固定床反应器设计计算

合集下载

精选固定床反应器的工艺设计

精选固定床反应器的工艺设计

CA = PFyo(1-x)/(RG*T(6.5555Fyo+ 急冷量)) CB = P(Fyo(5-x)+0.9急冷量)/(RG*T (6.5555Fyo+急冷量))若把这些CA和CB项代入式(6-32),则: rv = - dCA/dθ = kCACB0.5 = Aexp(-E/RGT) (P/(RG*T(6.5555Fyo+ 急冷量)))1.5 Fyo(1-x) (Fyo(5-x)+0.9急冷量)0.5将上式与(6-8)合并:dx/dz = AcAexp(-E/RGT)(P/RG*T(6.5555Fyo+急冷量))1.5(1-x) (Fyo(5-x)+0.9急冷量)0.5
压降方程
开始可计算出∆P/z值,而后在每一步进行适当的压力校正。
实例,恒温反应器设计
H2C=CH2十H2 → CH3一CH3 (6-9)这是一个放热反应,但它可在很小的恒温反应器中进行。铜—氧化镁为催化剂,把这些催化剂装在一个内径为9.35mm、长为280mm带水夹套的黄铜制的反应器管中。由于把37.85 l/min的水循环通过夹套,因而可得到大于5.67kJ/(m2 S K)的水膜传热系数和恒定的管壁温度。在此反应器内,9—79℃范围内的各种恒定温度下进行的许多试验证明,对氢气来说,式(6-9)表示的反应是一级的。通过给定下列条件可写出反应速率方程:rv = kCH (6-10)该系统中, η = 1
有时反应速率方程用分压而不是用浓度表示:rvp = A exp (-E/RT)PaαPbβ 式中,P是反应物或产物的分压,bar rv和rvp之间的关系是:rvp = rv (RT)α+β 式中R = 0.08314 m3 bar/(kmol K)

项目三固定床反应器的计算.详解

项目三固定床反应器的计算.详解

若采用正三角形排列,则:
AR Nt 2 sin 600
4 AR D
12
2e
三、催化剂床层传热面积的计算
催化剂床层所需的传热面积为:
A Q Kt m
床层传热面积校核:
A A需
数学模型法
根据反应动力学可分为非均相与拟均相两类;根据催化床中温度分布可
分为一维模型和二维模型;根据流体的流动状况又可分为理想流动模型(包 括理想置换和理想混合流动模型)和非理想流动模型。
SG WW WS WG WS
在单位时间内单位质量(体积)催化剂由于反应消耗的原料质量, 5. 床层线速度与空床速度 床层线速度是指在规定条件下,气体通过催化剂床层自由截面积的流 速,即: u 即: u 0
V0 AR
V0 AR
空床速度是在规定条件下,气体通过(空)床层截面积的流速,
固定床反应器参数敏感性
在反应操作过程中,当反应系统中某一个参数的微小变化引起其它参数
发生了重大变化,这种现象称为参数的灵敏性。
一、绝热式固定床反应器的参数灵敏性
绝热式固定床反应器的返混很小,不存在反应器的整体的热稳定性。反 应器各处状态仅决定于进口条件,因此,绝热式固定床反应器床内参数的灵 敏性是一个重要的问题。
数学模型法的工作步骤:
① 通过实验和其他途径深入认识实际过程,把握过程的物理实质和影响 因素,并尽可能区分主次;
② 根据研究的目的,对实际过程做出不同程度的简化,建立物理模型;
③ 对物理模型进行数学描述,建立模型方程(组); ④ 通过实验测定和参数估值确定模型方程中所含模型参数的数值;
⑤ 进行模拟计算,将计算结果和实验结果进行比较。准体积流量,即:

