全国大学生数学建模竞赛培训-PPT课件
合集下载
数学建模竞赛PPT资料24页

1.2 竞赛形式、规则和纪律
❖ 竞赛期间参赛队员可以使用各种图书资料、计算机 和软件,在国际互联网上浏览,但不得与队外任何 人(包括在网上)讨论。
❖ 竞赛开始后,赛题将公布在指定的网址供参赛队下 载,参赛队在规定时间内完成答卷,并准时交卷。
❖ 参赛院校应责成有关职能部门负责竞赛的组织和纪 律监督工作,保证本校竞赛的规范性和公正性。
1.1 竞赛内容
❖ 竞赛题目一般来源于工程技术和管理科学等方 面经过适当简化加工的实际问题,不要求参赛者预 先掌握深入的专门知识,只需要学过高等学校的数 学课程。题目有较大的灵活性供参赛者发挥其创造 能力。参赛者应根据题目要求,完成一篇包括模型 的假设、建立和求解、计算方法的设计和计算机实 现、结果的分析和检验、模型的改进等方面的论文 (即答卷)。竞赛评奖以假设的合理性、建模的创 造性、结果的正确性和文字表述的清晰程度为主要 标准。
展趋势,常采用数理统计或模拟的方法 (3)优化管理、决策或者控制事物,需合理地定义
可量化的评价指标及评价方法.
4 建立模型
• 建模过程中的几个要点: 模型的整体设计、合理的假设、建立数学结构、 建立数学表达式
• 数学模型最好明确、合理、简洁,具有一般性; 有些论文不给出明确的模型,只是就赛题所给的 特殊情况,用“凑”的方法给出结果,虽然结果 大致对,但缺乏一般性,不是数学建模的正确思 路
• 要有创新,但要合理。 • 避免出现罗列一系列模型,又不作评价的现象。 建议: 尽可能多地了解数学工具,各种数学模型
5 模型求解——最重要的部分之一
• 算法设计或选择, 算法思想依据,步骤;
• 引用或建立必要的数学命题和定理;
• 在不能求出精确解的情况下,需要给出不只一种 解法(算法),并进行测试比较,给出评价。为 了说明你的算法好,你需要有一个参照与之比较, 你可以从最简单、最易得到的算法开始,逐步改 进直到得到你的最好解。
数学建模培训精品课件ppt

R具有丰富的统计函数库和图形库,可以进行各种统计分析 、数据挖掘和预测建模。R还具有开源的特性,用户可以自由 地使用和修改代码,同时也有大量的社区资源和教程可供参 考。
CHAPTER 04
数学建模竞赛经验分享
竞赛准备
知识储备
01
掌握数学建模所需的基本数学知识,如概率论、统计学、线性
代数和微积分等。
Python的NumPy库提供了强大的数组操作功能,可以进行大规模数值计算; Pandas库提供了数据分析和处理的功能;SciPy库可以进行各种科学计算和数学 建模;Scikit-learn库则提供了丰富的机器学习算法和模型。
R
R是一种用于统计计算和图形的编程语言,它提供了大量的 统计函数和图形工具,方便用户进行数据分析、统计建模和 可视化。
微分方程模型
总结词
微分方程模型用于描述动态系统的变化规律,通过建立微分方程来描述系统的状态和行 为。
详细描述
微分方程模型基于物理定律和数学原理,通过求解微分方程来预测系统的未来状态。常 见的微分方程模型有常微分方程、偏微分方程等,广泛应用于物理学、工程学等领域。
优化模型
总结词
优化模型用于寻找最优解,通过建立数学模型来描述问题的约束条件和目标函数。
任务。
创新思维
在解决问题时尝试不同 的方法和思路,不要局
限于一种解决方案。
文档规范
注意文档的规范性和可 读性,方便评委理解和
评价。
CHAPTER 05
数学建模前沿动态
人工智能与数学建模
人工智能算法的数学原理
解释人工智能算法背后的数学原理,如线性代数、概率论和统计 等。
机器学习与数学建模
介绍机器学习中的数学建模方法,如回归分析、分类和聚类等。
CHAPTER 04
数学建模竞赛经验分享
竞赛准备
知识储备
01
掌握数学建模所需的基本数学知识,如概率论、统计学、线性
代数和微积分等。
Python的NumPy库提供了强大的数组操作功能,可以进行大规模数值计算; Pandas库提供了数据分析和处理的功能;SciPy库可以进行各种科学计算和数学 建模;Scikit-learn库则提供了丰富的机器学习算法和模型。
