蛋白质双向电泳简介
《双向电泳技术》课件

高通量
该技术可以同时分离大量蛋白质,提高了实 验的通量。
高稳定性
该技术具有较高的稳定性,实验结果重复性 好。
缺点
实验周期长
双向电泳技术的实验周期较长 ,需要耗费较多的时间和人力
。
对样品要求高
该技术需要大量的起始样品, 并且对样品的纯度要求较高。
对实验条件要求严格
双向电泳技术的实验条件较为 苛刻,需要精确控制实验参数 。
在药物研发中的应用
总结词
双向电泳技术为药物研发提供了高通量和高效率的蛋白质分离手段,有助于发现潜在的药物靶点和筛 选候选药物。
详细描述
在药物研发过程中,双向电泳技术可用于分析药物对蛋白质表达谱的影响,从而发现药物作用的靶点 。此外,通过比较不同物种或组织的蛋白质表达谱,可以发现潜在的药物靶点,为新药研发提供思路 和候选药物。
应用领域的拓展
疾病诊断与治疗
利用双向电泳技术分析疾病相关蛋白质,为疾病诊断 和治疗提供依据。
药物研发
通过双向电泳技术筛选药物作用靶点,加速新药研发 进程。
生物工程与农业
在生物工程和农业领域中应用双向电泳技术,优化生 物过程和育种。
未来发展方向与挑战
标准化与规范化
建立双向电泳技术的标准化操作流程和质量控制体系,提高实验 结果的可靠性和可比性。
CHAPTER 02
双向电泳技术的实验流程
样本制备
01
02
03
样本选择与处理
选择适当的组织或细胞样 本,进行适当的处理以提 取蛋白质。
蛋白提取
使用适当的缓冲液和试剂 ,从样本中提取蛋白质。
蛋白定量
使用蛋白质定量方法,确 定蛋白质的浓度。
蛋白质提取
溶解蛋白质
蛋白质双向电泳简介

IPG 胶的水合及上样
2-DE 样品
水合溶液
IPG 胶条支架
水合溶液:
8M
尿素
2%
NP-40 或 CHAPS
2%
IPG缓冲液 (两亲性电解液)
0.28% DTT
微量 溴酚蓝
IPG 胶条 定位
水合目的:使样品能完全以可溶形式进入IPG胶条内
蛋白载样量
IPG胶条对蛋白载样量的影响因素:
待分析的蛋白点的量应满足随后的质谱分析待研究蛋白的丰度 样品的复杂度
IPG 胶条的平衡
平衡液 6 M 尿素和30% 甘油 减少电内渗
SDS-PAGE均一胶各成分用量
双向电泳(2DE)示意图
等电聚焦,实现蛋白质按等电点进行分离
提取的总蛋 白溶液
大 分子量
SDS-PAGE 分离,使得 蛋白质按分 子量大小排 序
小
通过双向电泳使得不同等电点和分子量的 蛋白质根据其自身特性分布到凝胶的不同
位置从而实现蛋白质的双向分离
步骤
样品制备 胶条水合 等电聚焦 聚焦后胶条平衡 第二相SDS-PAGE 分离蛋白质的检测与匹配分析
通过细胞破碎方法从原材料中提取粗蛋白质, 然后用含变性剂(或离液剂)、去污剂和还原剂 的裂解液溶解蛋白并使其变性。提取的蛋白可 用裂解液稀释。裂解液也可结合IPG胶条上基 质以维持IEF期间的蛋白质的稳定性。变性剂 尿素和硫脲与IEF兼容。用高浓度的变性剂以 打断蛋白质样品中的氢键结构。使用非离子型 或两性去污剂以破坏疏水交互作用。
在蛋白样品裂解时,应以溶解尽可能多的蛋白 质和保持在整个双向电泳过程中蛋白质的溶解 性为主要目标。根据目前的实践经验,蛋白质 变性成为多肽链便于多肽序列能够与其相应基
因序列匹配。二次样品制备的目的是去除干扰 双向电泳的非蛋白物质(如盐、酚类物质、脂 类、多糖和核酸等)和阻止在双向电泳谱中导 致假点的多肽或蛋白修饰。此外,用于样品制 备的药剂必须与等电聚焦兼容。
蛋白质双向电泳实验报告