固定床反应器的设计计算

固定床反应器的设计计算

固定床反应器的设计计算固定床反应器是一种广泛应用于化工工业中的反应器。

它由一个固定的反应床和气体或液体通过床体流动的装置组成。

固定床反应器通常用于进行催化反应,例如催化剂的制备、氢气的生成以及石油炼制过程中的裂化反应等。

在设计固定床反应器时,需要考虑反应床的尺寸、催化剂的选择、反应温度和压力等因素。

下面将介绍固定床反应器的设计计算流程。

首先,设计固定床反应器时需要确定反应物的种类和摩尔比。

通过摩尔比可以计算出反应物的总流量以及各个组分的摩尔流量。

接下来,需要考虑反应床的尺寸和形状。

反应床通常为一根或多根管子,可以是圆柱形、方形或其他形状。

根据反应床的形状和尺寸,可以计算出反应床的体积。

在确定了反应床的尺寸后,需要选择合适的催化剂。

催化剂的选择应考虑反应的速率和选择性。

常见的催化剂有金属催化剂、氧化物催化剂和酸碱催化剂等。

选择催化剂后,需要计算催化剂的质量和体积。

在反应过程中,需要控制反应温度和压力。

反应温度对于反应速率和选择性具有重要影响。

根据反应的热力学数据和催化剂的性质,可以计算出反应的热效应和放热量。

根据反应的放热量和反应床的热传导性能,可以计算出反应床的冷却要求。

在设计固定床反应器时,还需要考虑反应物和产物的流动情况。

根据流动特性可以计算出反应床的压降和流速。

压降对于反应过程有重要影响,它影响着反应物在床体中的停留时间和反应速率。

最后,需要考虑反应物的进料方式和产物的排放方式。

进料和排放方式应选择合适的装置,以保证反应物的均匀分布和产物的高效排放。

在设计固定床反应器时,需要综合考虑以上因素,并进行相应的计算。

通过计算可以确定反应床的尺寸和形状、催化剂的选择、反应温度和压力以及进料和排放方式。

这些计算可以保证固定床反应器的高效运行和最佳性能。

总结起来,设计固定床反应器需要考虑反应物的种类和摩尔比、反应床的尺寸和形状、催化剂的选择、反应温度和压力、反应床的冷却要求、反应物和产物的流动情况以及进料和排放方式等因素。

固定床反应器的操作与控制—固定床反应器工艺计算

固定床反应器的操作与控制—固定床反应器工艺计算

n
dP xidi i 1
2、调和平均直径
1 n xi
dP d i1 i
在固定床和流化床的流体力学计算中,用调和平均直径较为符合实验数据。
三、空隙率(ε) 催化剂床层的空隙体积与催化剂床层总体积之比。
颗粒形状 颗粒装填方式 颗粒的粒度分布
颗粒表面的粗糙度
影响因素 越接近球形
越紧密 越不均匀
越光滑
为降低热点温度,减少轴向温差,工业上从工艺上采取措施,其思路是调 整放热速率或移热速率。
0302-6 固定床反应器的工艺计算
总结固定床反应器的工艺计算内容和计算方法 固定床反应器的工艺计算,一般包括催化剂用量、反应器床层高 度和直径、传热面积及床层压力降的计算等。
固定床反应器的工艺计算,主要有经验法和数学模型法。
务点及其要求
0302-1 固体催化剂基础知识 理解催化剂的作用、基本特征,固体催化剂的组成、性能及其表征 0302-2 气固相反应宏观过程 了解气固相反应特点,理解气固相反应宏观过程,了解气固相反应本征动力学及
宏观动力学的含义 0302-3 固定床反应器内的流体流动及压力降计算 理解气固相流体流动相关的特性参数,了解流体在固定床中流动的特性,会应用
项目03 乙苯脱氢反应器的设计与选型 任务0302 乙苯脱氢反应器工艺设计
任务引入:
中山石化原3万吨/年苯乙烯,采用绝热式固定床反应器,试根据以下条件: 主反应:
C6H5-C2H5→C6H5CH = CH2+H2 (△H=124KJ/mol) 副反应: C6H5-CH2CH3 →C6H6+C2H4 工艺条件:反应温度:550~650 ℃; 常压; 蒸汽 / 乙苯质量比:8:1; 催化 剂:沸石催化剂或EBZ-500 沸石催化剂; 年生产时间为8300小时,乙苯总转化 率达40%,选择性为96%,空速为4830h-1,催化剂堆积密度为1520Kg/m3,生产中 苯乙烯的损失可忽略. 确定(1)催化剂用量;(2)床层的压力降;(3)所需换热面积。

