基于单片机电子秤系统方案论证与选型

合集下载

基于STM32F1单片机的电子秤设计

基于STM32F1单片机的电子秤设计

基于STM32F1单片机的电子秤的设计1.本文概述随着技术的进步和电子技术的普及,电子秤已成为日常生活和工业生产中不可或缺的工具。

与传统的机械秤相比,电子秤具有更高的测量精度、更强的功能性和更广泛的应用范围。

本文旨在设计一种基于STM32F1单片机的电子秤。

该设计不仅专注于电子秤的称重和单位转换等基本功能,而且通过使用STM32F1微控制器,赋予电子秤更智能的功能,如数据存储、传输和用户界面交互。

文章首先介绍了STM32F1单片机的特点和适用性,然后详细阐述了电子秤的设计原理、硬件选择和软件实现。

本文还包括对系统的测试结果和分析,以验证设计的有效性和可靠性。

通过本文的研究和设计,有望为电子秤领域提供一种创新实用的解决方案。

2.系统设计原则在这种电子秤的设计中,STM32F1微控制器作为核心控制器,其重要性体现在以下几个方面:处理能力:STM32F1系列微控制器基于ARM CortexM3内核,具有强大的处理能力和高效的能耗比。

其最大工作频率可达72MHz,足以处理电子秤所需的复杂计算和数据传输任务。

集成:该系列微控制器集成了丰富的外围接口,如ADC(模数转换器)、UART(通用异步收发器)、I2C(集成电路总线)等。

这些接口对电子秤的设计至关重要。

稳定性和可靠性:STM32F1微控制器具有优异的抗干扰能力和稳定性,适用于工业应用,确保了电子秤在复杂环境中的准确性和可靠性。

电子秤的核心部件是传感器,用于将物体的重量转换为电信号。

在该设计中,选择了压力传感器作为主要测量元件。

传感器的工作原理是基于弹性变形。

当物体受到压力时,传感器内部的电阻应变计变形,从而改变电阻值并通过惠斯通电桥将其转换为电压信号。

信号放大和滤波:传感器输出的模拟信号通常较弱,需要通过信号放大器进行放大。

为了提高信号质量,设计了滤波电路来去除噪声,保证信号的准确性。

模数转换:通过STM32F1微控制器内置的ADC将放大后的模拟信号转换为数字信号,使微控制器易于处理和计算。

基于单片机的实用电子秤设计

基于单片机的实用电子秤设计

基于单片机的实用电子秤设计一、硬件设计1、传感器选择电子秤的核心部件之一是称重传感器。

常见的称重传感器有电阻应变式、电容式等。

在本设计中,我们选用电阻应变式传感器,其原理是当物体的重量作用在传感器上时,传感器内部的电阻应变片会发生形变,从而导致电阻值的变化。

通过测量电阻值的变化,就可以计算出物体的重量。

2、信号放大与调理传感器输出的信号通常比较微弱,需要经过放大和调理才能被单片机处理。

我们使用高精度的仪表放大器对传感器输出的信号进行放大,并通过滤波电路去除噪声干扰,以提高测量的准确性。

3、单片机选型单片机是整个电子秤系统的控制核心。

考虑到性能、成本和开发难度等因素,我们选用 STM32 系列单片机。

STM32 系列单片机具有丰富的外设资源、较高的运算速度和良好的稳定性,能够满足电子秤的设计需求。

4、显示模块为了直观地显示测量结果,我们选用液晶显示屏(LCD)作为显示模块。

LCD 显示屏具有功耗低、显示清晰、视角广等优点。

通过单片机的控制,可以在 LCD 显示屏上实时显示物体的重量、单位等信息。

5、按键模块为了实现电子秤的功能设置,如单位切换、去皮、清零等,我们设计了按键模块。

按键模块通过与单片机的连接,将用户的操作指令传递给单片机进行处理。

6、电源模块电源模块为整个电子秤系统提供稳定的电源。

我们使用线性稳压器将输入的电源电压转换为适合各个模块工作的电压,以确保系统的正常运行。

二、软件算法1、重量计算算法根据传感器的特性和放大调理电路的参数,我们可以建立重量与传感器输出信号之间的数学模型。

通过对传感器输出信号的采集和处理,利用数学模型计算出物体的实际重量。

2、滤波算法为了消除测量过程中的噪声干扰,提高测量的稳定性和准确性,我们采用数字滤波算法对采集到的信号进行处理。

常见的数字滤波算法有中值滤波、均值滤波等。

在本设计中,我们选用中值滤波算法,其原理是对连续采集的若干个数据进行排序,取中间值作为滤波后的结果。

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计随着科技的不断发展,智能化和自动化已经成为我们生活中不可或缺的一部分。

