电力拖动自动控制系统课程设计
电力拖动自动控制系统课程设计

电气与电子信息工程学院《控制系统课程设计》课程设计报告名称:直流调速系统设计及仿真和串级调速系统建模及仿真专业名称:电气工程及其自动化班级:学号:姓名:指导教师:设计地点:课程设计任务书学生姓名: 专业班级: 指导教师: 工作部门:一、课程设计题目:直流调速系统设计及仿真和串级调速系统建模及仿真二、设计目的:《控制系统课程设计》是继“自动控制系统”课之后开设的实践性环节课程。
由于它是一门理论深、综合性强的专业课,单是学习理论而不进行实践将不利于知识的接受及综合应用。
本课程设计将起到从理论过渡到实践的桥梁作用,通过该环节训练达到下述教学目的:1、通过课程设计,使学生进一步巩固、深化和扩充在交直流调速及相关课方面的基本知识、基本理论和基本技能,达到培养学生独立思考、分析和解决问题的能力。
2、通过课程设计,让学生独立完成一项直流或交流调速系统课题的基本设计工作,使学生熟悉设计过程,了解设计步骤,达到培养学生综合应用所学知识能力、培养学生实际查阅相关设计资料能力的目的、培养学生工程绘画和编写设计说明书的能力。
3、通过课程设计,提高学生理论联系实际,综合分析和解决实际工程问题的能力。
通过它使学生理论联系实际,以实际系统作为实例,对系统进行分析设计,掌握控制系统设计必须遵循的原则、基本内容、设计程序、设计规范、设计步骤方法及系统调试步骤。
通过设计培养学生严肃认真、一丝不苟和实事求是的工作作风。
培养学生的创新意识和创新精神,为今后走向工作岗位从事技术打下良好基础。
三、课程设计内容(含技术指标)1.直流调速系统设计及仿真题目和设计要求:(2)技术数据1.电枢回路总电阻取R=2Ra ;总飞轮力矩:225.2a GD GD =。
2.其他参数可参阅教材中“双闭环调速系统调节器的工程设计举例”的有关数据。
3.要求:调速范围D=10,静差率S≤5%:稳态无静差,电流超调量%5%≤i σ;启动到额定转速时的转速退饱和超调量%10≤n σ。
电力拖动自动控制系统课程设计

课程设计任务书
m。
Ks=
路总电
m。
采用三相全平波电抗器电阻R
图1 系统电气原理框图
图4 转速环仿真图形
图5 电流环仿真图形
从图中可以看出,扰动很快得到了调节,这是两个PI型调节器自动调节的作用。
另外从图中也可以看到,系统是无静差运行的,符合设计的要求。
从仿真的结果来看,得到这样结论:
(1) 工程设计方法在推导过程中为了简化计算做了许多近似的处理
而这些简化处理必须在一定的条件下才能成立。
例如: 将可控硅触发和整流环节近似地看作一阶惯性环节, 设计电流环时不考虑反电势变化的影响; 将小时间常数当作小参数近似地合并处理; 设计转速环时将电流闭环从二阶振荡环节近似地等效为一阶惯性环节等。
(2) 仿真实验得到的结果也并不是和系统实际的调试结果完全相同
课程设计说明书N O.10。
电力拖动自动控制系统课程设计

《运动控制系统设计》课程设计报告设计题目:转速、电流双闭环直流调速系统设计与实践班级:04 级自动化一班学号:姓名:指导教师:设计时间:2007.11.20 —2007.12.14目录摘要第一章概述第二章设计任务及要求2.1设计任务:2.2设计要求:2.3理论设计3.1方案论证3.2系统设计3.2.1电流调节器设计3.2.1.1确定时间常数3.2.1.2 选择电流调节器结构3.2.1.3计算电流调节器参数3.2.1.4 校验近似条件3.2.1.5 计算调节器电阻和电容3.2.2速度调节器设计3.2.2.1 确定时间常数3.2.2.2 选择转速调节器结构3.2.2.3 计算转速调节器参数3.2.2.4 校验近似条件3.2.2.5 计算调节器电阻和电容3.2.2.6 校核转速超调量第三章系统建模及仿真实验4.1MATLAB 仿真软件介绍4.2仿真建模及实验4.2.1单闭环仿真实验4.2.2双闭环仿真实验4.2.3仿真波形分析第四章实际系统设计及实验5.1 系统组成及工作原理5.2 设备及仪器5.3 实验过程5.3.1 实验内容5.3.2 实验步骤第五章总结与体会参考文献摘要从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等.给定信号为0~10V直流信号,可对主电路输出电压进行平滑调节。
由于其机械特性硬,调速范围宽,而且是无级调速,所以可对直流电动机进行调压调速。
动静态性能好,抗扰性能佳。
速度调节及抗负载和电网扰动,采用双PI调节器,可获得良好的动静态效果。
电流环校正成典型I型系统。
为使系统在阶跃扰动时无稳态误差,并具有较好的抗扰性能,速度环设计成典型Ⅱ型系统。