现代生物学技术实验报告题目蛋白质双向电泳技术姓名学号专业小组成员指导教师中国·武汉年月联系方式:大肠杆菌组蛋白双向电泳技术摘要:蛋白质双向电泳是一种等电聚焦与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术,也是蛋白质组学研究中分离纯化蛋白质的主要方法之一。
双向电泳后的凝胶经染色蛋白呈现二维分布图,水平方向反映出蛋白在等电点上的差异,而垂直方向反映出他们在分子量上的差别。
本实验通过学习蛋白质双向电泳技术,熟悉了蛋白质双向电泳的简单流程。
可以根据电泳所得的图像分析,分离蛋白质。
关键字:蛋白质双向电泳等电聚焦电泳 SDS-PAGE前言:蛋白质组研究的发展以双向电泳技术(2-DE)作为核心。
双向电泳由O’Farrell’s于1975年首次建立并成功地分离约1 000个E.coli蛋白,并表明蛋白质谱不是稳定的,而是随环境而变化. 双向电泳原理简明,第一向进行等电聚焦,蛋白质沿pH梯度分离,至各自的等电点;随后,再沿垂直的方向进行分子量的分离. 目前,随着技术的飞速发展,已能分离出10 000个斑点(spot). 当双向电泳斑点的全面分析成为现实的时候,蛋白质组的分析变得可行。
本实验是要研究大肠杆菌中的蛋白质,并学习和初步掌握双向电泳技术。
正文:1)实验原理:从广义上讲,双向电泳是将样品电泳后为了不同的目的在垂直方向再进行一次电泳的方法。
目前蛋白质双向电泳常用的组合第一向为等电聚焦(载体两性电解质pH梯度或固相pH梯度),根据蛋白质等电点进行分离,第二向为SDS-PAGE,根据相对分子质量分离蛋白质。
这样经过两次分离后,在凝胶上显示出的蛋白点可以获得蛋白质等电点和相对分子质量信息。
双向电泳技术作为分离蛋白质的经典方法,目前得到了相当广泛的应用。
在植物研究中,成功建立了拟南芥、水稻、玉米等植物种类的双向电泳图谱数据库,对推动植物蛋白质组研究起到重要作用。
第一向等电聚焦:等电聚焦(isoelectrofocusing,IEF)是在凝胶柱中加入一种称为两性电解质载体(ampholyte)的物质,从而使凝胶柱在电场中形成稳定、连续和线性pH梯度。
荧光差异显示双向电泳技术原理

荧光差异显示双向电泳技术原理双向电泳是一种常用的蛋白质分离技术,通过电场的作用将蛋白质样品分离成不同的带状区域。
而荧光差异显示双向电泳技术则是在双向电泳的基础上,利用荧光染料对蛋白质进行标记,使得分离出的蛋白质带状区域能够以荧光的形式显示出来。
本文将详细介绍荧光差异显示双向电泳技术的原理及其在蛋白质研究中的应用。
荧光差异显示双向电泳技术的原理主要包括样品制备、电泳分离、荧光染色和荧光成像等步骤。
样品制备是荧光差异显示双向电泳的关键步骤之一。
样品制备的目的是将蛋白质从复杂的生物体中提取出来,并使其具备较好的电泳性质。
常见的样品制备方法包括胶束电泳法和硅胶柱层析法等。
胶束电泳法是通过洗涤剂将蛋白质从细胞中溶解出来,形成胶束溶液,再经过离心等步骤得到纯化的蛋白质样品。
硅胶柱层析法则是利用硅胶柱将蛋白质样品分离纯化,去除杂质。
样品制备的关键在于保证蛋白质样品的纯度和完整性,以便后续的电泳分离。
电泳分离是荧光差异显示双向电泳的核心步骤。
电泳分离是通过电场的作用将蛋白质样品分离成不同的带状区域。
由于蛋白质的分子量和电荷差异,蛋白质在电场中会产生不同的迁移速度,从而实现分离。
双向电泳是指在水平方向和垂直方向施加交叉电场,使得蛋白质样品能够同时在两个方向上进行迁移,从而增加了分离效果。
电泳分离的关键在于电场的施加和控制,以及电泳胶的选择和制备。
然后,荧光染色是荧光差异显示双向电泳的重要步骤之一。
