高中数学《计数原理》练习题

合集下载

新高考数学备考专题计数原理考点真题训练(解析版)

新高考数学备考专题计数原理考点真题训练(解析版)

新高考 计数原理 考点专题训练一、单选题1.(2022·山东济南·二模)由1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数共有( ) A .60个 B .48个 C .36个 D .24个【答案】C 【分析】先排个位,然后排万位,再排其它位置,由此计算出正确答案. 【详解】先排个位,然后排万位,再排其它位置,所以由1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数共有332336A ⨯⨯=个.故选:C2.(2022·四川巴中·一模(理))()()5211x x ++的展开式中4x 的系数为( )A .5B .10C .15D .20【答案】C 【分析】先求出项式()51x +的展开式的通项为5r r C x ,进而可以求出()()5211x x ++的展开式中含4x 的项,由此即可求出结果. 【详解】因为二项式()51x +的展开式的通项为5r r C x ,所以()()5211x x ++的展开式中含4x 的项为44222455115C x x C x x ⨯+⨯=,所以4x 的系数为15.故选:C .3.(2021年全国高考乙卷数学(理)试题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种C .240种D .480种【答案】C先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有254!240C⨯=种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.4.(2021年全国高考甲卷数学(理)试题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【分析】采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.5.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))25()()x xyxy++的展开式中x3y3的系数为()A.5B.10 C.15D.20【答案】C求得5()x y +展开式的通项公式为515r rrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解. 【详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C 【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题.6.(2020年新高考全国卷Ⅰ数学高考试题(山东))6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种【答案】C 【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【详解】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.7.(2022·浙江台州·高三期末)若从编号为110的十个小球中取3个不同的小球,且3个小球的编号两两不连续,则不同的取法共有()A.8种B.36种C.56种D.64种【答案】C【分析】先求出总的情况为310120C=种,减去三个数依次连续,再减去三个数只有两个数连续的情况,注意此时和三个数依次连续的重叠部分.【详解】依题意得,取出小球的总的可能有310120C=种,排除123,234,,8910这8种依次连续的情况;再排除三个数恰好两个连续的情况:12,23,910共9组情况,其中12,910两组可以和7个数组成不完全连续的情况,共14种;23,34,89共7组,每组都能和6个数组合成为不完全连续的情况,共42种;于是符合题意的情况有1208144256种.故选:C.8.(2022·湖北·武钢三中高三阶段练习)“内卷”作为高强度的竞争使人精疲力竭.为了缓解了教育的“内卷”现象,2021年7月24日,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》.某初中学校为了响应上级的号召,每天减少了一节学科类课程,增加了一节活动课,为此学校特开设了乓乓球,羽毛球,书法,小提琴四门选修课程,要求每位同学每学年至多选2门,初一到初三3学年将四门选修课程选完,则每位同学的不同选修方式有()A.60种B.78种C.54种D.84种【答案】C【分析】根据题意,每位同学每年所修课程数按1,1,2或0,2,2,分成三组,再进行排列/【详解】解:由题意,三年修完四门选修课程,每学年至多选2门,则每位同学每年所修课程数为1,1,2或0,2,2,先将4每学科按1,1,2分成三组,有21142122C C CA⋅⋅种方式,再分到三个学年,有33A种不同分式,由分步计数原理得,不同选修分式共有211342132236C C CAA⋅⋅⋅=种,同理将4门课程按0,2,2分成三组,再排列,有2234232218C CAA⋅⋅=种,所以共有36+18=54种,故选:C二、多选题9.(2021·辽宁实验中学模拟预测)一个布袋内装除颜色外完全相同的4个红球和3个蓝球.现从袋中摸出4个球,则()A.摸出4个红球的概率是1 35B.摸出3个红球和1个蓝球的概率是12 35C.摸出2个红球和2个蓝球的概率是18 35D.摸出1个红球和3个蓝球的概率是1 35【答案】ABC【分析】结合组合数以及古典概型概率公式逐项分析即可.摸出4个红球的概率是4744135C C =;摸出3个红球和1个蓝球的概率是3143471235C C C ⋅=;摸出2个红球和2个蓝球的概率是2243471835C C C ⋅=;摸出1个红球和3个蓝球的概率是134347345C C C ⋅=, 故选:ABC.10.(2021·江苏南通·模拟预测)若8280128(3)(1)(1)(1)x a a x a x a x +=+++++++,x ∈R ,则下列结论中正确的有( )A .802a =B .33108C a =C .81283a a a +++=D .228024681357()()3a a a a a a a a a ++++-+++=【答案】AD 【分析】直接根据88(3)[2(1)]x x +=++利用二项式定理将其展开,再结合二项式系数的性质对四个选项依次分析即可求解. 【详解】888716225338888(3)[2(1)]22C (1)2C (1)2C (1)(1)x x x x x x +=++=+++++++++,对于A ,令1x =-,则880(13)2a -+==,故A 正确.对于B ,于是53382C 1792a ==,而3108C 960=,故B 错误.对于C ,令0x =,则801283a a a a =++++,于是8881280332a a a a +++=-=-,故C错误.对于D ,令2x =-,则01281a a a a =-+-+.因为801283a a a a ++++=,所以()()()()228024681357012801283a a a a a a a a a a a a a a a a a ++++-+++=++++-+-+=,故选:AD.11.(2021·全国全国·模拟预测)为了提高教学质量,省教育局派五位教研员去A 地重点高中进行教学调研.现知A 地有三所重点高中,则下列说法正确的是( ) A .不同的调研安排有243种B .若每所重点高中至少去一位教研员,则不同的调研安排有150种C .若每所重点高中至少去一位教研员,则不同的调研安排有300种D .若每所重点高中至少去一位教研员,则甲、乙两位教研员不去同一所高中,则不同的调研安排有114种 【答案】ABD 【分析】利用分步计数原理可判断A ;利用部分平均分组可判断B 、C ;先利用部分平均分组以及排列可判断D. 【详解】对于A 选项,每位教研员有三所学校可以选择, 故不同的调研安排有53243=种,故A 正确;对于B ,C 选项,若每所重点高中至少去一位教研员,则可先将五位教研员分组, 再分配,五位教研员的分组形式有两种:3,1,1;2,2,1,分别有3115212210C C C A =,2215312215C C C A =种分组方法, 则不同的调研安排有()331015A 150+=种,故B 正确,C 错误;对于D 选项,将甲、乙两位教研员看成一人,则每所重点高中至少去一位教研员,且甲、乙两位教研员去同一所高中的排法有211342132236C C C A A ⨯=种, 则甲、乙两位教研员不去同一所高中的排法有15036114-=种,D 正确. 故选:ABD.12.(2022·全国·模拟预测)下列关于多项式5122x x ⎛-⎫⎪⎝⎭-的展开式的结论中,正确的是( )A .各项系数之和为1-B .各项系数的绝对值之和为1C .不存在4x 项D .常数项为48【答案】AD 【分析】赋值法判断A 、B ;根据已知多项式,结合二项式定理判断C 、D 的正误. 【详解】令1,x =得52121()--=-,故A 正确﹔ 取多项式522)1(x x++,将代1x =入多项式可得5()2123125++=,故B 错误﹔ 由题设,5()()()1111112222222222)()(22()x x x x x x x x x x x x ------------=,若要得到含4x 项,只需5个因式中4个取2x ,剩下1个取2-,故C 错误; 5个因式中1个取2x ,1个取1x -,剩下3个取2-,得()()31154122320,C x C x ⎛⎫--= ⎪⎝⎭5个因式中2个取2,2x 个取1x -,剩下1个取2-,得()()222253122240C x C x ⎛⎫--=- ⎪⎝⎭, 5个因式中均取2-,得5(2)32-=-. 故常数项为3202403248--=,D 正确. 故选:AD. 三、填空题13.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】36 【分析】根据题意,有且只有2名同学在同一个小区,利用先选后排的思想,结合排列组合和乘法计数原理得解. 【详解】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36. 【点睛】本题主要考查了计数原理的综合应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.14.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))262()x x+的展开式中常数项是__________(用数字作答). 【答案】240 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.【详解】622xx ⎛⎫+ ⎪⎝⎭其二项式展开通项:()62612rrr r C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r r r r x C x --⋅=⋅1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240. 【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T ab -+=,考查了分析能力和计算能力,属于基础题.15.(2018·浙江·高考真题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 【答案】1260. 【详解】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数. 详解:若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.16.(2021·上海杨浦·一模)某市高考新政规定每位学生在物理、化学、生物、历史、政治、地理中选择三门作为等级考试科目,则甲、乙两位学生等级考试科目恰有一门相同的不同选择共有___________种.(用数字作答) 【答案】180 【分析】用分步乘法原理完成这件事:先选一门科目为两相同科目,然后让其中一人从剩下的5科中选2门,另一人再在剩下的3门中选2门即可得. 【详解】由分步乘法原理知不同选择方法为122653180C C C =.故答案为:180.。

高中数学计数原理178题(含答案)

高中数学计数原理178题(含答案)

A B P Q • • • •高中数学计数原理--178题(含答案)1.A , B 两队比篮球赛,每局不得成和局,规定A 队胜三局为赢;A 队胜三场前B 胜二局算B 队赢,试问此比赛之所有可能情形有 种?又其中A , B 输赢如何?2.有A , B , C , D , …等身高不等的8人排成一横列,欲使任一较矮者不夹排在二较高者之间之排法共有 种?3.五种不同的颜色涂右图,相邻着异色,共有 种不同的涂法。