R
R是一种用于统计计算和图形的编程语言,它提供了大量的 统计函数和图形工具,方便用户进行数据分析、统计建模和 可视化。
微分方程模型
总结词
微分方程模型用于描述动态系统的变化规律,通过建立微分方程来描述系统的状态和行 为。
详细描述
微分方程模型基于物理定律和数学原理,通过求解微分方程来预测系统的未来状态。常 见的微分方程模型有常微分方程、偏微分方程等,广泛应用于物理学、工程学等领域。
优化模型
总结词
优化模型用于寻找最优解,通过建立数学模型来描述问题的约束条件和目标函数。
任务。
创新思维
在解决问题时尝试不同 的方法和思路,不要局
限于一种解决方案。
文档规范
注意文档的规范性和可 读性,方便评委理解和
评价。
CHAPTER 05
数学建模前沿动态
人工智能与数学建模
人工智能算法的数学原理
解释人工智能算法背后的数学原理,如线性代数、概率论和统计 等。
机器学习与数学建模
介绍机器学习中的数学建模方法,如回归分析、分类和聚类等。
数学建模竞赛培训与数学建模报告PPT课件

36 40
x1 , x 2 , x 3 0
矩阵形式:
max cTx s.t. Ax≤b
x≥0
c T [4, 3, 2], x T [ x1, x2 , x3 ]
2 3 1 34
A
3
2
1
.5
,
b
3
6
3 2 5 4 0
30
MATLAB软件求解
Matlab中求解线性规划的命令为: linprog, 解决的线性规 划的标准格式为:
min cTx s.t. A·x <= b
Aeq·x = beq VLB≤x≤VUB 其中,A, b, c, x, Aeq, beq, VLB, VUB等均表示矩阵,特别 b, c, x, beq, VLB, VUB为列矩阵。
31
命令linprog的基本调用格式
x = linprog(c, A, b, Aeq,beq ,VLB, VUB)
案例:节水洗衣机
仿真
II. 结果
1. 表 2 是溶解率 Q 0.99 时不同洗衣轮数下的最少 用水量和每一轮的最优用水量(各轮的最优用水 量恰好相等).
2. 表 3 是不同溶解率 Q 值下的最优洗衣轮数, 最少 总用水量和每一轮的最优用水量(各轮的最优用 水量恰好相等).
案例:节水洗衣机
表2 不同洗衣轮数下的最少用水量和每一轮的最优用水量
k=n-1
xn为衣服上的最
终 脏物量
案例:节水洗衣机
模型建立
1. 溶解特性和动态方程
分析:在第k轮漂洗之后和脱水之前,第k-1 轮脱水之后的脏物量xk已变成两部分:
x k p k q k ,k 0 , 1 ,2 ,,n - 1 ( 1 )
数学建模培训精品课件ppt

提高解决问题的能力
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。
《数学建模培训》PPT课件

数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。
全国大学生数学建模比赛题目ppt课件

• (2) 当环境温度为65ºC、IV层的厚度为5.5 mm时,确定II层的最优厚度, 确保工作60分钟时,假人皮肤外侧温度不超过47ºC,且超过44ºC的时 间不超过5分钟。
• (3) 当环境温度为80EMBED Equation.3时,确定II层和IV层的最优厚度, 确保工作30分钟时,假人皮肤外侧温度不超过47ºC,且超过44ºC的时 间不超过5分钟。
问题B 智能RGV的动态调度策略
• 图1是一个智能加工系统的示意图,由8台计算机数控机床 (Computer Number Controller,CNC)、1辆轨道式自动引导车 (Rail Guide Vehicle,RGV)、1条RGV直线轨道、1条上料传送 带、1条下料传送带等附属设备组成。RGV是一种无人驾驶、能在 固定轨道上自由运行的智能车。它根据指令能自动控制移动方向 和距离,并自带一个机械手臂、两只机械手爪和物料清洗槽,能 够完成上下料及清洗物料等作业任务(参见附件1)