荧光染色是通过将蛋白质样品与荧光染料结合,使得分离出的蛋白质能够以荧光的形式显示出来。
常用的荧光染料包括SYPRO Ruby、CyDye和FluorProtein等。
荧光染色的关键在于染料的选择和染色条件的优化,以确保荧光信号的强度和稳定性。
荧光成像是荧光差异显示双向电泳的最后一步。
荧光成像是通过荧光成像仪将荧光信号转化为图像,以便后续的分析和解读。
荧光成像的关键在于成像仪的选择和参数设置,以及荧光信号的采集和处理。
荧光差异显示双向电泳技术在蛋白质研究中具有广泛的应用。
双向电泳

双向电泳的应用及研究进展摘要:双向电泳是蛋白质组学研究中最常用的技术,具有简便、快速、高分辨率和重复性等优点。
本文重点介绍了双向电泳的基本原理及其应用。
同时对当前双向电泳技术面临的挑战和发展前景进行了讨论。
关键词: 双向电泳,应用,前景1.1双向电泳技术概述双向电泳(two-dimensional gel electrophoresis, 2-DE)是蛋白分离的黄金标准,由此可以分析生物样品的显著差别,产生的结果用于诊断疾病、发现新的药物靶标和分析潜在的环境和药物的毒性。
双向电泳分离技术利用复杂蛋白混合物中单个组分的电泳迁移,第一向通过电荷的不同分离,另一向通过质量的不同分离。
双向电泳协同质谱技术是正在出现的蛋白组学领域的中心技术。
双向电泳是一种分析从细胞、组织或其他生物样本中提取的蛋白质混合物的有力手段,是目前唯一能将数千种蛋白质同时分离与展示的分离技术,其高分辨率、高重复性和兼具微量制备的性能是其他分离方法所无与伦比的。
双向电泳技术、计算机图像分析与大规模数据处理技术以及质谱技术被称为蛋白质组研究的三大基本支撑技术。
可见双向电泳在蛋白质组学研究中的重要性。
就像Fey和Larsen在他们的综述中提到:“尽管人们都想有新技术取代它,可是如果希望对细胞活动有全面的认识,其他技术无法在分辨率和灵敏度上与双向电泳相媲美”。
1.2双向电泳基本原理1975年,意大利生化学家O’Farrell发明了双向电泳技术[1],双向电泳是指利用蛋白质的带电性和分子量大小的差异,通过两次凝胶电泳达到分离蛋白质群的技术。
双向电泳技术依据两个不同的物理化学原理分离蛋白质。
第一向电泳依据蛋白质的等电点不同,通过等电聚焦将带不同净电荷的蛋白质进行分离。
在此基础上进行第二向的SDS聚丙烯酰胺凝胶电泳,它依据蛋白质分子量的不同将之分离。
双向电泳所得结果的斑点序列都对应着样品中的单一蛋白。
因此,上千种蛋白质均能被分离开来,并且各种蛋白质的等电点,分子量和含量的信息都能得到。
2-1 蛋白质双向电泳

增加样品溶解性的手段
• 离液剂(变性剂):通过改变溶液中的氢键结构使蛋白质充分伸展, 将其疏水中心完全暴露,降低接近疏水残基的能量域。典型代表是
尿素和硫尿。
• 去垢剂(表面活性剂):经过离液剂处理而暴露蛋白质的疏水基团 后,还常需至少一种去垢剂来溶解疏水基团。常用的去垢剂有离子 去污剂SDS、非离子去污剂Triton X-100和NP-40、两性离子去垢剂 CHAPS、OBG等。其中CHAPS应用最普遍。
胶条的转移
• 平衡结束后,先将IPG胶条完全浸末于1×电泳缓冲液中,
然后将胶条胶面朝上放在凝胶的长玻璃板上。
• 将放有胶条的SDS-PAGE凝胶转移到灌胶架上,在凝胶的 上方加入低熔点琼脂糖封胶液。 • 用镊子、压舌板或是平头的针头,轻轻地将胶条向下推, 使之与聚丙烯酰胺凝胶胶面完全接触。 • 放置5分钟,使低熔点琼脂糖封胶液彻底凝固。
• 还原剂:在离液剂和去垢剂联用条件下,加用还原剂可使已变性的