4.))()((v u z y x g f e d c b a +++++++++的展开式中共有 项。

5.540之正因子共有 个,其一切正因子和为 ,乘积为 。

6.x | 36000,(x , 63)=3,25| x 之自然数x 共有 个。

7.不同的渡船3艘,每艘可载5人,今有7人同时过渡,有 种安全的渡法。

8.如右图,从A 到B 之走法中,不许走←方向的走法共有 种。

9.下列各街巷,从A 走到B 之快捷方式走法各有几?10. 如右图自A 到B ,但限定只能走↑→↓三种方向,而且道路不重复走。

试问以下情形各有几种走法? (1)由A 到B 有 种走法。

(2)由A 不经过P 到B 有 种走法。

(3)由A 不经过Q 到B 有 种走法。

(4)由A 不经过P 且不经过Q 到B 有 种走法。

(5)由A 经过P 但不经过Q 到B 有 种走法。

11. 考虑正五边形及其所有对角线所成的图形,此图形中各线段围成之各种三角形相似者列为一类,共有m 类,全等者列为一类,共有n 类,求m= 及n= 。

总共有 个三角形。

12. 在平面上任意画不完全重合之n 个相异圆至多有 个交点。

13. 排容原理:1到100之自然数中,是2或3或5的倍数共有 个。

14. 千元钞2张,五百元钞3张,百元钞4张,每次至少取一张,(1)共有 种取法。

(2)可以配出 种不同的款项。

15. 今有五个不同的门,甲、乙两人由不同的门进入,不同的门出来,(1)自己可由相同的门进出有 种方法。

高中选修23数学1习题课(三)计数原理

高中选修23数学1习题课(三)计数原理

1.在(a +x )7展开式中x 4的系数为280,则实数a 的值为( ) A .1 B .±1 C .2D .±2解析:选C 由题知,C 47a 3=280,得a =2.2.教室里有6盏灯,由3个开关控制,每个开关控制2盏灯,则不同的照明方法有( )A .63种B .31种C .8种D .7种解析:选D 由题意知,可以开2盏、4盏、6盏灯照明,不同方法有C 13+C 23+C 33=7(种).3.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( )A .A 34种 B .A 33A 13种 C .C 24A 33种D .C 14C 13A 33种解析:选C 先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 24A 33种.4.⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40解析:选D 令x =1,依题意得(1+a )(2-1)5=2,∴a =1,又∵⎝ ⎛⎭⎪⎫2x -1x 5的展开式通项T r +1=(-1)r C r 5·25-r ·x 5-2r ,∴⎝⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中的常数项为C 35(-1)3·22+C 25(-1)2·23=40.5.(x 2-2)⎝ ⎛⎭⎪⎫1+2x 5的展开式中x -1的系数为( )A .60B .50C .40D .20解析:选A 由通项公式得展开式中x -1的系数为23C 35-22C 15=60.6.7人站成两排,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为( )A .120B .240C .360D .480解析:选C 第一步:从甲、乙、丙3人中任选1人加到前排有3种不同方法.第二步:将第一步选出的1人加到前排,要保持前排4人中原3人顺序不变,则有A 44A 33种不同方法;第三步:后排6人中,原4人顺序不变有A 66A 44种不同方法.由分步乘法计数原理知共有不同加入方法3×A 44A 33·A 66A 44=360(种). 7.(2016·全国卷Ⅰ)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案)解析:(2x +x )5展开式的通项为 T r +1=C r 5(2x )5-r(x )r =25-r ·C r 5·x 5-r 2. 令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.答案:108.农科院小李在做某项试验中,计划从花生、大白菜、大豆、玉米、小麦、高粱这6种种子中选出4种,分别种植在4块不同的空地上(1块空地只能种1种作物),若小李已决定在第1块空地上种玉米或高粱,则不同的种植方案有________种.(用数字作答)解析:由已知条件可得第1块地有C12种种植方法,则第2~4块地共有A35种种植方法,由分步乘法计数原理可得,不同的种植方案有C12A35=120种.答案:1209.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C 不相邻,则不同的摆法有________种.解析:将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44=48种摆法,而A,B,C 3件在一起,且A,B相邻,A,C相邻有CAB,BAC两种情况,将这3件与剩下2件全排列,有2×A33=12种摆法,故A,B相邻,A,C不相邻的摆法有48-12=36种.答案:3610.为了鼓舞足球队员的士气,足协想派五名官员给A,B,C,D四支球队做动员工作,每支球队至少派一名官员,且甲、乙两名官员不能去同一支球队,共有多少种不同的安排方法?解:可根据甲、乙两人所去球队的情况进行分类:①甲、乙两人都单独去一支球队,剩余三人中必有两人去同一支球队,先从三人中选出两人组成一组,与其他三人进行全排列,则不同的安排方法有C23A44=3×24=72(种).②甲、乙两人去的球队中有一个是两个人,从剩余三人中选出一人与甲或乙组成一组,和其他三人进行全排列,则不同的安排方法有C12C13A44=2×3×24=144(种).故不同的安排方法共有72+144=216(种).11.已知(3x2+3x2)n展开式中各项的系数和比各项的二项式系数和大992.(1)求展开式中二项式系数的最大项;(2)求展开式中系数最大的项.解:(1)令x=1,则二项式各项系数和为(1+3)n=4n,展开式中各项的二项式系数之和为2n .由题意,知4n -2n =992.∴(2n )2-2n -992=0.∴(2n +31)(2n -32)=0. ∴2n =-31(舍)或2n =32,∴n =5. 由于n =5为奇数,∴展开式中二项式系数最大项为中间两项,它们是T 3=C 25(x 23)3(3x 2)2=90x 6,T 4=C 35(x 23)2(3x 2)3=270x 223. (2)展开式通项公式为T r +1=C r 53r ·(x 23)5-r (x 2)r =C r 5·3r ·x 103+4r 3. 假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1,∴⎩⎪⎨⎪⎧5!(5-r )!r !×3≥5!(6-r )!(r -1)!,5!(5-r )!r !≥5!(4-r )!(r +1)!×3.∴⎩⎨⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92.∵r ∈N *,∴r =4.∴展开式中系数最大项为T 5=C 45·34·x 103+4×43=405x 263.。

新人教版高中数学选修三第一单元《计数原理》测试题(包含答案解析)(1)

新人教版高中数学选修三第一单元《计数原理》测试题(包含答案解析)(1)