反应工程第二版 第六章气固相催化固定床反应器

反应工程第二版 第六章气固相催化固定床反应器

dxA RA B
dl
u0cA0
:催化剂堆密度
B
dxA
RA B
dl u0cA0
L 0
dl u0
cA0
xA出 0
dxA
RA B


对照平推流反应器模型 二者相同
VR V0
cA0
dx xA出
A
0 rA
23
• 热量衡算:(仍然是那块体积)
输入热量-输出热量+反应热效应
=与外界的热交换+积累
x1in,T1in x1out, T2in x2out T3in x3out T4in x4out
35
x
在T-x图上看:
0
二氧化硫氧化反应T-x图示意
T
斜线为段内操作线,斜率为1/λ。 水平线表示段间为间接冷却,只是温度降低,转化率不变。
36
• 调用最优化程序,就可以求得W最小值?
• 可以,但很困难。
输入:G cp T G质量流量, cp恒压热容
输出:G cp(T+dT)
反应热效应:(-RA)(1-εB)(-ΔH)Aidl
热交换:U(T-Tr)πdidl
di反应器直径
积累:0
U:气流与冷却介质之间的换热系数
Tr:环境温度
24
• 将各式代入,得
dT
RA 1 B H U
4 di
T
Tr
dl
ucp g
粒径 ds/mm 质量分率 w
3.40 0.60
4.60 0.25
6.90 0.15
• 催化剂为球体,空隙率εB=0.44。在反应 条 件 下 气 体 的 密 度 ρg=2.46kg.m-3 , 粘 度 μg=2.3×10-5kg.m-1s-1 , 气 体 的 质 量 流 速 G=6.2kg.m-2s-1。求床层的压降。

固定床反应器吊盖设计及相关计算

固定床反应器吊盖设计及相关计算


1 1 7 3 k g / c m <【 o】 =1 5 0 0 k g / c m
2 . 1 . 2 竖 直 时 板 耳 最 大 剪 切 应 力
2 吊盖 设计 与相 关计 算
计算公式采用式 2 .
— —

6¥ ( R — r ) 代人数值计算 :
r= = 8 6 3 R g / c m2 < [ r】 =1 2 0 0 k I 5 9
E& C T e C h n o l 。 g y
—_ _ j 甄 一
[ 。 1 = =Q ! 。 曼 = 2 6 36 M Pa

向的分力对摩擦力 的影响 , 其过程如下所述 。
( 2 ) 起吊工况强度校核 螺柱 尺寸 M9 0×P , 螺距为 P , 数量 2 0个, 螺柱小径 d 。 。
关键词 固定床反应器 吊盖设计 吊盖有关力学计算 吊盖螺栓强度校核
中图分类号 T Q 0 8 2
文献标识码 B
文章编 号 1 6 7 2 — 9 3 2 3 ( 2 0 1 6 ) 0 6 — 0 0 5 9 — 0 2
1工程概 况
陕西延长石油安源化工 1 0 0 万 t / a煤 焦油加氢项 目 ( 一期) 加氢 装置 中的固定床反 应器 重 6 1 7 t , 高4 3 m; 固定床反 应器 三段 到货 , 现场组焊 , 整体 吊装。设备 参数表见表 l 。
结论 : 此 吊盖满足 吊装要求 。
图 1吊盖设计 图
2 . 2吊盖螺栓预紧力计算
2 . 2 . 1吊盖所 用螺栓 预紧力计算
根据设备重量 , 充分考虑 动载及不均衡系数 , 按 1 . 5倍设计
吊盖 , 即 1 0 0 0 t 吊盖 设 计 计 算 。 吊盖 设 计 图如 图 1 所示 。