蛋白质展开更完全,溶解更彻底。常用含自由巯基的 DTT或-巯基 乙醇,以及不带电荷的三丁基磷(TBP)进行还原。
• 起载体作用的两性电解质:即便在变性剂和表面活性剂存
在的情况下,某些蛋白质也需要在盐离子的作用下才能保 持其处于溶解状态,否则这些蛋白质在其处于PI点时会发 生沉淀。 • Carrier ampholytes的作用在于捕获样品中的少量盐分, 从而保证蛋白质的溶解性。应用时,两性电解质的浓度应 小于0.2%(w/v)。浓度过高会使IEF的速度降低。另外,
胶条的转移
• 平衡结束后,先将IPG胶条完全浸末于1×电泳缓冲液中,
然后将胶条胶面朝上放在凝胶的长玻璃板上。
• 将放有胶条的SDS-PAGE凝胶转移到灌胶架上,在凝胶的 上方加入低熔点琼脂糖封胶液。 • 用镊子、压舌板或是平头的针头,轻轻地将胶条向下推, 使之与聚丙烯酰胺凝胶胶面完全接触。 • 放置5分钟,使低熔点琼脂糖封胶液彻底凝固。
蛋白质组学研究介绍结合双向电泳

蛋白质组学研究的主要内容和方法
蛋白质表达分析
研究不同生理或病理条件下蛋白质的表 达水平变化,揭示蛋白质的表达模式和
规律。
蛋白质相互作用研究
利用酵母双杂交、免疫共沉淀等技术 手段,研究蛋白质之的相互作用和
复合物的形成。
蛋白质功能研究
通过基因敲除、基因敲减、定点突变 等技术手段,研究蛋白质的功能和作 用机制。
智能化
结合人工智能和机器学习技术,实现双向电 泳的智能化分析,自动识别和鉴定蛋白质, 提高数据分析的准确性和可靠性。
拓展双向电泳技术的应用领域
临床诊断
01
将双向电泳技术应用于临床诊断,通过对生物标志物的检测和
分析,辅助医生进行疾病诊断和治疗方案的制定。
药物研发
02
利用双向电泳技术筛选和鉴定药物作用靶点,为新药研发提供
蛋白质芯片技术
高通量、快速、简便,但灵敏度和分辨率相对较低,且覆盖的蛋白质数量有限。
双向电泳与蛋白质免疫印迹技术的比较
双向电泳
可以对全蛋白质组进行分离和定性,分 辨率高。
VS
蛋白质免疫印迹技术
可以对特定蛋白质进行检测和定量,灵敏 度高,但只能针对已知的蛋白质进行检测 。
05
双向电泳技术的发展前景 和展望
蛋白质的纯化
通过双向电泳,可以去除样品中的杂 质,提高蛋白质的纯度,从而获得更 准确的鉴定结果。
蛋白质的表达和鉴定
蛋白质表达分析
通过比较不同生理状态或不同组织中 蛋白质的表达模式,可以研究蛋白质 的表达水平,进而了解其在生命活动 中的作用。
蛋白质鉴定
通过与已知蛋白质的数据库进行比对, 可以鉴定出双向电泳图谱中的蛋白质, 为后续的功能研究提供依据。
Western-Blot-蛋白质双向电泳

蛋白质双向电泳
*双向电泳技术在蛋白质组学中发挥着重 要的作用,可用于研究样品总蛋白、不同 样品蛋白质表达差异、蛋白质间相互作 用、蛋白质修饰等。 *在人类恶性肿瘤的研究中,人们可以通 过双向电泳技术分离正常组织细胞和肿 瘤细胞之间的差异蛋白质组分,在寻找 肿瘤特异型标志物,解释肿瘤发病机制 及治疗方面有极大作用。 *双向电泳的出现,为动态、高通量的研 究药物作用机制提供了强有力的支持。
操作步骤
Western blot
Westernblot法应用分子生物学、生物化学和免疫遗传学 中时常会用到的一种实验方法,蛋白质分析中应用的W estern杂交法是把电流分离的组分从凝胶转移至一种固相 支持体,并以针对特定氨基酸所制备的特异性样品作为 探针检测其相同或相似序列。 Western Blot采用的是聚丙烯酰胺凝胶电泳,被检测物是 蛋白质,“探针”是抗体,“显色”用标记的二抗它与 附着于固相支持体的靶蛋白所呈现的抗原表位发生特异 性反应。它能够从生物组织的粗提物或部分纯化的粗提 物中检测和识别几种特异的蛋白质。 这一技术的灵敏度能达到标准的固相放射免疫分析的水 平而又无需免疫沉淀法那样必须对靶蛋白进行放射性标 记。因此要对非放射性标记蛋白组成的复杂混合物中的 某些特定蛋白进行鉴别和定量时,Westernblot法极为有 用