• 任务2:利用表1中系统作业参数的3组数据分别检验模型的实用 性和算法的有效性,给出RGV的调度策略和系统的作业效率,并 将具体的结果分别填入附件2的EXCEL表中。
表1:智能加工系统作业参数的3组数据表
注:每班次连续作业8小时
C题 大型百货商场会员画像描绘
• 在零售行业中,会员价值体现在持续不断地为零售运营商带来稳 定的销售额和利润,同时也为零售运营商策略的制定提供数据支 持。零售行业会采取各种不同方法来吸引更多的人成为会员,并 且尽可能提高会员的忠诚度。当前电商的发展使商场会员不断流 失,给零售运营商带来了严重损失。此时,运营商需要有针对性 地实施营销策略来加强与会员的良好关系。比如,商家针对会员 采取一系列的促销活动,以此来维系会员的忠诚度。有人认为对 老会员的维系成本太高,事实上,发展新会员的资金投入远比采 取一定措施来维系现有会员要高。完善会员画像描绘,加强对现 有会员的精细化管理,定期向其推送产品和服务,与会员建立稳 定的关系是实体零售行业得以更好发展的有效途径。
• (3) 当环境温度为80EMBED Equation.3时,确定II层和IV层的最优厚度, 确保工作30分钟时,假人皮肤外侧温度不超过47ºC,且超过44ºC的时 间不超过5分钟。
问题B 智能RGV的动态调度策略
• 图1是一个智能加工系统的示意图,由8台计算机数控机床 (Computer Number Controller,CNC)、1辆轨道式自动引导车 (Rail Guide Vehicle,RGV)、1条RGV直线轨道、1条上料传送 带、1条下料传送带等附属设备组成。RGV是一种无人驾驶、能在 固定轨道上自由运行的智能车。它根据指令能自动控制移动方向 和距离,并自带一个机械手臂、两只机械手爪和物料清洗槽,能 够完成上下料及清洗物料等作业任务(参见附件1)
• 任务2:利用表1中系统作业参数的3组数据分别检验模型的实用 性和算法的有效性,给出RGV的调度策略和系统的作业效率,并 将具体的结果分别填入附件2的EXCEL表中。
表1:智能加工系统作业参数的3组数据表
注:每班次连续作业8小时
C题 大型百货商场会员画像描绘
• 在零售行业中,会员价值体现在持续不断地为零售运营商带来稳 定的销售额和利润,同时也为零售运营商策略的制定提供数据支 持。零售行业会采取各种不同方法来吸引更多的人成为会员,并 且尽可能提高会员的忠诚度。当前电商的发展使商场会员不断流 失,给零售运营商带来了严重损失。此时,运营商需要有针对性 地实施营销策略来加强与会员的良好关系。比如,商家针对会员 采取一系列的促销活动,以此来维系会员的忠诚度。有人认为对 老会员的维系成本太高,事实上,发展新会员的资金投入远比采 取一定措施来维系现有会员要高。完善会员画像描绘,加强对现 有会员的精细化管理,定期向其推送产品和服务,与会员建立稳 定的关系是实体零售行业得以更好发展的有效途径。
全国大学生数学建模竞赛简介PPT课件

194
35
225
39
224
38
262
46
223
43
队数
总数
中国
211
4
235
6
260
21
292
26
259
40
315
84
320
84
393
115
409
107
472
138
479
155
美国大学生数学建模竞赛
• 1985年开始举办数学建模竞赛(MCM), 1989年我国 (我校)学生开始参加。
• 1999年开始增办交叉学科竞赛(ICM).
竞赛宗旨
竞赛事项
❖ 答卷按省(市、自治区)和全国两级评奖; ❖ 每年赛题、优秀答卷及获奖名单刊登于次年
“工程数学学报”第1期; ❖ 全国组委会网址:
竞赛的社会影响不断扩大
❖ 99年的竞赛命名为“99’创维杯全国大学生数学建 模竞赛”;
❖ 2000年的竞赛命名为“2000网易杯全国大学生数 学建模竞赛”;
❖ A,C 为连续型题目; B,D为离散型题目
评奖标准
❖ 假设的合理性、建模的创造性、结果的正确 性和文字表述的清晰程度。
竞赛意义
大学阶段难得的一次近似于“真刀真枪” 的训练,模拟了毕业后工作时的情况,既丰 富、活跃了广大同学的课外生活,也为优秀 学生脱颖而出创造了条件.