在众多领域中,智能电子秤的设计与应用也越来越受到。

本文将介绍一种基于单片机的智能电子秤设计方案,该设计具有高精度、低成本、易于实现等优点,具有一定的实用价值。

一、概述智能电子秤是一种能够自动测量物体重量的设备,广泛应用于超市、菜市场等场所。

与传统的机械秤相比,智能电子秤具有测量精度高、使用方便、易于维护等优点。

而基于单片机的智能电子秤设计,更是将智能化和自动化技术融入到电子秤中,提高了设备的性能和可靠性。

二、设计原理基于单片机的智能电子秤设计主要是利用单片机的控制和数据处理能力,实现对物体重量的准确测量。

其核心部件为压力传感器和单片机。

压力传感器负责采集物体的重量信号,并将信号传输给单片机;单片机则对信号进行处理、分析和存储,同时控制显示屏显示物体的重量。

三、硬件设计1、单片机选择单片机是智能电子秤的核心部件,负责控制整个系统的运行。

本设计选用AT89C51单片机,该单片机具有低功耗、高性能、易于编程等优点,能够满足智能电子秤的设计要求。

2、压力传感器选择压力传感器是智能电子秤的重要组成部件,负责采集物体的重量信号。

本设计选用电阻应变式压力传感器,该传感器具有测量精度高、稳定性好、抗干扰能力强等优点。

3、显示模块选择显示模块负责将物体的重量信息呈现给用户。

本设计选用LED显示屏,该显示屏具有亮度高、视角广、寿命长等优点。

4、电源模块选择电源模块为整个系统提供稳定的电源,保证系统的正常运行。

本设计选用线性稳压电源,该电源具有输出电压稳定、纹波小、安全性高等优点。

四、软件设计软件设计是智能电子秤的关键部分之一,直接影响设备的性能和可靠性。

本设计的软件部分采用C语言编写,主要包括数据采集、数据处理、数据显示等模块。

具体流程如下:1、开机后,系统进行初始化操作;2、压力传感器采集物体的重量信号;3、单片机对采集到的信号进行处理和分析;4、单片机将处理后的数据存储到存储器中;5、单片机控制LED显示屏显示物体的重量信息;6、系统继续等待下一次测量。

基于单片机的电子秤的方案设计

基于单片机的电子秤的方案设计
基于单片机的电子秤的方案设 计
目录
01 一、引言
03 三、硬件设计
02 二、总体设计 04 四、软件设计
目录
05 五、调试与优化
07 参考内容
06 六、应用前景
一、引言
随着科技的不断发展,智能化和数字化逐渐成为测量与控制领域的主流趋势。 其中,电子秤作为一种高精度的测量设备,在贸易结算、工业生产等领域具有广 泛的应用。基于单片机的电子秤因其具有体积小、成本低、易于集成等优点,越 来越受到人们的。本次演示将介绍一种基于单片机的电子秤设计方案,以期为相 关领域的工程技术人员提供参考。
4、数据显示:将重量数据显示 在显示模块上。
5、报警提示:如遇超重或欠重 情况,系统会进行报警提示。
6、数据存储:可预留数据存储接口,方便用户对重量数据进行存储或传输。
五、总结
本次演示介绍了基于51单片机的电子秤设计,通过利用电阻应变式传感器进 行重量检测,经过51单片机处理后将重量数据显示出来。这种设计具有精度高、 稳定性好、使用方便等优点,可广泛应用于各种场合的重量检测。随着技术的不 断发展,我们有理由相信,以51单片机为核心的电子秤设计将会有更广阔的应用 前景。
3、采用软件滤波算法,减少外界干扰对测量精度的影响;
4、对程序进行优化,提高数据 处理速度和准确性。
经过调试与优化后,电子秤的性能得到了显著提升,测量精度得到了提高。
六、应用前景
基于单片机的电子秤具有广泛的应用前景。在实际应用中,该电子秤可应用 于贸易结算、工业生产、食品药品等行业。同时,由于其体积小、成本低等优点, 可以方便地集成到各种称重系统中。
Байду номын сангаас
二、电子秤的工作原理
电子秤是利用传感器测量物体的重量,并将重量转换为电信号,再通过信号 处理电路进行处理,最终以数字形式显示出来。51单片机作为一种通用的微控制 器,可以方便地对电子秤进行控制和数据处理。