反应过程与技术 固定床反应器的计算

反应过程与技术 固定床反应器的计算

§2-4固定床反应器的计算Calculation of fixed bed计算内容:①催化剂用量;②床层高度和直径;③传热面积;④床层压力降。

计算基础:反应动力学方程;物料衡算;热量衡算。

固定床反应器的经验计算法:利用实验室;中间试验装置;工厂现有装置最佳条件测得数据。

一.催化剂用量的计算 Calculation of catalyst use level1.空间速度:Space velocity[]1-=h V V S RONV ~ON V 原料气体积(标)流量~R V 催化剂填充体积意义:单位体积催化剂在单位时间内通过原料标准体积流量2.接触时间:Contact timeV V R ετ= ~0V 反应条件下,反应物体积流量~ε床层空隙率00,nRT V p nRT PV ON ==pT Tp S p T Tp V V p T TpV V VR ON ON 0000000εετ===∴代入a p p K T 300103.101273⨯==,3.空时收率:Space time yield(STY)SGW W W S =意义:反应物流经床层时,单位质量(或体积)催化剂在单位时间内所获得的目的产物量。

4.催化剂负荷 Catalyst load[]h Kg W W /~原料 [][]3~m Kg cat W S 或 单位质量催化剂在单位时间内通过反应所消耗的原料5.床层线速度与空床速度 Linear velocity and superficial velocity 线速度:εR A V u 0= 反应体积在反应下,通过催化剂床层自由截面积的速率。

空床速度:R A V u 00=在反应条件下,反应气体通过床层截面积时的气速。

使用条件:所设计的反应器与提供数据的装置具有相同的操作条件等)、、、、原料、、(P T u cat μ只能估算。

不可能完全相同∴二.反应器床层高度及直径的计算 Calculation of reactor体积一定:床层高度↑→H 床层截面积↓→A 气速↑↑→∆P ↑动力消耗流动阻力,u ;床层高度↓↑→A ↓→u H ,对传热不利,另:H 太小,气体易产生短路。