竞赛意义
❖ 数学建模竞赛培养学生创新精神,提高 学生综合素质;
年 2000 2001 2002 2003 2004 2005
参赛国数 9 11 11 8 9 9
参赛总队数 495 579 628 638 742 808
数学建模培训精品课件

深度学习与神经网络
介绍深度学习和神经网络的基本原理 ,以及在数学建模中的应用和挑战。
探讨机器学习算法如何与数学建模相 结合,实现数据分析和预测。
大数据时代的数学建模挑战与机遇
大数据的数学建模方法
介绍处理大规模数据集的数学建模方法和技巧,如分布式计算、 云计算等。
数据清洗与预处理
阐述数据预处理在数学建模中的重要性,以及如何进行数据清洗和 特征提取。
THANKS.
04
模型评估与改进技巧
误差分析
分析模型预测误差来源,提高模型预测精度 。
多目标优化
在满足多个约束条件下,优化模型目标函数 。
敏感性分析
评估模型参数对结果的影响程度,优化模型 参数。
模型集成
将多个模型组合起来,提高整体预测性能。
数学建模软件介绍
04
MATLAB的使用介绍
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析以及数
数学建模应用实例
02
微积分建模实例
总结词:微积分建模是数学建模中的基 础,通过实例可以更好地理解微积分的 实际应用。
经济学中的边际分析:通过微积分分析 经济活动中成本、收益和利润的变化, 为决策提供依据。
人口增长模型:利用微积分的知识,建 立人口增长模型,预测未来人口数量和 增长趋势。
详细描述
瞬时速度与加速度:通过分析物体运动 的速度和加速度,建立微积分模型,用 于预测物体的运动轨迹和时间。
模型验证:使用实际数据对模型进行 验证,评估模型的准确性和可靠性。
应用与优化:将模型应用于未来气候 预测中,根据反馈进行模型优化和调 整。
数学建模前沿动态
06
人工智能与数学建模的结合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三种主要需求:换乘次数,费用,时间
尽可能准确理解题意,明确需要解决哪些问题
分析赛题——问题1 (1)关于模型 ① 这是什么样的数学问题? 1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的 一般数学模型与算法。并根据附录数据,利用你们的模型与算法, 优化问题——最佳路线。 求出以下6 对起始站→终到站之间的最佳路线(要有清晰的评价说明)。 ② 至少有哪些需求、哪些目标? (1) S3359→S1828 ;(2) S1557→S0481; (3) S0971→S0485
三个目标各自独立的优化问题,三个独立规划: 最少换乘次数规划,最少行程费用规划,最短行程路程规划;
④ 三个独立的优化问题,最优解不唯一,是否需要 考虑其余目标?其余目标的优先次序如何?