基于51单片机的智能电子秤

基于51单片机的智能电子秤

基于51单片机的智能电子秤研究方案:基于51单片机的智能电子秤一、研究背景与意义随着人们生活质量的提高,对电子秤的精确度和智能化程度提出了更高的要求。

研发一种基于51单片机的智能电子秤具有重要的现实意义和市场前景。

本研究旨在利用51单片机技术,结合传感器原理以及数据采集和分析技术,设计和开发一种新型的智能电子秤,以满足人们对于健康和便捷生活的需求。

二、研究目标1. 设计一种基于51单片机的智能电子秤原型;2. 实现电子秤的重量测量、数据存储和数据展示功能;3. 评估该智能电子秤的测量精度和稳定性;4. 提出改进方法并进一步优化设计。

三、方案实施情况1. 硬件设计:a) 选择合适的传感器:选用高精度传感器进行重量测量;b) 电路设计:根据传感器的特点设计合适的电路板,用于放大、滤波、采样和通信等功能;c) 硬件连接:将传感器、显示屏、按键等硬件进行连接。

2. 软件设计:a) 采用51单片机作为核心,进行编程;b) 实现重量测量:通过合适的采样方法和算法,实时获取物体的重量;c) 数据存储与展示:将采集到的数据存储在内部存储器或外部存储器中,并通过显示屏展示给用户;d) 用户交互:设计一套用户友好的界面,使用户可以方便地和智能电子秤进行交互。

四、数据采集和分析1. 采集数据:在实验过程中,选择不同质量的物体进行重量测量,将采集到的数据以合适的格式存储起来。

2. 数据分析:a) 对采集到的数据进行基本统计分析,包括平均值、方差、偏差等;b) 评估智能电子秤的精确度和稳定性;c) 通过数据分析,找出可能的误差来源和改进方向。

五、实验结果分析与结论在以上实验和数据分析的基础上,得出以下结论:1. 通过对数据的统计和分析,验证了智能电子秤的测量精度和稳定性。

2. 针对可能存在的误差来源,提出了改进和优化的方法,如增加重量校准功能、改进传感器的精度等。

3. 通过用户体验和满意度调查,发现智能电子秤在用户中受到了广泛认可和好评,并能满足用户的需求。

基于单片机的电子秤设计

基于单片机的电子秤设计

目录摘要 (1)ABSTRACT...................................................... 错误!未定义书签。

1绪论......................................................... 错误!未定义书签。

2系统方案论证与选型 . (4)2.1 控制器部分 (5)2.2 数据采集部分 (5)2.2.1传感器的选择 (5)2.2.2放大电路选择 (8)2.2.3A/D转换器的选择 (11)2.2.4键盘处理部分方案论证 (12)2.3显示电路部分的选择 (13)2.4超量程报警部分选择 (13)3硬件电路设计 (14)3.1 AT89S52的最小系统电路 (15)3.1.1单片机芯片AT89S52介绍 (15)3.1.2.单片机管脚说明 (16)3.1.3 AT89S52的最小系统电路构成 (18)3.2 电源电路设计 (18)3.3 数据采集部分电路设计 (19)3.3.1 传感器和其外围以及放大电路设计 (19)3.3.2 A/D转换芯片与AT89S52单片机接口电路设计 (22)3.3.3 测量算法 (25)3.4显示电路与AT89S52单片机接口电路设计 (25)3.5键盘电路与AT89S52单片机接口电路设计 (27)3.6报警电路的设计 (29)4系统软件设计 (29)4.1主程序设计 (30)4.2 子程序设计 (31)4.2.1 A/D转换启动及数据读取程序设计 (31)4.2.2数制转换子程序设计 (31)4.2.3显示子程序设计 (33)4.2.4 键盘扫描子程序的设计 (33)4.2.5报警子程序的设计 (35)设计总结 (36)致谢 ........................................................ 错误!未定义书签。