应用
谢谢观看
Step-n- 1 hr
hold
hold
200
Step-n- 1 hr
8000
Gradient 3 hr
hold
500
Step-n- 1 hr
hold
(4)IPG 胶条的平衡
• 将胶条放入平衡缓冲液Ⅰ中,封口,在摇床上振荡15 min。
• 将胶条取出放入平衡缓冲液Ⅱ中,封口,在摇床上振荡 15 min。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过细胞破碎方法从原材料中提取粗蛋白质, 然后用含变性剂(或离液剂)、去污剂和还原剂 的裂解液溶解蛋白并使其变性。提取的蛋白可 用裂解液稀释。裂解液也可结合IPG胶条上基 质以维持IEF期间的蛋白质的稳定性。变性剂 尿素和硫脲与IEF兼容。用高浓度的变性剂以 打断蛋白质样品中的氢键结构。使用非离子型 或两性去污剂以破坏疏水交互作用。
盐
– 使胶条导电能力增强,共聚焦不易发生 – 透析;胶体过滤;沉淀或重新悬浮
离子去污剂
如SDS,使蛋白质带负电不能聚焦 丙酮沉淀;将含SDS的蛋白溶于含两性或非离子去污剂如CHAPS,Triton X-100,
NP-40等的缓冲液中并使SDS终浓度<0.25%
固体杂质
阻塞胶体,影响蛋白质沉淀、聚焦 过滤
SDS-PAGE均一胶各成分用量
双向电泳(2DE)示意图
等电聚焦,实现蛋白质按等电点进行分离
提取的总蛋 白溶液
大 分子量
SDS-PAGE 分离,使得 蛋白质按分 子量大小排 序
小
通过双向电泳使得不同等电点和分子量的 蛋白质根据其自身特性分布到凝胶的不同
位置从而实现蛋白质的双向分离
步骤
样品制备 胶条水合 等电聚焦 聚焦后胶条平衡 第二相SDS-PAGE 分离蛋白质的检测与匹配分析
第一步是将IEF胶在375 mmol/L Tris-HClpH8.8缓冲液 (含2%SDS、1% DTT或TBP、6mol/L尿素和30%甘油) 中浸泡10~15 min,尿素和甘油是用于减缓电渗效应,提高 蛋白质从第一向到第二向的转移率。第二步是用5% 碘 乙酰胺替代还原剂DTT的375 mmol/LTris-HCl pH8.8缓 冲液,其他组分及相应浓度不变。碘乙酰胺用来烷基化 巯基变成羟乙酰半胱氨酸残基,以便巯基不能重组形成 二硫键。此外,碘乙酰胺还可以烷基化IEF胶内的自由 DTT,否则自由DTT在第二向SDS-PAGE胶迁移,会产生 点条纹的假象。为减少酰氨基组的烷基化,最好在pH 8~9之间进行还原和烷基化。
第一向:等点聚焦
1. 放置电极垫 (?) 2. 200 V 维持 3. 500 V 维持 4. 1000 V 梯度上升 5. 8000 V 梯度上升
1.5h 1.5h 1500vh
支架盖 IPG 胶条
电极
36000vh
电极垫
电压
时间
注意事项
通过高压使得蛋白质按照其等电点特性进行 聚焦
胶条水化、低压除盐、高压聚焦、低压维持 聚焦时间太短,会导致水平和垂直条纹,过
IPG 胶的水合及上样
2-DE 样品
水合溶液
IPG 胶条支架
水合溶液:
8M
尿素
2%
NP-40 或 CHAPS
2%
IPG缓冲液 (两亲性电解液)
0.28% DTT