固定床反应器设计

固定床反应器设计

孔隙率分布
4、流体在固定床中流动的特性
流体在固定床中的流动情况较之在空管中的流动要复杂得多。 固定床中流体是在颗粒间的空隙中流动,颗粒间空隙形成的孔道 是弯曲的、相互交错的,孔道数和孔道截面沿流向也在不断改变。
空隙率是孔道特性的一个主要反映。在床层径向,空隙率分布的 不均匀,造成流速分布的不均匀性。
催化剂微孔内的扩散过程对反应速率有很大的影响。反应物进入微孔后, 边扩散边反应。如扩散速率小于表面反应速率,沿扩散方向,反应物浓度 逐渐降低,以致反应速率也随之下降。采用催化剂有效系数对此进行定量 的说明。
实际催化反应速率 催化剂化剂内表面与外温度, 浓度相同时的反应速率
rP rS
结论:当 ≈1时,反应过程为动力学控制,当 <1时,反应过程为内
扩散控制。
内扩散不仅影响反应速率,而且影响复杂反应的选择性。如平行反应中, 对于反应速率快、级数高的反应,内扩散阻力的存在将降低其选择性。又 如连串反应以中间产物为目的产物时,深入到微孔中去的扩散将增加中间 产物进一步反应的机会而降低其选择性。
注意事项:
固定床反应器内常用的是直径为3~5mm的大颗粒催化剂,一般难 以消除内扩散的影响。实际生产中采用的催化剂,其有效系数为 0.01~1。因而工业生产上必须充分估计内扩散的影响,采取措施 尽可能减少其影响。在反应器的设计计算中,则应采用考虑了内扩 散影响因素在内的宏观动力学方程式。
外扩散过程
流体与催化剂外表面间的传质。
NA kcASe cGA cSA
在工业生产过程中,固定床反应器一般都在较高流速下 操作。因此,主流体与催化剂外表面之间的压差很小, 一般可以忽略不计,因此外扩散的影响也可以忽略。
结论:外扩散的影响也可以忽略。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(6-55)
F i c p d i F c P T d ( T H A ) r A ) ( d F A W 0 d A ( H x A )
(6-59)
Enzhou Liu, Northwest University, Xi’an
12
式(6-55)和(6-59)分别积分并整理得:
设计方程 操作方程
10
(rA)dW FA0dA x
设计方程
WdWWxAf dxA 0 FA0 FA0 xA0 (rA)
床层高度
L W
S B
一般,固定床反应器换热比较困难,很难做到等温操作, 此法仅用于对反应器进行估算。
或等温反应器
u dCA dl
B(rA)
Enzhou Liu, Northwest University, Xi’an
用以实现多相反应过程的一种反应器。固体物通常呈颗粒
状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。
床层静止不动,流体通过床层进行反应。
实验室:石英管、不锈钢管
催化剂颗粒放在等温区,其余填充石英砂,两端用玻璃棉
封口防止石英砂被吹出。
用D6或D8的不锈钢管做反应管较宽、催化剂较少时,用更
细的不锈钢管作支撑管,上垫不锈钢网,可作800度以下
颗粒与流体间传热系数(hp) 固定床中的有效热传导(λe) 床层与器壁间的给热系数 h0(一维模型)和 hw (二维模型)
7.传质系数(P170)
颗粒与流体间的传质 流体的混合扩散(Ez和Er)
Enzhou Liu, Northwest University, Xi’an
8
4.拟均相一维模型
一、拟均相模型 忽略床层中催化剂颗粒与流体之间温度与浓度差别,将气
对外换热式反应器
5
2.固定床反应器---分类(换热)
自热式反应器
传热和温度控制是难点,固定列管式固定床反应器性能较好 反应物流处于湍流状态时,空管的长径比大于50; 填充段长与粒径之比大于100(气体)或200(液体)
Enzhou Liu, Northwest University, Xi’an
6
的反应。
Enzhou Liu, Northwest University, Xi’an
3
1. 固定床反应器---概念
与流化床反应器及移动床反应器的区别在于
固体颗粒处于静止状态。固定床反应器主要用于
实现气固相催化反应,如氨合成塔、二氧化硫接
触氧化器、烃类蒸汽转化炉等。
用于气固相或液固相非催化反应时,床层则
25
5.设计实例
物料衡算
Enzhou Liu, Northwest University, Xi’an
26
5.设计实例
动力学方程
Enzhou Liu, Northwest University, Xi’an
27
5.设计实例
Enzhou Liu, Northwest University, Xi’an
相反应物与催化剂看成均匀连续的均相物系。 (1)一维拟均相模型
只考虑沿气体流动方向的温度和浓度变化。 根据流动形式分为平推流一维模型和轴向分散一维模型。 (2)二维拟均相模型 同时考虑轴向和径向的温度和浓度分布。
Enzhou Liu, Northwest University, Xi’an
9
4.1 等温反应器的计算(P173) 床层温度均匀一致,反应速率常数为常数,反应速度
填装固体反应物。涓流床反应器也可归属于固定
床反应器,气、液相并流向下通过床层,呈气液
固相接触。
Enzhou Liu, Northwest University, Xi’an
4
2.固定床反应器---分类(换热)
绝热床反应器
多段绝热床反应器