可能的模型方案:三个目标的各种可能排列 ������ 换乘次数第一,其次费用,再次时间; ������ 换乘次数第一,其次时间,再次费用; ������ 费用第一,其次换乘次数,再次时间; ������ 费用第一,其次时间,再次换乘次数; ������ 时间第一,其次换乘次数,再次费用; ������ 时间第一,其次费用,再次换乘次数
分析赛题——明确意图
意图:定量评估2019年上海世博会的影响力
注意:本题是一道比较开放的题目,对问题的理解和所 关注的侧 面(角度)的不同,会导致模型的多样性。
关键:影响力的定义,即因素的选定。
容易考虑到的影响力包括经济、旅游、社会、文化等多个方面也可 以是一个较小的侧面(比如表演、自愿者、摄影)。 世博会在经济方面 考虑到3天时间不太可能进行一个全面的影响力分析,如何恰当地 的影响力 选择一个影响力的侧面极其相关因素是解题的基本前提。 要求有明确具体的定义,要有合理的论证,要有数据支撑。
(一)2019年B 题:乘公交,看奥运
某公司准备研发一个解决公交线路选择问题的自主查询计算机 系统。设计这样一个系统的核心是线路选择的模型与算法,应该从实 际情况出发考虑,满足查询者的各种不同需求。请你们解决如下问 题: 1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的 一般数学模型与算法。并根据附录数据,利用你们的模型与算法, 求出以下6 对起始站→终到站之间的最佳路线(要有清晰的评价说 明)。 (1) S3359→S1828 ;(2) S1557→S0481; (3) S0971→S0485 (4) S0008→S0073; (5) S0148→S0485 ;(6) S0087→S3676 2、同时考虑公汽与地铁线路,解决以上问题。 3、假设又知道所有站点之间的步行时间,请你给出任意两站点 之间线路选择问题的数学模型。
分析赛题
(1)世博会在经济方面的影响力定义
将影响力定义为单位时间内世博会对各种经济收益 增幅大小的影响,并给出影响力指标
Y Y Z Y
单位时间内在没有世博会的情况下收益的增幅
相同时间段内有世博会影响情况下收益的增幅
影响力定性分析的评判标准
影响力指标Z
然,便于对照比较?
������ ������ 集中表示,表格方式为好,可省略之间结果。 或可先列出算法实施过程中的中间结果, 最后的优化结果再集中表示。
(二)2019年B题:上海世博会影响力的定量评估
2019年上海世博会是首次在中国举办的世界博览 会。从1851年伦敦的“万国工业博览会”开始, 世博会正日益成为各国人民交流历史文化、展示 科技成果、体现合作精神、展望未来发展等的重 要舞台。请你们选择感兴趣的某个侧面,建立数 学模型,利用互联网数据,定量评估2019年上海 世博会的影响力。
尽可能准确理解题意,明确需要解决哪些问题
分析赛题——明确意图
(1)意图 公交系统自主查询系统的设计做数据及技术上的准备 (2)任务 公交系统中任意两站点之间的最佳路线问题 ������ 建立模型 ������ 设计算法 实施算例 (3)注意 ������ 不要加入做题人太多的主观因素和心理因素 ������ 题中“查询的不同需求”, 意味着在所有可能的需求中 选择若干主要需求。
1 如何分析数学建模问题?
基本过程
选定题目之后,三个人都应该对题目阅读至 少3-4遍(打印出来),以便对题目熟记于心。
然后要进行模型的准备工作(查找资料)问 题重述、模型假设的形成等。 建立模型,求解,分析检验优缺点分析。
1 如何分析数学建模问题?
基本原则 尽可能准确理解题意,明确需要解决哪些问题
(4) S0008→S0073; (5) S0148→S0485 ;(6) S0087→S3676
需求: 关于行程的 ������ 换乘次数 ������ 乘车费用 ������ 乘车时间
目标: ������ 换乘次数最少 ������ 行程费用最小 ������ 行程时间最短 ������ 兼顾
③ 是什么样的优化问题?
影响力大小 小 中 大
Z 0 .7
分析赛题
(2)因素的组织结构——确定思路 因素的相关性、信息的完备性等都是值得注意的问题。 直接从网络采集因素数据。
哈尔滨理工大学
全国大学生数学建模竞赛培训
刘凤秋
2019年7月13日
简要提纲
1. 如何分析数学建模问题?
2. 如何获得理想的竞赛成绩?
1.
如何分析数学建模问题? 基本过程和基本原则 2019B——多目标优化 2019B——开放性赛题 2019A——专业性强 2019B——数据量较大
(2) 关于算法 可能有哪些算法? 现成有哪些算法?是否可用? 如果改进现有算法,或设计新算法,关键在 哪里? 穷举法,是否可行?对论文质量评价会带来 什么影响?……
赛题的问题2,问题3,可作类似考虑
(3) 计算结果及表示
① 需要输出哪些数值结果?
六对“始-终”站点,三个独立规划,共18 组数据 ������ 每组四个指标: 换乘次数;行程费用;行程时间;行程线路。 ������ 行程路线构成: 始站点⎯线⎯路号⎯→转站点⎯线⎯路号⎯→…⎯线⎯路号⎯→终点站 此为完整输出。 全程站点未必一一列出。