一、选择题1.已知()52x a x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为2-,则展开式中的常数项为( ) A .80B .80-C .40D .40-2.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a 、b 、c 三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有 A .96种 B .124种 C .130种D .150种3.已知8281239(1)x a a x a x a x +=++++,若数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,则k 的最大值是( ) A .6B .5C .4D .34.已知231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,*n N ∈,则n 的值可以是( ) A .5 B .6 C .7 D .85.若()352()x x a -+的展开式的各项系数和为32,则实数a 的值为( )A .-2B .2C .-1D .16.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960-B .960C .1120D .16807.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种8.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种9.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如,134********+=),则称(),m n 为“简单的”有序对,而m n +称为有序数对(),m n 的值,那么值为2964的“简单的”有序对的个数是( ) A .525B .1050C .432D .86410.()6232x x ++展开式中x 的系数为( ) A .92B .576C .192D .38411.设(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x+a 2x 2+…+a n x n ,当a 0+a 1+a 2+…+a n =254时,n 等于( ) A .5B .6C .7D .812.疫情期间,上海某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有( ) A .60种B .90种C .150种D .240种二、填空题13.有2个不同的红球和3个不同的黄球,将这5个球放入4个不同的盒子中,要求每个盒子至少放一个球,且同色球不能放在同一个盒子中,则不同的放置方法有________种.(用数字作答)14.4名志愿者被随机分配到、、A B C 三个不同的岗位服务,每个岗位至少有一名志愿者,则甲、乙两名志愿者没有分配到同一个岗位服务的概率为______.15.在(23)n x y -的二项展开式中,二项式系数的和是512,则各项系数的和是_____ . 16.同宿舍的6个同学站成一排照相,其中甲只能站两端,乙和丙必须相邻,一共有_____种不同排法(用数字作答)17.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)18.设n 为正整数,32nx x ⎛⎫- ⎪⎝⎭展开式中仅有第5项的二项式系数最大,则展开式中的常数项为__________.19.62x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员3人,组成5人服务队,要求服务队中至少有1名女生,共有________种不同的选法(用数字作答)三、解答题21.(1)求证:当n *∈N 时,((11nn+为偶数;(2)当n *∈N 时,(3n的整数部分是奇数,还是偶数?请证明你的结论.22.已知2nx⎛⎝展开式前三项的二项式系数和为22.(1)求展开式中的常数项; (2)求展开式中二项式系数最大的项.23.已知在n 的展开式中第5项为常数项.(1)求n 的值;(2)求展开式中含有2x 项的系数; (3)求展开式中所有的有理项.24.已知(n x 的展开式中的第二项和第三项的系数相等.()1求n 的值;()2求展开式中所有二项式系数的和;()3求展开式中所有的有理项.25.在二项式n 的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项; (3)求展开式中各项的系数和.26.已知二项式10x⎛⎝的展开式.(1)求展开式中含4x 项的系数;(2)如果第3r 项和第2r +项的二项式系数相等,求r 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1x =,由展开式中所有项的系数和为2-,列出方程并求出a 的值,得出展开式中常数项为52x x ⎛⎫- ⎪⎝⎭中1x -的系数与52x x ⎛⎫- ⎪⎝⎭的0x 的系数之和,然后利用二项展开式的通项公式求解. 【详解】解:由题可知,()52x a x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为2-,令1x =,则所有项的系数和为()()5211121a a ⎛⎫+-=-+=- ⎪⎝⎭,解得:1a =,()()555522221x a x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫∴+-=+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()521x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为: 52x x ⎛⎫- ⎪⎝⎭中1x -的系数与52x x ⎛⎫- ⎪⎝⎭的0x 的系数之和, 由于52x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()5515522rr r r r r r T C x C x x --+⎛⎫=⋅-=⋅-⋅ ⎪⎝⎭,当521r -=-时,即3r =时,52x x ⎛⎫- ⎪⎝⎭中1x -的系数为:()335280C ⨯-=-,当520r -=时,无整数解,所以()521x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为80-.故选:B. 【点睛】本题考查二项式定理的应用,考查利用赋值法求二项展开式所有项的系数和,以及二项展开式的通项公式,属于中档题.2.D解析:D 【分析】根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①、五个参会国要在a 、b 、c 三家酒店选择一家,且这三家至少有一个参会国入住, ∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2 当按照1、1、3来分时共有C 53=10种分组方法;当按照1、2、2来分时共有22532215C C A = 种分组方法;则一共有101525+= 种分组方法;②、将分好的三组对应三家酒店,有336A = 种对应方法;则安排方法共有256150⨯= 种; 故选D .【点睛】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.3.B解析:B 【分析】可得结论.写出各项的系数,由组合数性质知123456789a a a a a a a a a <<<<>>>>,结合数列123,,,,k a a a a ⋅⋅⋅是一个单调递增数列,可得结论. 【详解】由二项式定理,得98ii a C -=()*19,i i N≤≤∈,所以根据组合数性质知123456789a a a a a a a a a <<<<>>>>, 又数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,所以k 的最大值为5. 故选:B 【点睛】本题主要考查二项式定理的运用,考查学生分析解决问题的能力,属于基础题.4.C解析:C 【分析】将条件转化为31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项,然后写出31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项,即可分析出答案. 【详解】因为231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,所以31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项为:4131,0,1,2,,rr n r r n r r n n T C x C x r n x --+⎛⎫=== ⎪⎝⎭所以当n 取5,6,7,8时,方程40,41,42n r n r n r -=-=-=无解检验可得7n = 故选:C 【点睛】本题考查的是二项式定理的知识,在解决二项式展开式的指定项有关的问题的时候,一般先写出展开式的通项.5.D解析:D 【分析】根据题意,用赋值法,在()352()x x a -+中,令1x =可得()521(1)32a -+=,解可得a的值,即可得答案. 【详解】 根据题意,()352()xx a -+的展开式的各项系数和为32,令1x =可得:()521(1)32a -+=, 解可得:1a =, 故选:D . 【点睛】本题考查二项式定理的应用,注意特殊值的应用.6.C解析:C 【分析】先根据条件求出8n =,再由二项式定理及展开式通项公式,即可得答案. 【详解】由已知可得:2256n =,所以8n =,则展开式的中间项为44458(2)1120T C x x =-=,即展开式的中间项的系数为1120. 故选:C . 【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.7.D解析:D 【分析】根据(1)(2)(3)(4)f f f f ≤≤≤中等号所取个数分类讨论,利用组合知识求出即可. 【详解】解:当(1)(2)(3)(4)f f f f ≤≤≤中全部取等号时,情况有155C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有两个取等号,一个不取等号时,情况有215330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有一个取等号,两个不取等号时,情况有315330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中都不取等号时,情况有455C =种;共560+60+5=70+种.故选:D.【点睛】本题考查分类讨论研究组合问题,关键是要找准分类标准,是中档题.8.B解析:B【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案.【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A=种情况,②没有人与甲在同一个学校,则有12223212C C A=种情况;则若甲要求不到A学校,则不同的分配方案有121224+=种;故选:B.【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.9.B解析:B【分析】由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种取法,从0,1,2,3,4,5,6,7,8,9 ,第三位有7种取法,从0,1,2,3,4,5,6取一个数字,第四为有5种,从0,1,2,3,4取一个数字,根据分步计数原理得到结果.【详解】由题意知本题是一个分步计数原理,第一位取法3种为0,1, 2,第二位有10种为0,1,2,3,4,5,6,7,8,9 ,第三位有7种为0,1,2,3,4,5,6,第四为有5种为0,1,2, 3,4根据分步计数原理知共有3×10×7×5=1050个故选:B.【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.10.B解析:B 【解析】()6232x x ++展开式中含x 的项为15565(3)26332576C x C x x ⋅⋅=⨯⨯=,即x 的系数为576;故选B.点睛:本题考查二项式定理的应用;求三项展开式的某项系数时,往往有两种思路: (1)利用组合数公式和多项式乘法法则,如本题中解法;(2)将三项式转化成二项式,如本题中,可将26(32)x x ++化成66(1)(2)x x ++,再利用两次二项式定理进行求解.11.C解析:C 【解析】试题分析:观察已知条件a 0+a 1+a 2+…+a n =254,可令(1+x )+(1+x )2+(1+x )3+…+(1+x )n=a 0+a 1x+a 2x 2+…+a n x n 中的x=1,可得254=2n+1﹣2,解之即可.解:∵(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x+a 2x 2+…+a n x n ∴令x=1得2+22+23+…+2n =a 0+a 1+a 2+…+a n , 而a 0+a 1+a 2+…+a n =254==2n+1﹣2,∴n=7 故答案为C考点:数列的求和;二项式定理的应用.12.C解析:C 【分析】先分组1,2,2和1,1,3再安排得解 【详解】5名专家到3个不同的区级医院,分为1,2,2和1,1,3两种情况;分为1,2,2时安排有1223542322C C C A A ;分为1,1,3时安排有1133543322C C C A A 所以一共有12211333542543332222150C C C C C C A A A A += 故选:C 【点睛】本题考查排列组合问题,先分组再安排是解题关键.二、填空题13.【分析】由题意可得一个盒子里有2个球一定为1红1黄其余盒子每个盒子放一个根据分步计数原理可得【详解】解:这5个球放入4个不同的盒子中要求每个盒子至少放一个球且同色球不能放在同一个盒子中则一个盒子里有 解析:144【分析】由题意可得一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,根据分步计数原理可得. 【详解】解:这5个球放入4个不同的盒子中,要求每个盒子至少放一个球, 且同色球不能放在同一个盒子中,则一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,故有11134233144C C C A =种,故答案为:144. 【点睛】本题考查了分步计数原理,运用组合数的运算,理解题目意思是关键..14.【分析】要保证每个岗位至少一人人所以首先将四个人分成三组在将三组全排列求出总事件数然后再将甲乙分到不同两组得出甲乙不在同一岗位的基本事件数总而得出概率【详解】因为每个岗位至少有一人所以要将四个人分成解析:56【分析】要保证每个岗位至少一人人,所以首先将四个人分成三组,在将三组全排列求出总事件数,然后再将甲乙分到不同两组,得出甲乙不在同一岗位的基本事件数,总而得出概率. 