Enzhou Liu, Northwest University, Xi’an
Enzhou Liu, Northwest University, Xi’an
22
5.设计实例
反应热公式 平衡常数公式
Enzhou Liu, Northwest University, Xi’an
4次方
23
范德霍夫方程
5.设计实例
Enzhou Liu, Northwest University, Xi’an
乙二醇分率
Enzhou Liu, Northwest University, Xi’an
36
谢谢!
38
S B
1 rA
Enzhou Liu, Northwest University, Xi’an
14
4.3 列管式固定床反应器设计
结构与列管式换热器相似,反应气体从装填催化剂的 管内流过,管间通入换热介质进行换热。反应管并联连接, 只需计算其中一根管的长度和催化剂装填量。
Enzhou Liu, Northwest University, 于反应器内存在换热,计算中要考虑热量传递的影响。 床层与管壁间的传热量
式中,总括传热系数h0可由Leva公式计算:
(TM TW)
(TM TW)
使用经验关联式时要注意条件和式中各参数的单位。
Enzhou Liu, Northwest University, Xi’an
16
床层与管外传热介质之间的总传热系数
13
图解法步骤
1)由式(6-60)在 xA~T 图中作绝热操作线; 2)在绝热操作线上读出若干组( xAi,Ti )数据; 3)由( xAi,Ti )数据计算(-rAi)和1/(-rAi); 4)作1/(-rA)~ xA曲线。该曲线下方介于0~ xAf之间的面积
大小即W/FA0。 5)床层高度 L W
管内物料和热量衡算 如图,取管内微元长度对组分A进行衡算得:
整理得
该方程组就是列管式固定床反应器的一维拟均相数学模型, 对一定的生产任务,可计算出床层中轴向浓度和温度分布。
四阶龙格-库塔法求解步骤 (1)将微分方程组化成差分方程组
(2)给定边界条件, l0,xAxA 0,TT 0 ,步长 Δl,计算
固定床反应器及其设计计算
刘恩周, 讲师 西北大学化工学院 2015年4月24日
1
主要内容
1. 概念 2. 分析(换热) 3. 传递过程 4. 拟均相一维模型 5. 设计实例
Enzhou Liu, Northwest University, Xi’an
2
1. 固定床反应器---概念
又称填充床反应器,装填有固体催化剂或固体反应物
L
L
dl
u
dC CA0
A
0
C0 rA
11
4.2单层绝热式固定床反应器
定常态操作时,与流动方向垂直的截面上温度、浓度均
匀一致,且不随时间变化。体系的温度和浓度仅随流动方向
的空间位置变化。 取反应器内一微元段进行物料衡算和热量
衡算得:
( rA )dW ( rA )4d t2Bd lF A 0dAx
30
5.设计实例
管程中催化剂与壳程沸腾水总传热系数计算
Enzhou Liu, Northwest University, Xi’an
31
5.设计实例
床层与管外传热介质之间的总传热系数
Enzhou Liu, Northwest University, Xi’an
32
5.设计实例
动量传递
Enzhou Liu, Northwest University, Xi’an
(3)将xA1、T1、l1作为初值,重复(2)的计算,直至xA≥xAf。
5.设计实例
草酸二甲酯加氢制备乙二醇列管式固定床反应器计算 (一维拟均相等温反应器) 方程式
总反应
4
2
主反应 付反应
Enzhou Liu, Northwest University, Xi’an
21
5.设计实例
反应机理
速 率 控 制 步 骤
仅与浓度有关。按一维拟均相处理,设计方法与PFR相似。
对右图固定床反应器取一微元段进行物料衡算
(rA)dW FA0dA x
WdWWxAf dxA
0 FA0 FA0 xA0 (rA)
B为 床 层 密 度 或 堆 积 密 度
W 为 催 化 剂 质 量
Enzhou Liu, Northwest University, Xi’an
33
5.设计实例
反应工艺条件
Enzhou Liu, Northwest University, Xi’an
34
5.设计实例
计算结果
Enzhou Liu, Northwest University, Xi’an
35
5.设计实例
计算结果 w1429N2m 37/h0.0153 22.4 9.6 72 km 4 /h 2 6 o .0 2 l7 60.7 5k2g /h80h00 484k 2/g a 16 4.82万 45/年 吨
W xAf dxA
FA0 xA0 (rA)
T T 0y A 0 ( c P H A )(x A x A 0 )(x A x A 0 ) (6-60)
设计方程和操作方程联立求解,可求W。当动力学方程比 较复杂时,难以得到解析解。一般采用数值积分或图解法计算。
Enzhou Liu, Northwest University, Xi’an
3.固定床反应器传递过程—基本概念
1.粒子直径(3种,da ds dv P162) 2.形状系数 s 3.床层空隙率 B 4.床层当量直径 de 5.床层压降 P
Enzhou Liu, Northwest University, Xi’an
7
3.固定床反应器传递过程—基本概念
6.传热系数(3种v P166)
相关文档
最新文档