,沿y方 向放缩Sy倍。其中Sx和Sy称为比 例系数。
P'(4,3) P(2,1)
X 图6-2 比例变换(Sx=2,Sy=3)
x' xsx y' ysy
比例变换
推导: x’=Sx*X,y’=Sy*Y
Y Y
对称变换
(1)关于x轴对称
P(x,y) X
P'(x,-y) (a)关于x轴对称
X
(a)关于x轴对称
1 0 0 0 1 0 0 0 1
Y Y
对称变换
(2)关于y轴对称
P'(-x,y) p(x,y) X
(b)关于y轴对称
X (b)关于y轴对称
1 0 0
ห้องสมุดไป่ตู้
0
1 0
0 0 1
Y Y
对称变换
(3)关于原点对称
简化计算(θ很小)
1 0
x' y' 1 x y 1 1 0
0 0 1
对称变换
对称变换后的图形是原图形关于某一轴线或原点的镜像。
Y
Y
Y
X (a)关于x轴对称
X (b)关于y轴对称
X (c)关于原点对称
对称变换
对称变换后的图形是原图形关于某一轴线或原点的镜像。
Y
Y
X (d)关于x=y对称
X (e)关于x=-y对称
相关文档
最新文档