【详解】因为每个岗位至少有一人,所以要将四个人分成三组,则只能是211、、所以总事件数为: 2113421322=36C C C A A ⋅⋅⋅, 甲乙不在同一岗位的基本事件数:()11232223+=30C C C A ⋅⋅ 所以甲、乙两名志愿者没有分配到同一个岗位服务的概率305=366P =, 故答案为:56. 【点睛】本题考查等可能性事件的概率,利用排列组合公式求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键.15.【分析】根据二项式系数的和求解出的值求解各项系数的和时可考虑令由此可计算出各项系数的和【详解】因为二项式系数的和是所以所以又因为令可得:所以各项系数的和为:故答案为【点睛】本题考查根据二项式系数求参 解析:1-【分析】根据二项式系数的和求解出n 的值,求解各项系数的和时可考虑令1x y ==,由此可计算出各项系数的和. 【详解】因为二项式系数的和是512,所以01...2512n nn n n C C C +++==,所以9n =,又因为()()()()()()()998109129992323...2323C x y C x y C x y x y =-+-+-+-, 令1x y ==可得:()()()()()()()998191299912323...231C C C -=-+-++-=-,所以各项系数的和为:1-. 故答案为1-. 【点睛】本题考查根据二项式系数求参数以及求解各项系数和,难度一般.(1)求解形如()nax by +的展开式中的各项系数和时,可令1x y ==求得结果; (2)形如()nax by +的展开式中的二项式系数之和为2n .16.【分析】设甲乙丙之外的三人为ABC 将乙和丙看作一个整体与ABC 三人全排列然后排甲甲只能在两端有2种站法利用分步乘法计数原理可求出答案【详解】设甲乙丙之外的三人为ABC 将乙和丙看作一个整体与ABC 三人 解析:96【分析】设甲乙丙之外的三人为A 、B 、C ,将乙和丙看作一个整体,与A 、B 、C 三人全排列,然后排甲,甲只能在两端,有2种站法,利用分步乘法计数原理可求出答案. 【详解】设甲乙丙之外的三人为A 、B 、C ,将乙和丙看作一个整体,与A 、B 、C 三人全排列,有2424A A 48=种,甲只能在两端,甲有2种站法,则共有48296⨯=种排法.【点睛】本题考查了排列组合,考查了相邻问题“捆绑法”的运用,属于基础题.17.【解析】分析:根据排列定义求结果详解:将5家招聘员工的公司看作5个不同的位置从中任选3个位置给3名大学毕业生则本题即为从5个不同元素中任取3个元素的排列问题所以不同的招聘方案共有=5×4×3=60( 解析:60【解析】分析:根据排列定义求结果.详解:将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有35A=5×4×3=60(种).点睛:本题考查排列定义,考查基本求解能力.18.112【解析】由展开式中仅有第5项的二项式系数最大得则令则展开式中的常数项为解析:112 【解析】由展开式中仅有第5项的二项式系数最大得8n =则()884188322rr r r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令840r -=,2r =则展开式中的常数项为()2282112C -=19.60【解析】的展开式的通项公式为令得∴的系数为故答案为60解析:60 【解析】62x ⎛ ⎝的展开式的通项公式为()366621661222xrr x r r r r T C x C x ---+⎛⎛⎫==-⋅ ⎪ ⎝⎭⎝ 令3632r -=得2r∴3x 的系数为2622612602C -⎛⎫-⋅⋅= ⎪⎝⎭故答案为6020.1000【分析】根据题意分为1女4男和2女3男再利用排列组合求解每类的种数结合计数原理即可求解【详解】由题意可分为两类:第一类:先选1女4男有种再在这5人中选2人作为队长和副队长有种所以共有;第二类解析:1000 【分析】根据题意,分为1女4男和2女3男,再利用排列、组合求解每类的种数,结合计数原理,即可求解. 【详解】由题意,可分为两类:第一类:先选1女4男,有142630C C =种,再在这5人中选2人作为队长和副队长有2520A =种,所以共有3020600⨯=; 第二类:先选2女3男,有232620C C =种,再在这5人中选2人作为队长和副队长有2520A =种,所以共有2020400⨯=,根据分类计数原理,共有6004001000+=种不同的选法. 故答案为:1000 【点睛】本题主要考查了分类计数原理和分步计数原理,以及排列、组合的综合应用,其中解答中认真审题,合理分类,结合排列、组合的知识求得每类的种数是解答的关键,着重考查了分析问题和解答问题的能力.三、解答题21.(1)证明见详解;(2)奇数,证明见详解. 【分析】(1)根据二项展开式的通项公式,将(1n+和(1n-写出二项展开式的形式,分别讨论n 为正奇数和n 为正偶数两种情况,即可证明结论成立;(2)同(1)利用分类讨论法,先判断((33nn+为偶数,根据(031n<-<,即可得出结果.【详解】(1)因为(120121n nnn nnnC C C C +=+++⋅⋅⋅+,(((((0120121nnn nn nnCC C C -=+++⋅⋅⋅+,当n 为正奇数时,((121210212112233n nnn n n nnnn n n C CCC C C ----⎛⎫⎡⎤+=++⋅⋅⋅+=++⋅⋅⋅+ ⎪⎢⎥⎣⎦⎝⎭,而1021233n n nnnC C C --++⋅⋅⋅+显然为正整数,所以((1021211233n nnn n n n C C C --⎛⎫+=++⋅⋅⋅+ ⎪⎝⎭为偶数; 当n 为正偶数时,((0202022112233nnnnn n nnnn n n C CCC C C ⎛⎫⎡⎤+=++⋅⋅⋅+=++⋅⋅⋅+ ⎪⎢⎥⎣⎦⎝⎭,而02233nn n n n C C C ++⋅⋅⋅+显然为正整数,所以((02211233nnnn n n n C C C ⎛⎫+=++⋅⋅⋅+ ⎪⎝⎭为偶数;综上,当n *∈N 时,((11nn+为偶数;(2)因为(0120112233333nnnn n n nnnnC C C C --=⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅, (((((0120112233333nnnn n n nnnnCC C C --=⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅,当n 为正奇数时,((212211332333nnn n n n n n n C C C ---⎡⎤+=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦,其中0212211333n n n n n n n C C C ---⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅显然为正整数,所以((0212211332333nnn n n n n nnC C C---⎡⎤++-=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦为偶数,记0212211333n n n n n n n k C C C ---=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅,则((32113nnk =-+-,因为031<-<,则(031n <-<,因此(0131n<-<,所以(3n的整数部分是21k -,为奇数; 当n 为正偶数时,((2220332333nnnn n nn n n C C C -⎡⎤+=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦,其中2220333nn n nn n n C C C -⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅显然为正整数,所以((0222332333nnnn n nn nnC C C -⎡⎤++=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦为偶数,记02220333nn n nn n n m C C C -=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅,则((32113nnm =-+--,因为(0131n<-<,所以(3n的整数部分是21m -,为奇数;综上,当n *∈N 时,(3n的整数部分是奇数. 【点睛】 关键点点睛:求解本题的关键在于利用二次展开式的通项公式,将二项式展开,再讨论n 为正奇数和n 为正偶数两种情况,即可结合题中条件求解. 22.(1)60(2)32160x 【分析】(1)根据2nx⎛ ⎝展开式前三项的二项式系数和为22,由01222n n n C C C ++=,解得6n =,再得到2nx ⎛+ ⎝展开式的通项1r T +366262rr r C x --=,令3602r -=求解. (2)根据6n =,得到展开式中二项式系数最大的项为第四项,再利用通项公式求解.. 【详解】(1)因为2nx ⎛⎝展开式前三项的二项式系数和为22,所以01222n n n C C C ++=,即(1)1222n n n -++=, 所以2420n n +-=, 解得6n =或7n =-(舍去).所以2nx ⎛+ ⎝展开式的通项为:16216(2)rr r r T C x x --+⎛⎫= ⎪⎝⎭366262r r r C x --=, 令3602r -=,得4r =, 所以展开式中的常数项为41T +=4206260C x =.(2)因为6n =,所以展开式中二项式系数最大的项为第四项,即3133322316(2)160T C x x x -+⎛⎫== ⎪⎝⎭. 【点睛】本题主要考查二项式定理的通项公式,二项式系数,还考查了运算求解的能力,属于中档题.23.(1)8;(2)4-;(3)24x -,358,2116x - 【分析】(1)先写出展开式的通项公式2311()2n rr r r nT C x -+=-,由展开式中第5项为常数项,则当4r =时,有203n r-=,从而求出n 出的值. (2)由(1)中得到8n =,则含有2x 项,即8223r-=,得到1r =,从而求出答案. (3)展开式中所有的有理项,则82308r r r Z -⎧∈Z ⎪⎪≤≤⎨⎪∈⎪⎩,可得r 可取1,4,7,可得到答案.【详解】(1)展开式的通项公式为2311(()2n rr n rrr r r nnT C C x --+==-.因为第5项为常数项. 所以4r =时,有203n r-=,解得8n =. (2)令223n r-=,由(1)8n =,解1r =, 故所求系数为181()42C -=-(3)有题意得,82308r r r Z -⎧∈Z ⎪⎪≤≤⎨⎪∈⎪⎩,令82()3r k k Z -=∈,则833422k r k -==- 所以k 可取2,0,2-,即r 可取1,4,7它们分别为24x -,358,2116x -. 【点睛】本题考查二项式展开式的通项公式应用,求展开式中某项的系数,属于中档题. 24.(1)5;(2)32;(3)见解析 【分析】(1)根据展开式中的第二项和第三项的系数相等,列出方程求出n 的值; (2)利用展开式中所有二项式系数的和为2n ,即可求出结果; (3)根据二项式展开式的通项公式,求出展开式中所有的有理项 【详解】二项式nx ⎛ ⎝展开式的通项公式为32112r rr n r n r r r n n T C x C x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭ (r=0,1,2,…,n );(1)根据展开式中的第二项和第三项的系数相等,得2121122nn C C ⎛⎫⋅=⋅ ⎪⎝⎭,即()111242n n n -=⋅ 解得n=5; (2)展开式中所有二项式系数的和为0123455555555232C C C C C C +++++==(3)二项式展开式的通项公式为355215512r rr r r r r T C x C x--+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭(r=0,1,2,…,5);当r=0,2,4时,对应项是有理项, 所以展开式中所有的有理项为0551512T C x x ⎛⎫=⋅⋅= ⎪⎝⎭22532351522T C x x -⎛⎫=⋅⋅= ⎪⎝⎭44565515216T C x x -⎛⎫=⋅⋅= ⎪⎝⎭. 【点睛】注意区别,展开式的“二项式系数”与“二项展开式的系数”,如本题中二项展开式的系数为:12rr nC ⎛⎫⋅ ⎪⎝⎭,而二项式系数为rn C ;二项展开式(a+b )n 的第(r+1)项,其通项公式为1rn r r r n T C a b -+=⋅⋅( r ∈{0,1,2,3,…,n}).25.(1)237x -;(2)358;(3)1256.【解析】试题分析:(1)根据展开式的通项为23112rn r r r n T C x -+⎛⎫=- ⎪⎝⎭,结合前三项系数的绝对值成等差数列,求得8n =,从而求得展开式的第四项;(2)在展开式中,令x 的幂指数等于零,求得r 的值,代入通项公式可得常数项;(3)在二项式n 的展开式中,令1x =,可得各项系数和. 试题展开式的通项为23112rn r r r n T C x -+⎛⎫=- ⎪⎝⎭,r=0,1,2,…,n由已知:02012111,,222n n nC C C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成等差数列,∴ 12112124n n C C ⨯=+,∴ n=8 ,8231812rr r r T C x -+⎛⎫=- ⎪⎝⎭. (1)令3r =,32233348172T C x x ⎛⎫=-=- ⎪⎝⎭, (2)令820y -=,得4r = ,5358T ∴=, (3)令x=1,各项系数和为1256.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用. 26.(1)3360;(2)1 【分析】(1)写出二项展开式的通项公式,当x 的指数是4时,可得到关于k 方程,解方程可得k 的值,从而可得展开式中含4x 项的系数;(2)根据上一问写出的通项公式,利用第3r 项和第2r +项的二项式系数相等,可得到一个关于r 的方程,解方程即可得结果. 【详解】(1)设第k +1项为T k +1=令10-k =4,解得k =4,故展开式中含x 4项的系数为()441023360C =-.(2)∵第3r 项的二项式系数为,第r +2项的二项式系数为,∵=,故3r -1=r +1或3r -1+r +1=10,解得r =1或r =2.5(不合题意,舍去),∴r =1.。