参考文献. (37)附录 (38)基于单片机的电子秤设计摘要随着微电子技术的应用,市场上使用的传统称重工具已经满足不了人们的要求。

基于单片机的电子秤系统设计

基于单片机的电子秤系统设计

基于单片机的电子秤系统设计摘要:在生活中我们经常需要用秤来测量物体的重量,由于秤在我们日常生活中的应用十分广泛,我们对其的设计要求就需要操作方便、易于识别。

本系统的设计主要从硬件电路设计、软件编程调试、实物焊接调试三部分进行详细阐述。

硬件电路主要是基于单片机AT89S52为核心的控制单元实现数据的处理,采用压力传感器对数据进行采集。

关键词:AT89S52单片机电子秤单片机一、电子称的工作原理当被称物体放置在秤体的秤台上时,其重量便通过秤体传递到称重传感器,传感器随之产生力——电效应,将物体的重量转换成与被称物体重量成一定函数关系(一般成正比关系)的电信号(电压或电流等)。

此信号由放大电路进行放大、经滤波后再由A/D器进行转换,数字信号再送到微处器的CPU处理,CPU不断扫描键盘和各种功能开关,根据键盘输入内容和各种功能开关的状态进行必要的判断、分析,由仪表的软件来控制各种运算。

运算结果送到内存贮器,需要显示时,CPU发出指令,从内存贮器中读出送到显示器显示,或送打印机打印。

一般的信号的放大、滤波、A/D转换以及信号各种运算处理都在仪表中完成。

二、系统方案论证与选型按照本设计功能的要求,系统主要由控制器部分、测量部分、数据显示部分和语音播报部分这四个部分组成。

测量部分是利用称重传感器检测压力信号,得到微弱的电信号(本设计为电压信号),而后经放大电路处理后,送A/D转换器,将模拟量转化为数字量输出。

控制器部分接受来自A/D转换器输出的数字信号,经过复杂的运算,将数字信号转换为物体的实际重量信号,并通过控制器实现数据的显示以及语音播报的功能。

三、系统单片机选型单片机的选择在整个系统设计中至关重要,要满足大内存、高速率、通用性、价格便宜等要求,本课题选择AT89S52作为主控芯片。

AT89S52是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。

基于单片机电子秤系统方案论证与选型

基于单片机电子秤系统方案论证与选型

基于单片机电子秤系统方案论证与选型按照本设计功能的要求,系统由6个部分组成:控制器部分、测量部分、报警部分、数据显示部分、键盘部分、和电路电源部分,系统设计总体方案框图如图2.1所示。

图2-1设计思路框图测量部分是利用称重传感器检测压力信号,得到微弱的电信号(本设计为电压信号),而后经处理电路(如滤波电路,差动放大电路,)处理后,送A/D转换器,将模拟量转化为数字量输出。

控制器部分接受来自A/D转换器输出的数字信号,经过复杂的运算,将数字信号转换为物体的实际重量信号,并将其存储到存储单元中。

控制器还可以通过对扩展I/O的控制,对键盘进行扫描,而后通过键盘散转程序,对整个系统进行控制。

数据显示部分根据需要实现显示功能。

2.1 控制器部分本设计由于要求必须使用单片机作为系统的主控制器,而且以单片机为主控制器的设计,可以容易地将计算机技术和测量控制技术结合在一起,组成新型的只需要改变软件程序就可以更新换代的“智能化测量控制系统”。