微量 溴酚蓝
IPG 胶条 定位
水合目的:使样品能完全以可溶形式进入IPG胶条内
蛋白载样量
IPG胶条对蛋白载样量的影响因素:
待分析的蛋白点的量应满足随后的质谱分析待研究蛋白的丰度 样品的复杂度
复杂度较高的样品,为了尽可能的了解所包含的每种蛋白,需要反复实验才能完 成。如果将待检样品被富集以后则更易分析。
IPG胶条的pH范围
预试验确定 先宽后窄 先线性后非线性 先短后长
等电聚焦
胶条水合完成后,将开始运行等电聚焦。首先 在胶条两端接触电极处垫上水饱和的纸芯,以 防在高电压下胶条与电极的直接接触,损坏胶 条,同时可以吸附聚焦过程中迁移至两端的盐 离子。等电聚焦最好在高压电源下运行,在IPG 胶条的限制电流范围内迅速将电压升至最后的 目标电压。电压(V)与时间(h)的整合被称为伏 特小时(Vh),可以作为一个相同样品在不同运行 时间比较重现性的参数,也可以作为聚焦是否 充分的指标
在蛋白样品裂解时,应以溶解尽可能多的蛋白 质和保持在整个双向电泳过程中蛋白质的溶解 性为主要目标。根据目前的实践经验,蛋白质 变性成为多肽链便于多肽序列能够与其相应基
因序列匹配。二次样品制备的目的是去除干扰 双向电泳的非蛋白物质(如盐、酚类物质、脂 类、多糖和核酸等)和阻止在双向电泳谱中导 致假点的多肽或蛋白修饰。此外,用于样品制 备的药剂必须与等电聚焦兼容。
样品的溶解
2-DE成功分离蛋白质的最关键因素之一。溶 解的目标:1、样品中非共价结合的蛋白质复 合物和聚积体完全破坏,从而形成各个多肽的 溶解液(否则样品中结合牢固的蛋白复合物可 能使2-DE中出现新的蛋白点,相应的表示单 个多肽的点的强度会下降);2、溶解方法必 须允许可能干扰2-DE分离的盐、脂类、多糖 和核酸等物质的去除;3、溶解方法要保证样 品在电泳过程中保持溶解状态。
蛋白质双向电泳
简介
双向电泳是蛋白质组学研究中最常用的技术,具有简便、 快速、高分辨率和重复性等优点。1975年,意大利生 化学家O.Farrell发明了双向电泳技术,大大提高了蛋白 质分离的分辨率而得以广泛应用,至今已经历了快四十 年的发展,双向电泳技术已较为成熟,但在基本技术上 仍未改变。双向电泳技术包括蛋白样品制备、干胶条 水合、等电聚焦、在平衡液中平衡胶条和SDS-PAGE 电泳等步骤。双向电泳是指利用蛋白质的带电性和分 子量大小的差异,通过两次凝胶电泳达到分离蛋白质群 的技术
样品的制备
取材时应避免因细胞死亡而引起蛋白降解,尽 可能快速将材料投入液氮中保存。研磨时,组 织样品须在液氮中冷冻,充分研磨成细粉,然后 快速加入含蛋白酶抑制剂的裂解液,充分混匀。 对于大多数植物样品制备而言,在液氮磨碎的 样品中应快速加入蛋白沉淀剂(如丙酮),并在低 温下沉淀(-20oC)和离心(4oC)。
蛋白质组学(proteomics)
概念:是从整体角度分析生物体蛋白质组动态变 化的一门科学
研究内容:蛋白质的识别、定量;蛋白质的定位、 修饰;蛋白质之间的相互作用并根据这些研究最 终确定它们的功能
仪器设备
原理
双向电泳是指利用蛋白质的带电性和分子量大 小的差异,通过两次凝胶电泳达到分离蛋白质 群的技术。双向电泳技术依据两个不同的物理 化学原理分离蛋白质。第一向电泳依据蛋白质 的等电点不同,通过等电聚焦将带不同净电荷 的蛋白质进行分离。在此基础上进行第二向的 SDS聚丙烯酰胺凝胶电泳,它依据蛋白质分子 量的不同将之分离。
要用到的试剂
样品裂解液: 7mol/L尿素,4% CHAPS,10mmol/LTris,2mol/L硫脲。 IPG溶胀液: 8mol/L尿素,2%CHAPS,分装成0.5ml/管,-20oC保存。