计数原理测试题(含答案)

计数原理测试题(含答案)

圆梦教育中心 高中数学选修2-3计数原理第Ⅰ卷(选择题,共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若m 为正整数,则乘积()()()=+++2021m m m m ( )A .20m AB .21m AC .2020+m AD .2120+m A2.若直线0=+By Ax 的系数B A ,同时从0,1,2,3,5,7六个数字中取不同的值,则这些方程表示不同的直线条数 ( ) A . 22 B . 30 C . 12 D . 153.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A .12种 B .18种 C .24种 D .96种4.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第几个数 ( ) A .6 B .9 C .10 D .8 5.把一个圆周24等分,过其中任意三个分点可以连成圆的内接三角形,其中直角三角形的个数是 ( ) A .2024 B .264 C .132 D .1226. 在(a-b)99的展开式中,系数最小的项为( )A.T 49B.T 50C.T 51D.T 52 7. 数11100-1的末尾连续为零的个数是( )A.0B.3C.5D.78. 若425225+=x x C C ,则x 的值为 ( )A .4B .7C .4或7D .不存在9.以正方体的顶点为顶点,能作出的三棱锥的个数是 ( ) A .34CB .3718C CC .3718C C -6D . 1248-C10.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则nm等于( ) A .101B .51 C .103 D .52第Ⅱ卷(非选择题,共100分)二、填空题(本大题共4小题,每小题6分,共24分)11.设含有8个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,S的值为___________.则T12.有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为.13.在(x-1)11的展开式中,x的偶次幂的所有项的系数的和为.14.六位身高全不相同的同学在“一滩”拍照留念,老师要求他们前后两排各三人,则后排每个人的身高均比前排同学高的概率是.三、解答题(共计76分)15.(12分)平面上有9个点,其中4个点在同一条直线上,此外任三点不共线.(1)过每两点连线,可得几条直线?(2)以每三点为顶点作三角形可作几个?(3)以一点为端点作过另一点的射线,这样的射线可作出几条?(4)分别以其中两点为起点和终点,最多可作出几个向量?16.(11分)在二次项12)(n mbx ax (a >0,b >0,m,n ≠0)中有2m+n =0,如果它的展开式中系数最大的项恰是常数项,求它是第几项? 17.(12分)由1,2,3,4,5,6,7的七个数字,试问: (1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个? (4)(1)中任意两偶然都不相邻的七位数有几个?18.(12分)2006年6月9日世界杯足球赛将在德国举行,参赛球队共32支,(1)先平均分成8个小组,在每组内进行单循环赛(即每队之间轮流比赛一次),决出16强(即取各组前2名)。

(典型题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)

(典型题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)