这种新型的智能仪表在测量过程自动化、测量结果的数据处理以及功能的多样化方面,都取得了巨大的进展。

再则由于系统没有其它高标准的要求,又考虑到本设计中程序部分比较大,根据总体方案设计的分析,设计这样一个简单的的系统,可以选用带EPROM的单片机,由于应用程序不大,应用程序直接存储在片内,不用在外部扩展存储器,这样电路也可简化。

INTEL公司的8051和8751都可使用,在这里选用ATMENL生产的AT89SXX系列单片机。

AT89SXX系列与MCS-51相比有两大优势:第一,片内存储器采用闪速存储器,使程序写入更加方便;第二,提供了更小尺寸的芯片,使整个硬件电路体积更小。

此外价格低廉、性能比较稳定的MCPU,具有8K×8ROM、256×8RAM、2个16位定时计数器、4个8位I/O 接口。

这些配置能够很好地实现本仪器的测量和控制要求最后我们最终选择了AT89S52这个比较常用的单片机来实现系统的功能要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机电子秤系统方案论证与选型按照本设计功能的要求,系统由6个部分组成:控制器部分、测量部分、报警部分、数据显示部分、键盘部分、和电路电源部分,系统设计总体方案框图如图2.1所示。

图2-1设计思路框图测量部分是利用称重传感器检测压力信号,得到微弱的电信号(本设计为电压信号),而后经处理电路(如滤波电路,差动放大电路,)处理后,送A/D转换器,将模拟量转化为数字量输出。

控制器部分接受来自A/D转换器输出的数字信号,经过复杂的运算,将数字信号转换为物体的实际重量信号,并将其存储到存储单元中。

控制器还可以通过对扩展I/O的控制,对键盘进行扫描,而后通过键盘散转程序,对整个系统进行控制。

数据显示部分根据需要实现显示功能。

2.1 控制器部分本设计由于要求必须使用单片机作为系统的主控制器,而且以单片机为主控制器的设计,可以容易地将计算机技术和测量控制技术结合在一起,组成新型的只需要改变软件程序就可以更新换代的“智能化测量控制系统”。

这种新型的智能仪表在测量过程自动化、测量结果的数据处理以及功能的多样化方面,都取得了巨大的进展。

再则由于系统没有其它高标准的要求,又考虑到本设计中程序部分比较大,根据总体方案设计的分析,设计这样一个简单的的系统,可以选用带EPROM的单片机,由于应用程序不大,应用程序直接存储在片内,不用在外部扩展存储器,这样电路也可简化。

INTEL公司的8051和8751都可使用,在这里选用ATMENL生产的AT89SXX系列单片机。

AT89SXX系列与MCS-51相比有两大优势:第一,片内存储器采用闪速存储器,使程序写入更加方便;第二,提供了更小尺寸的芯片,使整个硬件电路体积更小。

此外价格低廉、性能比较稳定的MCPU,具有8K×8ROM、256×8RAM、2个16位定时计数器、4个8位I/O 接口。

这些配置能够很好地实现本仪器的测量和控制要求最后我们最终选择了AT89S52这个比较常用的单片机来实现系统的功能要求。

AT89S52内部带有8KB的程序存储器,基本上已经能够满足我们的需要。

2.2 数据采集部分电子秤的数据采集部分主要包括称重传感器、处理电路和A/D转换电路,因此对于这部分的论证主要分三方面2.2.1 传感器的选择在设计中,传感器是一个十分重要的元件,因此对传感器的选择也显的特别的重要,不仅要注意其量程和参数,还有考虑到与其相配置的各种电路的设计的难以程度和设计性价比等等.传感器量程的选择可依据秤的最大称量值、选用传感器的个数、秤体的自重、可能产生的最大偏载及动载等因素综合评价来确定。

一般来说,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越高。

但在实际使用时,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击等载荷,因此选用传感器量程时,要考虑诸多方面的因素,保证传感器的安全和寿命。

传感器量程的计算公式是在充分考虑到影响秤体的各个因素后,经过大量的实验而确定的。

其公式如下:C=K0×K1×K2×K3×(Wmax+W)/N (2.1)C—单个传感器的额定量程;W—秤体自重;Wmax—被称物体净重的最大值;N—秤体所采用支撑点的数量;K0—保险系数,一般取值在1.2~1.3之间;K1—冲击系数;K2—秤体的重心偏移系数;K3—风压系数。