根据转速、电流双闭环调速系统的设计方法,用Simulink做了带电流补偿的电压负反馈直流调速系统进行仿真综合调试,分析系统的动态性能,并进行校正,得出正确的仿真波形图。
电力拖动自动控制系统 教案

电力拖动自动控制系统1. 介绍1.1 任务背景电力拖动自动控制系统是一种能够通过电力传动实现自动控制的技术系统。
该系统通过电动机驱动机械传动装置,实现对机械设备的运动控制和工作过程的自动化。
在工业生产中,电力拖动自动控制系统被广泛应用于各种生产过程中,提高了生产效率、质量和安全性。
1.2 目标本教案旨在介绍电力拖动自动控制系统的原理、应用和发展趋势,帮助学生理解和掌握该技术的基本概念、工作原理和应用场景,并培养学生的动手实践能力和解决问题的能力。
2. 原理2.1 电力拖动原理电力拖动自动控制系统的核心是电动机,通过电动机的转动来驱动机械设备。
电动机将电能转化为机械能,通过机械传动装置将动力传递给工作设备。
电动机的转速和扭矩可以通过控制电机的电压、电流等参数来实现调节。
2.2 控制原理电力拖动自动控制系统通过控制电动机的参数来实现对设备的自动控制。
控制系统可以根据预设的工艺要求和工作条件,自动调节电动机的转速、运行时间等参数。
控制系统通常包括传感器、执行器、控制器和人机界面等组成部分。
3. 应用3.1 工业应用电力拖动自动控制系统在工业领域有广泛的应用,例如生产线上的输送系统、机械加工设备、装配线等。
通过电力拖动自动控制系统,可以实现设备的精确控制,提高生产效率和质量,同时减少人力投入和工作风险。
3.2 交通运输应用电力拖动自动控制系统在交通运输领域也有重要的应用。
例如,电动车、地铁、高铁等交通工具都采用了电力拖动自动控制系统来驱动车辆。
通过该系统,可以实现对车辆的自动运行、刹车和悬挂等控制,提高了交通运输的安全性和舒适性。
4. 发展趋势4.1 智能化随着人工智能和物联网技术的发展,电力拖动自动控制系统也呈现出智能化的趋势。
未来的电力拖动自动控制系统将更加智能化,能够自动学习和优化控制策略,实现更高效、更精准的控制。
4.2 节能环保电力拖动自动控制系统也将朝着节能环保的方向发展。
通过优化控制策略和节能设备的应用,可以减少能源消耗和环境污染,实现可持续发展。
电力拖动与自动控制课程设计

题目: 单闭环不可逆直流调速系统设计1 技术指标电动机参数: PN=3KW, nN=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。
主回路总电阻R=2.5, 电磁时间常数Tl=0.017s, 机电时间常数Tm=0.075s。
三相桥式整流电路, Ks=40。
测速反馈系数=0.07。
调速指标: D=30, S=10%。
2 设计规定(1)闭环系统稳定(2)在给定和扰动信号作用下, 稳态误差为零。
3 设计任务(1)绘制原系统旳动态构造图;(2)调整器设计;(3)绘制校正后系统旳动态构造图;(4)撰写、打印设计阐明书。
4 设计阐明书设计阐明书严格按**大学毕业设计格式书写,所有打印.此外,设计阐明书应包括如下内容:(1)中文摘要(2)英文摘要目录第一章中文摘要 ············································································错误!未定义书签。
第二章英文摘要 ············································································错误!未定义书签。
电力拖动自动控制系统课设

电力拖动自动控制系统课设一、引言电力拖动自动控制系统是一种用于控制和驱动电力动力设备的自动化系统。
它通过将电力传递到动力设备上,实现自动控制和驱动,在工业生产中起到重要的作用。
本文将介绍电力拖动自动控制系统的设计和实施。
二、系统设计2.1 系统需求分析在设计电力拖动自动控制系统之前,首先需要进行需求分析。
根据实际情况和用户要求,明确电力拖动自动控制系统所需的功能和性能。
2.2 系统功能设计基于系统需求分析的结果,确定电力拖动自动控制系统的功能设计。
包括控制模块、驱动模块、传感模块等,以实现系统的自动化控制和驱动。
2.3 系统硬件设计根据系统功能设计的结果,进行系统硬件设计。
选择适当的硬件设备,包括计算机、PLC、电机、传感器等,以满足系统的需求,并确保硬件设备的稳定性和可靠性。
2.4 系统软件设计在系统硬件设计的根底上,进行系统软件设计。
包括编写控制程序、驱动程序和界面程序等,以实现系统的自动化控制和监控。