一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05B .0.1C .0.15D .0.23.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭4.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知离散型随机变量X 的分布列如图:则均值E (X )与方差D (X )分别为( )A .1.4,0.2B .0.44,1.4C .1.4,0.44D .0.44,0.26.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .157.设一随机试验的结果只有A 和A ,且A 发生的概率为m ,令随机变量11A X A 发生发生⎧=⎨-⎩,则()D X =( )A .1B .(1)m m -C .4(1)m m -D .4(1)(21)m m m --8.三个元件123,,T T T 正常工作的概率分别为123,,234,且是相互独立的.如图,将23,T T 两个元件并联后再与1T 元件串联接入电路,则电路不发生故障的概率是( )A .1124B .2324C .14D .17329.已知在5件产品中混有2件次品,现需要通过逐一检测直至查出2件次品为止,每检测一件产品的费用是10元,则所需检测费的均值为( ) A .32元B .34元C .35元D .36元10.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( )A .18B .38C .58D .7811.若随机变量ξ满足(1)4E ξ-=,(1)4D ξ-=,则下列说法正确的是A .4,4E D ξξ=-=B .3,3E D ξξ=-=C .4,4ED ξξ=-=-D .3,4E D ξξ=-=12.设随机变量ξ的概率分布列为1()()3kP k a ξ==,其中0,1,2k =,那么a 的值为( ) A .35B .2713C .919D .913二、填空题13.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.14.退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在[20,80]内的600人进行调查,并按年龄层次绘制频率分布直方图,如图所示.若规定年龄分布在[60,80]内的人为“老年人”,将上述人口分布的频率视为该城市年龄段在[20,80]的人口分布的概率.从该城市年龄段在[20,80]内的市民中随机抽取3人,记抽到“老年人”的人数为X 则随机变量X 的数学期望为______.15.《史记·卷六十五·孙子吴起列传第五》中记载了“田忌赛马”的故事.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现规定每场比赛从双方的马匹中随机各选取一匹进行比试,若有优势的马一定获胜,且每场比赛相互独立,则采取三局两胜制齐王获胜的概率为________. 16.2017年5月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~ N ()2100,σ.(试卷满分为150分)统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中成绩不低于120分的学生人数约为__________.17.设离散型随机变量ξ可能取的值为1,2,3,()P k ak b ξ==+(1,2,3k =),若ξ的数学期望7()3E ξ=,则a b +=_____. 18.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为______. 19.若随机变量2~5,3X B ⎛⎫⎪⎝⎭,则()3D X =_______. 20.一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答).三、解答题21.某款游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次,若出现一次音乐获得1分,若出现两次音乐获得2分,若出现三次音乐获得5分,若没有出现音乐则扣15分(即获得15-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列. (2)玩三盘此游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的人发现,若干盘游戏后,与最初的得分相比,得分没有增加反而减少了.请你分析得分减少的原因.22.甲、乙两人各射击一次,击中目标的概率分别是12和25,假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间没有影响. (1)求甲射击5次,至少1次未击中目标的概率; (2)求两人各射击3次,甲恰好比乙多击中目标2次的概率23.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . ①利用该正态分布,求()187.8212.2P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.已知X 服从二项分布(),B n p ,利用①的结果,求()E X .15012.2≈若()2,Z N μσ~则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.24.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.25.湖北省从2021年开始将全面推行新高考制度,新高考“3+1+2”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为A ,B ,C ,D ,E 五个等级,确定各等级人数所占比例分别为15%,35%,35%,13%,2%,等级考试科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法......分别转换到[]86,100、[]71,85、[]56,70、[]41,55、[]30,40五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:而等比例转换法......是通过公式计算:2211Y Y T TY Y T T --=--,其中1Y 、2Y 分别表示原始分区间的最低分和最高分,1T 、2T 分别表示等级分区间的最低分和最高分,Y 表示原始分,T 表示转换分,当原始分为1Y 、2Y 时,等级分分别为1T 、2T ,假设小明同学的生物考试成绩信息如下表: 设小明转换后的等级成绩为T ,根据公式得:847585756971TT --=--,所以76.677T =≈(四舍五入取整),小明最终生物等级成绩为77分.已知某学校学生有60人选了政治,以期中考试成绩为原始成绩转换该学校选政治的学生的政治等级成绩,其中政治成绩获得A 等级的学生原始成绩统计如下表: (1)从政治成绩获得A 等级的学生中任取3名,求至少有2名同学的等级成绩不小于93分的概率;(2)从政治成绩获得A 等级的学生中任取4名,设4名学生中等级成绩不小于93分人数为ξ,求ξ的分布列和期望.26.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直接利用对立事件和独立事件的概率求解. 【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4, 所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p =⨯-⨯-+⨯-⨯- ,()()0.410.210.10.444+⨯-⨯-=.故选:A 【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.B解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.3.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==.故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.4.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.5.C解析:C 【解析】 【分析】根据离散型随机变量的分布列的性质,求得,再利用随机变量的均值和方差的公式,即可求解,得到答案. 【详解】由离散型随机变量的分布列的性质可得,解得,所以随机变量的均值为,方差为, 故选C . 【点睛】本题主要考查了离散型随机变量的分布列的性质,以及均值与方程的计算,其中解答中根据离散型随机变量的分布列的性质,求得的值,再利用均值和方差的公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.6.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为X1 2 3 4P+a b 2a b + 3a b + 4a b +()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.7.C解析:C 【分析】根据随机试验的结果只有A 和A ,P (A )=m ,使得随机变量11A X A ⎧=⎨-⎩发生发生,得到随机变量符合两点分布,根据两点分布的方差公式得到结果. 【详解】∵由题意知一随机试验的结果只有A 和A , 且P (A )=m ,随机变量11A X A ⎧=⎨-⎩发生发生∴X 服从两点分布,∴EX=1(1)(1)21m m m ⨯+-⨯-=-, ∴DX=4m (1-m ). 故选C . 【点睛】解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.8.A解析:A 【分析】若电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 【详解】记1T 正常工作为事件A 记2T 正常工作为事件B 记3T 正常工作为事件C 则()12P A =,()23P B =,()34P C = 电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 则23T T ,至少有一个正常工作,概率为()1231111113412P P BC ⎛⎫⎛⎫=-=--⨯-=⎪ ⎪⎝⎭⎝⎭则电路不发生故障的概率1111121224P =⨯= 故选A 【点睛】本题主要考查了概率知识及实际应用能力,考查了相互独立事件同时发生的概率的计算,关键是确定不发生故障时满足的条件.9.C解析:C【解析】 【分析】随机变量X 的可能取值为20,30,40,结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】X 的可能取值为20,30,40,()222521202010A P X A ====;()311232323562323306010A C C A P X A +⋅⋅+⨯⨯====; ()()()1334012030110105P X P X P X ==-=-==--=,数学期望2030403510105EX =⨯+⨯+⨯=, 即需检测费的均值为35,故选C. 【点睛】本题主要考查组合的应用、古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.10.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ==== 所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)k k n k n C p p --.其中p 为1次试验种A 发生得概率.11.D解析:D 【解析】分析:由题意结合随机变量的性质整理计算即可求得最终结果. 详解:随机变量ξ满足()14E ξ-=,()14D ξ-=, 则:()214,14E D ξξ-=-=, 据此可得:3,4E D ξξ=-=. 本题选择D 选项.点睛:本题主要考查期望的数学性质,方差的数学性质等知识,意在考查学生的转化能力和计算求解能力.12.D解析:D 【解析】分析:根据离散型随机变量分布列的性质,变量取各个量对应的概率和等于1,建立关于a 的等量关系式,最后求得结果.详解:根据分布列的性质可得,()()()0121110121333P P P a a a ξξξ⎛⎫⎛⎫⎛⎫=+=+==++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得913a =,故选D. 点睛:解决该题的关键是明确离散型随机变量的分布列的性质,从而找到关于参数a 所满足的等量关系式,最后求得结果.二、填空题13.【解析】所以【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值(3)根据分布列和期望方差公式求解注意: 解析:1712【解析】()11103412P X ==⨯=,()211351343412P X ==⨯+⨯=,()23623412P X ==⨯=,所以()1526171212E X ⨯+⨯==. 【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意:解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.14.6【分析】通过频率分布直方图求出年龄段在的频率即概率通过二项分布求出数学期望即可【详解】通过频率分布直方图得年龄段在的频率为即概率为抽到老年人的人数为服从二项分布即所以期望为故答案为:06【点睛】本解析:6 【分析】通过频率分布直方图求出年龄段在[]60,80的频率即概率,通过二项分布求出数学期望即可. 【详解】通过频率分布直方图得年龄段在[]60,80的频率为20.01100.2⨯⨯=,即概率为0.2, 抽到“老年人”的人数为X 服从二项分布,即()3,0.2X B ,所以期望为()30.20.6E X np ==⨯=, 故答案为:0.6. 【点睛】本题主要考查了频率分布直方图的应用,二项分布期望的求法,属于中档题.15.【分析】列出所有情况统计满足条件的情况得到齐王每次胜利的概率再根据独立事件计算得到答案【详解】设齐王的上中下等马为田忌的上中下等马为则共有9种情况其中齐王获胜的有6种情况故故答案为:【点睛】本题考查 解析:2027【分析】列出所有情况,统计满足条件的情况得到齐王每次胜利的概率123p =,再根据独立事件计算得到答案. 【详解】设齐王的上中下等马为ABC ,田忌的上中下等马为abc , 则共有,,,,,,,,Aa Ab Ac Ba Bb Bc Ca Cb Cc 9种情况, 其中齐王获胜的有,,,,,Aa Ab Ac Bb Bc Cc 6种情况,故16293p ==, 32232212033327p C ⎛⎫⎛⎫=+⋅⋅=⎪ ⎪⎝⎭⎝⎭.故答案为:2027. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.【分析】根据正态分布对称性知计算得到答案【详解】根据正态分布对称性知:故此次统考中成绩不低于120分的学生人数约为故答案为:【点睛】本题考查了正态分布意在考查学生对于正态分布性质的应用 解析:200根据正态分布对称性知()11208p X >=,计算得到答案. 【详解】根据正态分布对称性知:()()131120801248p X p X ⎛⎫>=<=⋅-= ⎪⎝⎭. 故此次统考中成绩不低于120分的学生人数约为116002008⨯=. 故答案为:200. 【点睛】本题考查了正态分布,意在考查学生对于正态分布性质的应用.17.【分析】要求的值就是要将与求出两个未知数建立出两个方程即可由概率之和为1得到一个方程由得到第二个方程建立方程组从而得到结果【详解】解:离散随机变量可能取的值为123()故的数学期望①而且②①②联立方解析:16【分析】要求+a b 的值,就是要将a 与b 求出。

(典型题)高中数学选修三第一单元《计数原理》测试题(包含答案解析)

(典型题)高中数学选修三第一单元《计数原理》测试题(包含答案解析)