本设计要求称重范围0~5kg,重量误差不大于0.01kg,根据传感器量程计算公式(2.1)可知:C=1.25×1×1.03×1×(20+1.9)/1 (2-1)=9.01205为保证电子秤称量结果的准确度,克服传感器在低量程段线性度差的缺点。

传感器的量程应根据皮带秤的最大流量来选择。

在实际工作中,要求称重传感器的有效量程在20%~80%之间,线性好,精度高。

重量误差应控制在±0.01Kg,又考虑到秤台自重、振动和冲击分量,还要避免超重损坏传感器,根据式2.1的计算结果,所以我们确定传感器的额定载荷为7.5Kg,允许过载为150%F.S,精度为0.05%,最大量程时误差 0.01kg,可以满足本系统的精度要求.综合考虑,本设计采用SP20C-G501电阻应变式传感器,其最大量程为7.5 Kg.称重传感器由组合式S型梁结构及金属箔式应变计构成,具有过载保护装置。

由于惠斯登电桥具诸如抑制温度变化的影响,抑制干扰,补偿方便等优点,所以该传感器测量精度高、温度特性好、工作稳定等优点,广泛用于各种结构的动、静态测量及各种电子秤的一次仪表。

该称重传感器主要由弹性体、电阻应变片电缆线等组成,其工作原理如图2.1所示:图2.1称重传感器原理图表一压力传感器主要技术指标时,应变片的敏感栅也随同变形,其电阻值发生相应变化,通过转换电路转换为电压或电流的变化。

由于内部线路采用惠更斯电桥,当弹性体承受载荷产生变形时,输出信号电压可由下式给出:Ein R4R4R3R3R2R2R1R1)42(42E ⨯⎪⎭⎫ ⎝⎛+++⨯+⨯=△△△△R R R R out (2-2)2.2.2放大电路选择称重传感器输出电压振幅范围0~20mV 。

而A/D 转换的输入电压要求为0~2V ,因此放大环节要有100倍左右的增益。

对放大环节的要求是增益可调的(70~150倍),根据本设计的实际情况增益设为100倍即可,零点和增益的温度漂移和时间漂移极小。

按照输入电压20mV ,分辨率20000码的情况,漂移要小于1µV。

由于其具有极低的失调电压的温漂和时漂(±1µV),从而保证了放大环节对零点漂移的要求。

残余的一点漂移依靠软件的自动零点跟踪来彻底解决。

稳定的增益量可以保证其负反馈回路的稳定性,并且最好选用高阻值的电阻和多圈电位器。

由2.2.1中称重传感器的称量原理可知,电阻应变片组成的传感器是把机械应变转换成ΔR/R ,而应变电阻的变化一般都很微小,例如传感器的应变片电阻值120Ω,灵敏系数 K=2,弹性体在额定载荷作用下产生的应变为1000ε,应变电阻相对变化量为:ΔR/R = K ×ε= 2×1000×10-6 =0.002 (2-3)由式2-3可以看出电阻变化只有0.24Ω,其电阻变化率只有0.2%。

这样小的电阻变化既难以直接精确测量,又不便直接处理。

因此,必须采用转换电路,把应变计的ΔR/R 变化转换成电压或电流变化,但是这个电压或电流信号很小,需要增加增益放大电路来把这个电压或电流信号转换成可以被A/D 转换芯片接收的信号。

在前级处理电路部分,我们考虑可以采用以下几种方案:方案一、利用普通低温漂运算放大器构成前级处理电路;普通低温漂运算放大器构成多级放大器会引入大量噪声。

由于A/D 转换器需要很高的精度,所以几毫伏的干扰信号就会直接影响最后的测量精度。

所以,此种方案不宜采用。

方案二、主要由高精度低漂移运算放大器构成差动放大器,而构成的前级处理电路;差动放大器具有高输入阻抗,增益高的特点,可以利用普通运放(如OP07)做成一个差动放大器。