使用前2.5ml IPG溶胀液加入7mg DTT,0.5%IPG缓冲液(3~10L),少 量溴酚蓝。 平衡液: 50mmol/LTris-HCl (pH8.8),6 mol/L尿素,30%甘油,2% SDS,少量溴酚蓝。使用前10ml平衡液加入0.1mgDTT。 溴酚蓝溶液 :1%溴酚蓝,50mmol/LTris-HCl,分装成0.5ml/管,-20oC 保存。 30%丙烯酰胺贮存液: 30%丙烯酰胺,0.8%甲叉双丙烯酰胺,0.45um 微孔滤膜过滤后,避光贮存于棕色瓶中4度保存。 凝胶缓冲液储存液: 1.5mol/L Tris-HCl (pH 8.8),0.45um微孔滤膜 过滤后,4度保存。 SDS电泳缓冲液 :25mmol/L Tris-HCl (pH8.3),192mmol/L甘氨 酸,0.1%SDS
胶条水合
首先,要选好IPG干胶条的pH梯度。对一个新样品,最 先使用宽范围、线性pH 3.5~10梯度。但对大多数样 品,这样做可能会降低pH 4~7区域的分辨率,因为许多 蛋白质的pI值分布在该区域。利用非线性的pH 3.5~10 IPG干胶条在一定程度上缓解了这个问题。非 线性pH 3.5~10的胶条在pH4~7区域的梯度比pH 7~10更为平坦,保证在大部分碱性蛋白质都能得到分 辨的前提下,pH 4~7区域能得到更好的分离。若用 pH4 ~7的IPG胶条则能在该范围得到更好的分离效果。 等电聚焦在样品裂解液中运行。IPG干胶条使用前必 须在样品溶液中水合。水合期间,蛋白样品进入IPG胶 条,并分布于整个聚焦介质中,该技术实用且易操作。 此外,要注意在胶条水合开始时在胶背上应覆盖矿物油, 以防止胶条水合或随后的IEF过程中水分散失。
根据胶条长度不同,所需的伏特小时数不同,一般随着 胶条加长而增加。伏特小时数范围从7cm胶条的10 kV到24cm胶条的60 kV以上。最佳聚焦时间即IEF分 离达到稳定态所需时间,是获得最好图谱质量和重复性 的基础。若聚焦时间太短,会导致水平和垂直条纹。但 是过度聚焦会因为活性水转运而导致过多水在IPG胶 表面渗出(电渗),引起蛋白图谱变形,以及在胶条碱性端 产生水平条纹和蛋白质的丢失。因此,最佳聚焦时间必 须根据不同蛋白质样品、蛋白质上样量和所用特定pH 范围及胶条长度来确定。聚焦完成后,胶条既可以在中 间电压500~1000 V下短时间保持,便于随时进行第二 向的平衡,也可以置于-80oC冰箱中进行长期保存。
增加样品溶解性的手段
变性剂:通过改变溶液中的氢键结构使蛋白质充分伸展, 将其疏水中心完全暴露,降低接近疏水残基的能量域。其 典型代表是尿素和硫尿。
表面活性剂:经过变性剂处理而暴露蛋白质的疏水基团后, 还常需至少一种表面活性剂来溶解疏水基团。常用的表面 活性剂有离子去污剂SDS、非离子去污剂Triton X-100和 NP-40、两性离子去污剂CHAPS、OBG等。其中CHAPS 和SB3-10最好。
还原剂:在变性剂和表面活性剂联用条件下,加用还原剂 可使已变性的蛋白质展开更完全,溶解更彻底。常用含自 由巯基的DTT或-巯基乙醇,以及不带电荷的三丁基膦 (TBP)进行还原。
杂质的除去
脂质
– 使蛋白质不易溶解且会影响其分子量及pI – 丙酮沉淀
多糖
– 阻塞胶体,影响蛋白质沉淀、聚焦 – TCA、硫酸铵或醋酸铵/甲苯/苯酚沉淀;超速离心和高pH
长会造成蛋白图谱变性,在胶条碱性端产生 水平条纹以及蛋白丢失。最佳时间的确定需 要根据蛋白样品类型、蛋白载样量、PH范围 和胶条长度来确定。