一、选择题1.4(1)x +的展开式中2x 的系数是( )A .8B .7C .6D .42.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( ) A .448B .448-C .672D .672-3.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是( ).A .420B .180C .64D .254.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12965.已知(x a x)5的展开式中,常数项为10,则a =( ) A .﹣1B .1C .﹣2D .26.若0k m n ≤≤≤,且m ,n ,k ∈N ,则0CC mn m k n k n k --==∑( )A .2m n +B .C 2n mmC .2C nmnD .2C m mn7.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .18.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有( ) A .35种B .38种C .105种D .630种9.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n +B .2mn m CC .2n mn C D .2m mn C10.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形(每次旋转90°仍为L 形的图案),那么在56⨯个小方格组成的方格纸上可以画出不同位置的L 形需案的个数是()A .36B .64C .80D .9611.已知自然数k ,则(18)(19)(20)(99)k k k k ----…等于( ) A .1899kk C --B .8299k C -C .1899kk A --D .8299k A -12.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.二项式261(2)x x -的展开式中的常数项是_______.(用数字作答)14.()3621()x x x-的展开式中的常数项为_____.(用数字作答)15.在()()()238111x x x ++++++的展开式中,含2x 项的系数是_______________.16.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)17.若二项式nx x ⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________.18.622x x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)19.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)20.已知关于x 的方程log (01)xa a x a =<<的实数根的个数为n ,若1101(1)(1)(3)n x x a a x +++=++2101121011(3)(3)(3)a x a x a x +++++++,则1a 的值为______.三、解答题21.已知二项式*1()(,2)2nx n N n x∈≥,若该二项式的展开式中前三项的系数的绝对值成等差数列. (1)求正整数n 的值;(2)求展开式中二项式系数最大项,并指出是第几项? 22.设函数(,)(1)(0,0)x f x y my m y =+>>.(1)当3m =时,求()9,f y 的展开式中二项式系数最大的项;(2)已知(2,)f n y 的展开式中各项的二项式系数和比(,)f n y 的展开式中各项的二项式系数和大4032,若01(,)nn f n y a a y a y =++⋅⋅⋅+,且2135a =,求1i ni a =∑23.计算:(1)2490n n A A =;(2)383321nn nn C C -++.24.已知()10210012101mx a a x a x a x +=++++中,0m ≠,且63140a a +=.(1)求m ;(2)求246810a a a a a ++++.25.已知二项式10x⎛⎝的展开式.(1)求展开式中含4x 项的系数;(2)如果第3r 项和第2r +项的二项式系数相等,求r 的值.26.在①只有第6项的二项式系数最大,②第4项与第8项的二项式系数相等,③所有二项式系数的和为102,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知()123012321nn n x a a x a x a x a x -=++++⋅⋅⋅+(n *∈N ),若()21nx -的展开式中,______. (1)求n 的值;(2)求123n a a a a +++⋅⋅⋅+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二项式定理展开式的通项公式,令2r 即可得出答案.【详解】4(1)x +的展开式中,14,(0,1,2,3,4)r r r r T x +==,令2r ,2x ∴的系数为246C =.故选:C . 【点睛】本题考查二项式定理的应用,考查推理能力与计算能力,属于基础题.2.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2rr rr r r r rx T C x C x---+⎛⎫=-=- ⎪⎝⎭, 由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.3.B解析:B 【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论. 【详解】由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行 区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种, A ,D 同色,D 有1种涂法,C 有3种涂法,有54360⨯⨯=种, 共有180种不同的涂色方案. 故选:B . 【点睛】本题考查计数原理的应用,解题关键是分步和分类的方法选取,属于中等题.4.B解析:B 【分析】依据回文数对称的特征,可知有两种情况:1、在6个数字中任取1个组成16C 个回文数;2、在6个数字中任取2个26C 种取法,又由两个数可互换位置22A 种,即2262C A 个回文数;结合两种情况即可求出组成4位“回文数”的个数 【详解】由题意知:组成4位“回文数”∴当由一个数组成回文数,在6个数字中任取1个:16C 种 当有两组相同的数,在6个数字中任取2个:26C 种又∵在6个数字中任取2个时,前两位互换位置又可以组成另一个数 ∴2个数组成回文数的个数:22A 种故,在6个数字中任取2个组成回文数的个数:2262C A综上,有数字1,2,3,4,5,6可以组成4位“回文数”的个数为:2262C A +16C =36 故选:B 【点睛】本题考查了排列组合,根据回文数的特征—对称性,先由分类计数得到取数的方法数,再由分步计数得到各类取数中组成回文数的个数,最后加总即为所有组成4位“回文数”的个数5.A解析:A 【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值,再根据常数项为10,求得a 的值. 【详解】5()a x x x -的展开式中,通项公式为15552155()()()rr r r r rr a T C x x C a x x--+==--,令15502r-=,求得3r =, 可得常数项为335()10C a -=,求得1a =-. 故选:A 【点睛】本题主要考查二项式定理的应用,考查根据展开式的某一项求参数的值,意在考查学生对这些知识的理解掌握水平.6.D解析:D 【分析】根据已知条件,运用组合数的阶乘可得:n m k m kn k n n m C C C C --=,再由二项式系数的性质,可得所要求的和. 【详解】()()()()()()()()!!!!!!!!!!!!!!!!n m k n knm kn mn k n n C Cn m m k k n k n m m k k n m C C m n m k m k ---=⋅=-⋅-⋅--⋅-⋅=⋅=⋅-⋅-则()012mmn m k m k m m m m n knn m n m m m n k k CC C C C C C C C --====⋅+++=∑∑故选:D 【点睛】本题考查了组合数的计算以及二项式系数的性质,属于一般题.7.B解析:B 【分析】令1x =,即可求01232019a a a a a -+-+⋅⋅⋅-出的值. 【详解】解:在所给等式中,令1x =,可得等式为()20190123201912a a a a a -=-+-+⋅⋅⋅-,即012320191a a a a a -+-+⋅⋅⋅-=-. 故选:B. 【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.8.C解析:C 【分析】根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果. 【详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有23C 种抽取方法,;②.从7件正品中抽取3件正品,有37C 种抽取方法, 则抽取的5件产品中恰好有2件次品的抽法有2337105C C ⨯=种; 故选:C .【点睛】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.9.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立.令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.10.C解析:C 【分析】把问题分割成每一个“田”字里,求解. 【详解】每一个“田”字里有4个“L ”形,如图因为56⨯的方格纸内共有4520⨯=个“田”字,所以共有20480⨯=个“L ”形.. 【点睛】本题考查排列组合问题,关键在于把“要做什么”转化成“能做什么”,属于中档题.11.D解析:D 【解析】分析:直接利用排列数计算公式即可得到答案. 详解:()()()()()()829999!181920...9917!k k k k k k A k ------==-.故选:D.点睛:合理利用排列数计算公式是解题的关键.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解.有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.60【分析】根据二项式展开式的通项公式求解【详解】有题意可得二项式展开式的通项为:令可得此时【点睛】本题考查二项式定理的应用考查通项公式考查计算能力属于基础题解析:60 【分析】根据二项式展开式的通项公式求解. 【详解】有题意可得,二项式展开式的通项为:()62612316612(1)2rrr r r r rr T C xC xx ---+⎛⎫=-=- ⎪⎝⎭令1230r -=可得4r = ,此时2456260T C ==.【点睛】本题考查二项式定理的应用,考查通项公式,考查计算能力,属于基础题.14.180【分析】根据二项式定理结合展开式通项即可确定的指数形式将多项式展开即可确定常数项【详解】的展开式中的通项公式而分别令解得或∴的展开式中的常数项故答案为:180【点睛】本题考查了二项式定理通项展解析:180 【分析】根据二项式定理,结合展开式通项即可确定x 的指数形式.将多项式展开,即可确定常数项. 【详解】62x ⎫⎪⎭的展开式中的通项公式 363216622kkkk k k k T C C x x --+⎛⎫==⋅⋅ ⎪⎝⎭,而()666332221)x x x x x =-⎫⎫⎫-⎪⎪⎪⎭⎭⎭ 分别令3332k -=-,3302k -=,解得4k =,或2k =.∴()6321x x ⎫-⎪⎭的展开式中的常数项44226622180C C -=. 故答案为:180. 【点睛】本题考查了二项式定理通项展开式的应用,多项式的乘法展开式,常数项的求法,属于中档题.15.84【分析】通过求出各项二项展开式中项的系数利用组合数的性质求出系数和即可得结果【详解】的展开式中含项的系数为:故答案是:84【点睛】该题考查的是有关二项式对应项的系数和的问题涉及到的知识点有指定项解析:84 【分析】通过求出各项二项展开式中2x 项的系数,利用组合数的性质求出系数和即可得结果. 【详解】()()()238111x x x ++++++的展开式中,含2x 项的系数为:2222222322222223456783345678C C C C C C C C C C C C C C ++++++=++++++399878432C ⨯⨯===⨯, 故答案是:84. 【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.16.【解析】分析:根据排列定义求结果详解:将5家招聘员工的公司看作5个不同的位置从中任选3个位置给3名大学毕业生则本题即为从5个不同元素中任取3个元素的排列问题所以不同的招聘方案共有=5×4×3=60( 解析:60【解析】分析:根据排列定义求结果.详解:将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有35A =5×4×3=60(种).点睛:本题考查排列定义,考查基本求解能力.17.15【解析】二项式展开式中各项系数的和为64令得的通项为令常数项为故答案为【方法点晴】本题主要考查二项展开式定理的通项系数及各项系数和的求法属于简单题二项展开式定理的问题也是高考命题热点之一关于二项解析:15【解析】二项式nx ⎛+ ⎝展开式中各项系数的和为64,∴令1x =,得6264,8,n n x ⎛== ⎝的通项为36622166r r r r r r T C x x C x ---+=⋅=,令360,42r r -==,常数项为4615C =,故答案为15.【方法点晴】本题主要考查二项展开式定理的通项、系数及各项系数和的求法,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18.60【解析】的展开式的通项公式为令得∴的系数为故答案为60解析:60 【解析】62x ⎛ ⎝的展开式的通项公式为()366621661222xrr x r r r r T C x C x ---+⎛⎛⎫==-⋅ ⎪ ⎝⎭⎝ 令3632r -=得2r∴3x 的系数为2622612602C -⎛⎫-⋅⋅= ⎪⎝⎭故答案为6019.8【解析】当在最右边位置时由种排法符合条件;当在从右数第二个位置时由种排法符合条件把件不同的产品摆成一排若其中的产品与产品都摆在产品的左侧则不同的摆法有种故答案为解析:8 【解析】当C 在最右边位置时,由336A = 种排法符合条件;当C 在从右数第二个位置时,由222A =种排法符合条件,把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有6+2=8种,故答案为8.20.【分析】利用图象法判断出关于的方程的实数根的个数由此求得利用结合二项式展开式求得【详解】当时画出和的图象如下图所示由图可知两个函数图象有个交点所以关于的方程的实数根个数为1所以所以所以故答案为:【点 解析:11265【分析】利用图象法判断出关于x 的方程log (01)xa a x a =<<的实数根的个数,由此求得n ,利用132x x +=+-,结合二项式展开式求得1a . 【详解】当01a <<时,画出x y a =和log ay x =的图象如下图所示,由图可知两个函数图象有1个交点,所以关于x 的方程log (01)xa a x a =<<的实数根个数为1,所以1n =.所以()()()()11111113232n x x x x +++=+-++-,所以10101111(2)11265a C =+-=.故答案为:11265【点睛】本小题主要考查方程的根的个数判断,考查二项式展开式,属于中档题.三、解答题21.(1)8;(2)2358x -,展开式中二项式系数最大项为第五项. 【分析】(1)根据二项展开式的通项,分别求得123,,T T T ,结合等差中项公式,列出方程,即可求解;(2)根据二项式系数的性质,即可求解. 【详解】(1)由二项式*1()(,2)2nx n N n x∈≥, 可得021212123111,,222nn n nn n T C x T C x T C x x x x --⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为展开式中前三项的系数的绝对值成等差数列,可得10211224n n n C C C ⨯⨯=+, 整理得1(1)142n n n -=+,即2980n n -+=,解得1n =或8n =.因为*,2n N n ∈≥,所以8n =.(2)当8n =时,展开式中二项式系数最大项为第五项44425813528T C x x -⎛⎫=-= ⎪⎝⎭.【点睛】对于二项式中的项的求解方法:(1)求二项式的特定项问题,实质是在考查通项r n rr r n T C ab -=的特点,一把需要建立方程求得r 的值,在将r 的值代回通项,主要r 的取值范围(0,1,2,,)k n =;(2)若n 为偶数时,中间一项(第12n+项)的二项式系数最大; (3)若n 为奇数时,中间一项(第12n +项和第112n ++项)的二项式系数最大. 22.(1)4511206T y =,5633618T y =;(2)4095. 【分析】(1)根据二项式的性质知二项式系数最大项为第5、第6项,代入通项计算;(2)利用展开式中各项的二项式系数和公式列出等式求解n ,代入(,)f n y 由2135a =列等式求解m ,即可利用赋值法求1i ni a =∑.【详解】(1)9(9,)(13)f y y =+,二项式系数最大项为第5、第6项,44459(3)11206T C y y ==,55569(3)33618T C y y ==.(2)由题意:2224032n n -=,即()()2642630nn-+=,解得6n =,6260126(6,)(1)f y my a a y a y a y =+=+++⋅⋅⋅+,则2226135a C m ==,29m =,解得3m =或3-(舍去),则6(6,)(13)f y y =+,令1y =可得601264a a a a =+++⋅⋅⋅,所以661260126011414095n i ii i a aa a a a a a a a ====++⋅⋅⋅=+++⋅⋅⋅-=-=∑∑.【点睛】本题考查二项式定理,涉及二项式系数最大项、展开式中二项式系数和、赋值法求展开式中项的系数和,属于中档题. 23.(1)12;(2)466. 【分析】(1)由排列数公式化简后再解方程可得;(2)由组合数性质求得n 的范围,求得n ,再利用组合性质变形后计算. 【详解】(1)由2490n n A A =,得90(1)(1)(2)(3)n n n n n n -=---,且4n ≥,解得12n =;(2)由题意383321n nn n -≤⎧⎨≤+⎩,*n N ∈,解得10n =.∴383321n n n n C C -++283021303130313029314662C C C C ⨯=+=+=+=. 【点睛】本题考查排列数公式和组合数公式,掌握排列数和组合数性质是解题关键.在组合数中一定要注意上标不大于下标. 24.(1)2m =-(2)29524 【分析】(1)由二项式定理求出第4项和第7项的系数,代入已知可得m ;(2)令1x =得所有项系数和,令1x =-得奇数项系数和与偶数项系数和的差,两者结合后可得偶数项系数和,0a 是常数项易求,从而可得246810a a a a a ++++, 【详解】(1)因为10iii a C m =,1,2,310i =,依题意得:66331010140C m C m +=,331098710981404321321m m ⨯⨯⨯⨯⨯⎛⎫+=⎪⨯⨯⨯⨯⨯⎝⎭因为0m ≠,所以38m =-,得2m =-. (2)()102100121012x a a x a x a x -=+++令1x =得:()10012345678910121a a a a a a a a a a a ++++++++++=-=.① 令1x =-得:()1010012345678910123a a a a a a a a a a a -+-+-+-+-+=+=.② 由①+②得:()10024*******a a a a a a +++++=+,即10024*******a a a a a a ++++++=. 又()001021a C =-=,所以1010246810133112952422a a a a a +-++++=-==【点睛】本题考查二项式定理的应用和赋值法,考查推理论证能力、运算求解能力,考查化归与转化思想,导向对发展数学抽象、逻辑推理、数学运算等核心素养的关注. 25.(1)3360;(2)1 【分析】(1)写出二项展开式的通项公式,当x 的指数是4时,可得到关于k 方程,解方程可得k 的值,从而可得展开式中含4x 项的系数;(2)根据上一问写出的通项公式,利用第3r 项和第2r +项的二项式系数相等,可得到一个关于r 的方程,解方程即可得结果. 【详解】(1)设第k +1项为T k +1=令10-k =4,解得k =4,故展开式中含x 4项的系数为()441023360C =-.(2)∵第3r 项的二项式系数为,第r +2项的二项式系数为,∵=,故3r -1=r +1或3r -1+r +1=10,解得r =1或r =2.5(不合题意,舍去),∴r =1. 26.(1)10;(2)1031- 【分析】(1)分别选择不同方案,根据展开式系数关系即可求出; (2)令0x =和1x =-可求出. 【详解】(1)选择条件①,若()21nx -的展开式中只有第6项的二项式系数最大,则52n=, 10n ∴=;选择条件②,若()21nx -的展开式中第4项与第8项的二项式系数相等,则37n n C C =,10n ∴=;选择条件②,若()21nx -的展开式中所有二项式系数的和为102,则1022n,10n ∴=;(2)由(1)知10n =,则()101231001231021x a a x a x a x a x -=++++⋅⋅⋅+, 令0x =,得01a =,令1x =-,则100123101012331a a a a a a a a a +=-+-+⋅⋅++⋅⋅⋅⋅++=+,101231031a a a a ∴+++⋅⋅⋅+=-.【点睛】本题考查二项展开式系数关系,属于基础题.。