其设计电路如图2-2所示:方案(三):采用专用仪表放大器,如:INA126,INA121等构成前级处理电路。

下面举例用INA128仪用仪表放大器来实现。

+-图2.2利用普通运放设计的差动放大器一般说来,集成化仪用放大器具有很高的共模抑制比和输入阻抗,因而在传统的电路设计中都是把集成化仪器放大器作为前置放大器。

然而,绝大多数的集成化仪器放大器,特别是集成化仪器放大器,它们的共模抑制比与增益相关:增益越高,共模抑制比越大。

而集成化仪器放大器作为心电前置放大器时,由于极化电压的存在,前置放大器的增益只能在几十倍以内,这就使得集成化仪器放大器作为前置放大器时的共模抑制比不可能很高。

有学者试图在前置放大器的输入端加上隔直电容(高通网络)来避免极化电压使高增益的前置放大器进入饱和状态,但由于信号源的内阻高,且两输入端不平衡,隔直电容(高通网络)使等共模干扰转变为差模干扰,结果适得其反,严重地损害了放大器的性能。

为了实现信号的放大,设计电路如下:图2.3 采用INA128设计的放大电路1. 前级采用运放A1和A2组成并联型差动放大器。

理论上不难证明,在运算放大器为理想的情况下,并联型差动放大器的输入阻抗为无穷大,共模抑制比也为无穷大。

更值得一提的是,在理论上并联型差动放大器的共模抑制比与电路的外围电阻的精度和阻值无关。

2.阻容耦合电路放在由并联型差动放大器构成的前级放大器和由仪器放大器构成的后级放大器之间,这样可为后级仪器放大器提高增益,进而提高电路的共模抑制比提供了条件。

同时,由于前置放大器的输出阻抗很低,同时又采用共模驱动技术,避免了阻容耦合电路中的阻、容元件参数不对称(匹配)导致的共模干扰转换成差模干扰的情况发生。

3. 后级电路采用廉价的仪器放大器,将双端信号转换为单端信号输出。

由于阻容耦合电路的隔直作用,后级的仪器放大器可以做到很高的增益,进而得到很高的共模抑制比。

从理论上计算整个电路的共模抑制比为:(2-4)式中:CMR Total或CMRRTotal-放大器的总共模抑制比;CMR1-第一级放大器的共模抑制比;CMR2或CMRR2-第二级放大器的共模抑制比;A1d、A1c、A2d 和A2c-分别为第一级放大器和第二级放大器的差模增益和共模增益。

经过实际测量,图2.4所示的电路采用图中所给出的参数时,电路的共模抑制比在120dB以上。

有以上分析以及基于电子秤的要求精确度不是很高,所以选择由普通放大器所组成的差动放大器作为本设计的信号放大电路。

2.2.3 A/D转换器的选择A/D转换部分是整个设计的关键,这一部分处理不好,会使得整个设计毫无意义。

目前,世界上有多种类型的ADC,有传统的并行、逐次逼近型、积分型ADC,也有近年来新发展起来的∑-Δ型和流水线型ADC,多种类型的ADC各有其优缺点并能满足不同的具体应用要求。

目前, ADC集成电路主要有以下几种类型:(1)并行比较A/D转换器:如ADC0808、 ADC0809等。

并行比较ADC是现今速度最快的模/数转换器,采样速率在1GSPS以上,通常称为“闪烁式”ADC。

它由电阻分压器、比较器、缓冲器及编码器四种分组成。

这种结构的ADC所有位的转换同时完成,其转换时间主取决于比较器的开关速度、编码器的传输时间延迟等。

缺点是:并行比较式A/D转换的抗干扰能力差,由于工艺限制,其分辨率一般不高于8位,因此并行比较式A/D只适合于数字示波器等转换速度较快的仪器中,不适合本系统。

(2)逐次逼近型A/D转换器:如:ADS7805、ADS7804等。

逐次逼近型ADC 是应用非常广泛的模/数转换方法,这一类型ADC的优点:高速,采样速率可达1MSPS ;与其它ADC 相比,功耗相当低;在分辨率低于12位时,价格较低。

相关文档
最新文档