3.1 系统搭建根据系统设计的结果,进行系统搭建。
连接硬件设备,安装软件程序,并进行测试和调试,确保系统能够正常工作。
3.2 系统运行在系统搭建完成后,进行系统运行。
对系统进行实际操作和测试,验证系统的功能和性能是否符合需求。
3.3 系统优化在系统运行过程中,发现问题和缺乏之处,进行系统优化。
对硬件设备和软件程序进行调整和改进,提高系统的性能和稳定性。
电力拖动自动控制系统广泛应用于工业生产中,具有自动化程度高、效率高、平安可靠等优点。
例如,在生产线上实现自动化装配和操作,提高生产效率和产品质量。
五、系统总结电力拖动自动控制系统是一种重要的自动化系统,能够满足工业生产中对于控制和驱动设备的需求。
本文介绍了电力拖动自动控制系统的设计和实施过程,包括系统需求分析、功能设计、硬件设计、软件设计、系统搭建、系统运行和系统优化等。
通过系统的实施和应用,可以提高生产效率和产品质量,为工业生产带来重要的价值。
电力拖动自动控制系统课程设计
电力拖动自动控制系统课程设计设计目的本课程设计旨在让学生掌握电力拖动自动控制系统的基本原理和设计方法,通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。
设计背景电力拖动自动控制系统被广泛应用于各种工业设备和交通工具中,通过自动电控技术实现设备的高效、安全和稳定运行。
本课程设计旨在让学生通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。
设计内容本课程设计包括以下三个部分:1. 电力拖动自动控制系统的原理本部分主要介绍电力拖动自动控制系统的基本原理,包括:•电力拖动系统的结构和组成•电力拖动系统的各种传感器和执行器的工作原理•电力拖动系统的信号处理和控制方法2. 电力拖动自动控制系统的实际操作本部分主要介绍电力拖动自动控制系统的实际运行和操作方法,包括:•电力拖动系统的系统参数和性能测试•电力拖动系统的PID控制器的参数设置和校准•电力拖动系统的自动控制模式的设置和调试3. 电力拖动自动控制系统的仿真本部分主要介绍电力拖动自动控制系统的仿真和模拟方法,包括:•电力拖动系统的MATLAB/Simulink仿真模型的建立和调试•电力拖动系统的虚拟仿真平台的使用和应用案例分析设计流程本课程设计的流程如下:1.学习电力拖动自动控制系统的基本原理和相关知识。
2.利用实际设备进行电力拖动自动控制系统的实际操作和调试。
3.利用MATLAB/Simulink软件进行电力拖动自动控制系统的仿真模拟。
4.根据仿真结果进行电力拖动自动控制系统的优化和改进。
设计要求本课程设计的要求如下:1.学生需要按要求完成每个部分的实验和作业。
2.学生需要完成一份课程设计报告,内容应涵盖各个部分,报告格式为Markdown文本格式。
3.学生需要在规定时间内提交课程设计报告,否则视为未完成课程设计。
设计评价本课程设计的评价主要考核以下方面:1.学生是否达到了课程设计目的和要求。
2.学生对电力拖动自动控制系统的掌握程度和应用能力。
电力拖动自动控制系统课程设计
二○一一~二○一二学年第二学期信息科学与工程学院课程设计报告书课程名称:电力拖动自动控制系统程设计班级:自动化2009级 2 班学号:200904134064姓名:指导教师:二○一二年六月一、题目、任务及要求题目:在一个由晶闸管整流装置供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:P N=60 KW,U N=220 V,I N=308 A,n N=1000 r/min,电动势系数Ce=0.196 V∙min/t,主回路电阻R=0.18 Ω,触发整流环节的放大倍数K s=35,等效惯性时间常数T s=0.00333 s。
电磁时间常数T l=0.012 s,机电时间常数T m=0.12 s,电流反馈滤波时间常数T oi=0.0025 s,转速反馈滤波时间常数T on=0.015 s。
额定转速时的给定电压(U n∗)N=10 V,调节器ASR,ACR 饱和输出电压U im∗=10 V,U cm=6.5 V。
系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量δi≤5%,空载启动到额定转速时的转速超调量δn≤10%。
任务:1)用工程设计方法,设计双闭环调速系统的电流和转速调节器,相应的调节器放大电路,并进行频率校验。
2)用simulink进行双闭环系统性能验证。
二、设计步骤规范化要求按如下步骤,双闭环调速系统的电流和转速调节器的设计。