高中数学计数原理综合检测试题及答案

高中数学计数原理综合检测试题及答案

高中数学计数原理综合检测试题及答案第一章计数原理综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知C7n+1-C7n=C8n(nN*),则n等于()A.14 B.12C.13 D.15[答案] A[解析] 因为C8n+C7n=C8n+1,所以C7n+1=C8n+1. 7+8=n+1,n=14,故选A.2.设f(x)=(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)3-10(2x+1)2+5(2x+1)-1,则f(x)等于()A.(2x+2)5 B.2x5C.(2x-1)5 D.(2x)5[答案] D[解析] f(x)=C05(2x+1)5(-1)0+C15(2x+1)4(-1)1+C25(2x+1)3(-1)2+C35(2x+1)2(-1)3+C45(2x+1)-1(-1)4+C55(2x+1)0(-1)5=[(2x+1)-1]5=(2x)5. 3.(2019济南高二期末)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18 B.24C.30 D.36[答案] C[解析] 本题主要考查排列组合的知识.不同分法的种数为C24A33-A33=30.4.已知(1+x)+(1+x)2+…+(1+x)n=a0+a1x+a2x2+…+anxn(nN*),若a0+a1+…+an=30,则n等于() A.5 B.3C.4 D.7[答案] C[解析] 令x=1得a0+a1+…+an=2+22+…+2n=30得n=4.5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有() A.20种 B.30种C.40种 D.60种[答案] A[解析] 由题意,从5天中选出3天安排3位志愿者的方法数为C35=10(种),甲安排在另外两位前面,故另两位有两种安排方法,根据分步乘法计数原理,不同的安排方法数共有20种,故选A.6.(2019全国Ⅱ理,6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种 B.18种C.36种 D.54种[答案] B[解析] 把标号为1,2的卡片作为一个整体,放入同一信封有C13种放法,然后将剩下的4个卡片放入另外两个信封中,有C24C22种方法,所以共有C13C24C22=18种方法.7.某科技小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选的不同选法有16种,则小组中的女生数为()A.2 B.3C.4 D.5[答案] A[解析] 由题意可用排除法,设有女生x人,则有男生6-x 人,于是有C36-C36-x=16,即(6-x)(5-x)(4-x)=24,将各选项逐个代入验证可得x=2.8.(2009陕西理9)从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为() A.300 B.216C.180 D.162[答案] C[解析] 本小题主要考查排列组合的基础知识.由题意知可分为两类,(1)选“0”,共有C23C12C13A33=108,(2)不选“0”,共有C23A44=72,由分类加法计数原理得72+108=180,故选C.9.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有()A.252种 B.112种C.20种 D.56种[答案] B[解析] 每个宿舍至少2名学生,故甲宿舍安排的人数可以为2人、3人、4人、5人,甲宿舍安排好后,乙宿舍随之确定.有C27+C37+C47+C57=112种.10.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中任何两个数的和不等于11,则这样的的子集共有()A.10个 B.16个C.20个 D.32个[答案] D[解析] (1,10)(2,9)(3,8)(4,7)(5,6).C12C12C12C12C12=32.11.(2019全国Ⅰ理,6)某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有()A.30种 B.35种 C.42种 D.48种[答案] A[解析] 可分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C13C24种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C23C14种不同的选法.所以不同的选法共有C13C24+C23C14=18+12=30种.12.已知直线ax+by-1=0(a,b不全为0)与圆x2+y2=50有交点,且交点的横、纵坐标均为整数,那么这样的直线有()A.66条 B.72条C.74条 D.78条[答案] B[解析] 先考虑x0,y0时,圆上横、纵坐标均为整数的点有(1,7)(5,5)(7,1),依圆的对称性知,圆上共有34=12个点的横、纵坐标均为整数,经过其中任意两点的割线有C212=66(条),过每一点的切线共有12条,又考虑到直线ax+by-1=0不经过原点,而上述直线中经过原点的有6条,所以满足题意的直线共有66+12-6=72(条).二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有________种.[答案] 11[解析] 因为good有两个相同字母,所以可能出现错误为A44-3A22A22-1=11种.14.(21010四川理,13)2-13x6的展开式中的第四项是________.[答案] -160x[解析] 2-13x6的展开式中第4项为T4=C3623-13x3=-160x.15.如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有________对.[答案] 24[解析] 由六棱锥图形分析可知,一条侧棱所在直线与底面上不和该直线相交的四条棱所在的四条直线中的一条才能构成异面直线,故完成这件事分两步:第一步从六条侧棱中任取一条,有六种方法;第二步从底面上不与此侧棱相交的四条棱中任取一条,有四种方法.根据乘法原理,有64=24(对).16.(2019江西文,14)将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有________种(用数字作答)[答案] 90种[解析] 本题考查了排列组合中的平均分组分配问题,先分组C25C23C11A22,再把三组分配乘以A33得:C25C23C11A22A33=90种.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设32+133的展开式的第7项与倒数第7项的比是1:6,求展开式中的第7项.[解析] T7=C6n(32)n-61336,Tn-7+2=Tn-5=C6n(32)6133n-6.由C6n(32)n-61336C6n(32)6133n-6=16,化简得6n3-4=6-1,所以n3-4=-1,所以n=9.所以T7=C69(32)9-61336=C39219=563.[点评] (1)本题是应用二项式定理的通项公式的典型问题,要能熟练地应用通项公式写出所需的各项.(2)本题的解题思路实质是利用方程思想列出方程,解出n,这是解本题的关键.18.(本题满分12分)已知A={x|1log2x3,xN*},B={x||x -6|3,xN*},试问:从集合A和B中各取一个元素作为直角坐标系中点的坐标,共可得到多少个不同的点?[解析] A={3,4,5,6,7},B={4,5,6,7,8}.(1)从A中取一个数作为横坐标,从B中取一个数作为纵坐标,有55=25(个),而8作为横坐标的情况有5种,3作为纵坐标且8不是横坐标的情况有4种,故共有55+5+4=34个不同的点;(2)AB={3,4,5,6,7,8},C36=20(个);(3)A 中取3,则3不能作为首位有C35C13A33=180(个);A中不取3,相当于从4,5,6,7,8中取4个数的全排列有A45=120(个),共有300个符合要求的自然数.[点评] 注意A,B两集合中相同的元素在组合为点的坐标时无顺序之分.19.(本题满分12分)求(x-3x)9的展开式中的有理项.[解析] Tr+1=Cr9(x)9-r(-3x)r=(-1)rCr9x27-r6.因为27除以6的余数为3,要使27-r6为整数,r必为3的奇数倍.因为09,所以需检验当r=3和9时27-r6的值.当r为3和9时,27-r6分别为4和3,所以展开式中的有理项为T4=(-1)3C39x4=-84x4,T10=(-1)9C99x3=-x3. [点评] 要求展开式中的有理项,必须观察展开式通项公式中x的指数,当r取什么值时,能使x的指数为整数.[拓展] 在求使27-r6为整数的r值时,一方面要注意r的取值范围是09,另一方面还要尽可能观察、分析r需要满足的条件,以减少检验的次数,例如,若仅注意到r为3的倍数,则需检验r分别为0,3,6,9时,27-r6的4个值,然后再进行取舍.有时题中不是求出有理项,而是问第几项是有理项,这时应注意,求出的r表示第r+1项是有理项.20.(本题满分12分)把7个大小完全相同的小球,放置在三个盒子中,允许有的盒子一个也不放.(1)如果三个盒子完全相同,有多少种放置方法?(2)如果三个盒子各不相同,有多少种放置方法?[解析] (1)∵小球的大小完全相同,三个盒子也完全相同,把7个小球分成三份,比如分成3个、2个、2个这样三份放入三个盒子,不论哪一份小球放入哪一个盒子均是同一种放法,因此,只需将7个小球分成如下三份即可,即(7,0,0)、(6,1,0)、(5,2,0)、(5,1,1)、(4,3,0)、(4,2,1)、(3,3,1)、(3,2,2).共计有8种不同的放置方法.(2)设三个盒子中小球的和分别为x1,x2,x3,显然有:x1+x2+x3=7,于是,问题就转化为求这个不定方程的非负整数解,若令yi=xi+1(i=1,2,3)由y1+y2+y3=0,问题又成为求不定方程y1+y2+y3=10的正整数解的组数的问题,在10个1中间的9个空档中,任取两个空档作记号,即可将10分成三组,不定方程的解有C29=36组.21.(本题满分12分)某校高三年级有6个班级,现要从中选出10人组成高三女子篮球队参加高中篮球比赛,且规定每班至少要选1人参加.这10个名额有多少不同的分配方法?[解析] 解法一:除每班1个名额以外,其余4个名额也需要分配.这4个名额的分配方案可以分为以下几类:(1)4个名额全部给某一个班级,有C16种分法;(2)4个名额分给两个班级,每班2个,有C26种分法;(3)4个名额分给两个班级,其中一个班级1个,一个班级3个.由于分给一班1个,二班3个和一班3个、二班1个是不同的分法,因此是排列问题,共有A26种分法;(4)分给三个班级,其中一个班级2个,其余两个班级每班1个,共有C16C25种分法;(5)分给四个班,每班1个,共有C46种分法.故共有N=C16+C26+A26+C16C25+C46=126种分配方法.解法二:该问题也可以从另外一个角度去考虑:因为是名额分配问题,名额之间无区别,所以可以把它们视作排成一排的10个相同的球,要把这10个球分开成6段(每段至少有一个球).这样,每一种分隔办法,对应着一种名额的分配方法.这10个球之间(不含两端)共有9个空位,现在要在这9个位子中放进5块隔板,共有N=C59=126种放法.故共有126种分配方法.22.(本题满分12分)已知3a-3an(nN*)的展开式的各项系数之和等于43b-15b5的展开式中的常数项,求3a-3an的展开式中a-1项的二项式系数.[解析] 对于43b-15b5:Tr+1=Cr5(43b)5-r-15br=Cr5(-1)r45-r .若Tr+1为常数项,则10-5r=0,所以r=2,此时得常数项为T3=C25(-1)2435-1=27.令a=1,得3a-3an展开式的各项系数之和为2n.由题意知2n=27,所以n=7.对于3a-3a7:Tr+1=Cr73a7-r(-3a)r=Cr7(-1)r .若Tr+1为a-1项,则5r-216=-1,所以r =3.所以3a-3an的展开式中a-1项的二项式系数为C37=35.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计数原理》练习
一、选择题
1.书架上层放有6本不同的数学书,下层放有5本不同的语文书,从中任取数学书和语文书各一本,则不同的取法种数有( )
A 11
B 30
C 56
D 65
2.在平面直角坐标系中,若{}{}1,2,3,3,4,5,6x y ∈∈,则以(),x y 为坐标的点的个数为( )
A 7
B 12
C 64
D 81
3.若()12n
x +的展开式中,3x 的系数是x 系数的7倍,则n 的值为( )
A 5
B 6
C 7
D 8
4.广州市某电信分局管辖范围的电话号码由8位数字组成,其中前3位是一样的,后5位数字都是0~9这10个数字中的一个,那么该电信分局管辖范围内不同的电话号码个数最多有( )
A 50
B 30240
C 59049
D 100000
6.按血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,其子女的血型一定不是O 型,如果某人的血型为O 型,则该人的父母血型的所有可能情况种数有( )
A 6
B 7
C 9
D 10
7.计算0121734520C C C C ++++的结果为( ) A 421C B 321C C 320C D 420C
8.一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球得2分,取出一个白球得1分,问从口袋中取出5个球,使总分不少于7分的取法种数有( )
A 15
B 16
C 144
D 186
二、填空题
9.开车从甲地出发到丙地有两种选择,一种是从甲地出发经乙地到丙地,另一种是从甲地出发经丁地到丙地。

其中从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。

则从甲地到丙地不同的走法共有 种。

10.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 种。

14.()()5
211x x +-的展开式中3x 的系数为
三、解答题:
15(12分) 假设在100件产品中有3件次品,从中任意抽取5件,求下列抽取方法各有多少种?
(I )没有次品;
(II )恰有两件是次品;
(III )至少有两件是次品;
(IV )至多有两件是次品;
16(12分) 7个人按如下各种方式排队照相,有多少种排法?
(I )甲必须站在正中间;
(II )甲乙必须站在两端;
(III )甲乙不能站在两端;
(IV )甲乙两人要站在一起;
17(10分)已知()727012712x a a x a x a x -=++++,
(I )求127a a a +++的值; (II )求6420a a a a +++的值;
(III )求127a a a +++的值;
参考答案
一、选择题答案:BBDDCCAD
二、填空题答案:14 34 20 12 6 -15
三、解答题
15题:
(I )没有次品的抽法是从97件正品中抽取5件,共有59764446024C =种
(II )恰有两件次品的抽法是从97件正品中抽取3件,并从3件次品中抽取2件,共有32973442320C C =种;
(III )至少有两件是次品,可以分为两类:一类是2件次品,另一类是3件次品,所以共有3223973973446976C C C C +=种,或用排除法求解有554110097973446976C C C C --=种
16题:
(I )甲站在正中间,其他6人可以任意站,共有66720A =
(II )甲乙站在两端有22A 种;其他5人站里面有55A ,所以共有2525A 240A ⋅=种
(III )在甲乙以外的其他5人中取出2人来站两端有25A 种,剩下的5人站里面有5
5A ,共有2555A 2400A ⋅=种 (IV )将甲乙当成一个整体和其他5人共当成6个来排有66A 种,另外甲乙可以掉换位置有2
2
A 种,所以共有6262A 1440A ⋅=种 17题、
解:(I )令1x =,则()()77012712121x a a a a -=-=-=++++ 再令0x =,则01a =,所以127a a a +++=2-, (II )令1x =,()()77012712121x a a a a -=-=-=++++ (1) 令1-=x ,()()7654321077732121a a a a a a a a x -+-+-+-==+=- (2)
(1)+(2)得)(21364207a a a a +++=-
所以 ()
2186132
176420=-=+++a a a a (III )由二项式定理得: 12345670,0,0,0,0,0,0a a a a a a a <><><><, 所以 127a a a +++=1234567a a a a a a a -+-+-+-
令1x =-,()()7770123456712123x a a a a a a a a -=+==-+-+-+- 而01a = ,所以
127a a a +++=1234567a a a a a a a -+-+-+-=7312186-=。

相关文档
最新文档