1. 确定电流反馈系数β(假设启动电流在339 A以内)和转速反馈系数α;2. 设计电流调节器ACR,计算其参数R i、C i和C oi,已知调节器的输入回路电阻R0=40 KΩ;3. 设计转速调节器ASR,计算其参数R n、C n和C on,已知调节器的输入回路电阻R0=40 KΩ;4. 进行频率校验;5. 计算电动机带40%额定负载启动到最低转速时的转速超调量。
6. 计算空载启动到额定转速的时间。
7. 用simulink对所设计闭环系统进行仿真验证;8. 总结本次课程设计的收获体会。
电力拖动自动控制系统课程设计(DOC)
HENAN INSTITUTE OF ENGINEERING实训报告题目十机架连轧机分部传动直流调速系统的设计学生姓名李东盼专业班级电气工程1222 学号************系部电气信息工程学院指导教师程辉完成时间 2014年 1 月 3 日实训报告评语一、实训期间个人表现□1.尊敬师长,团结他人,能吃苦耐劳。
□2.在现场能坚持不迟到,不早退,勤奋学习。
□3.出现少于3次迟到和早退现象,表现一般。
□4.能主动向指导老师提问,能积极做好各项设计任务。
□5.在实训中能灵活运用相关专业知识,有较强的创新意识。
二、实训报告内容完成质量□1.能按时完成报告内容等实训成果资料,无任务遗漏。
□2.能按时完成报告内容等实训成果资料,有少许任务遗漏。
□3.不能按时完成报告内容等实训成果资料,有多处任务遗漏。
□4.条理清晰,书写规范工整,图文并茂,报告内容全面,主要内容阐述详细,能体现实训过程中做了大量工作,与专业相关知识能紧密联系,认识体会深刻,起到了实训的作用。
□5.条理清晰,书写规范工整,图文并茂,报告内容全面,主要内容阐述详细,能体现实训过程中做了大量工作,与专业相关知识能较紧密联系,认识体会较深刻,起到了实训的作用。
□6.条理清晰,书写较规范工整,报告内容全面,主要内容阐述较详细,能体现实训工作过程,能与专业相关知识联系起来,认识体会较深刻,起到了实训的作用。
□7.条理较清晰,书写较规范工整,报告内容较全面,主要内容阐述较详细,能体现实训过程中的相关工作,与专业相关知识不能紧密联系,认识体会不太深刻,基本起到了实训的作用。
□8.内容有雷同现象。
三、成绩不合格原因□1.实训期间旷课超过3次。
□2.报告有严重抄袭现象。
□3.未同时上交实训报告。
四、需要改进之处□1.进一步端正实训态度。
□2.加强报告书写的规范化训练,对主要内容要加强理解。
□3.加强相关专业知识的学习,深刻理解各设计步骤具体的要求。
五、其他说明等级:评阅人:职称:讲师年月日交直流调速系统的设计摘要直流调速系统具有调速范围广精度高动态性能好和易于控制等优点,因此本设计运用《电力拖动控制系统》的理论知识设计出可行的直流调速系统,并详细分析系统的原理及其静态和动态性能,且利用SIMULINK对系统进行各种参数的给定下的仿真。
电力拖动控制系统课程设计
图3-4 双闭环直流调速系统的静特性
• 在负载电流小于Idm时表现为转速无静差,转速 负反馈起主要调节作用。 • 当负载电流达到Idm时,转速调节器为饱和输出 U*im,电流调节器起主要调节作用,系统表现为 电流无静差。 • 采用两个PI调节器形成了内、外两个闭环的效果。 • 当ASR处于饱和状态时,Id=Idm,若负载电流减 小,Id<Idm,使转速上升,n>n0,Δn<0,ASR反 向积分,使ASR调节器退出饱和。
1.起动过程分析
• 电流Id从零增长到Idm,然后在一段时间内维 持其值等于Idm不变,以后又下降并经调节 后到达稳态值IdL。 • 转速波形先是缓慢升速,然后以恒加速上 升,产生超调后,到达给定值n*。 • 起动过程分为电流上升、恒流升速和转速 调节三个阶段, • 转速调节器在此三个阶段中经历了不饱 和、饱和以及退饱和三种情况。
2.2 调节器的工程设计方法
3.3.1 控制系统的动态性能指标 • 在控制系统中设置调节器是为了改善系统 的静、动态性能。 • 控制系统的动态性能指标包括对给定输入 信号的跟随性能指标和对扰动输入信号的 抗扰性能指标。
1、跟随性能指标
• 以输出量的初始值为零,给定信号阶跃 变化下的过渡过程作为典型的跟随过程, • 此跟随过程的输出量动态响应称作阶跃 响应。 • 常用的阶跃响应跟随性能指标有上升时 间、超调量和调节时间。
稳态结构图与参数计算
图3-2
转速、电流反馈控制直流调速系统原理图
ASR——转速调节器 ACR——电流调节器 TG——测速发电机
1. 稳态结构图和静特性
• 转速调节器ASR的输出限幅电压决定了电流给定 的最大值,电流调节器ACR的输出限幅电压限制 了电力电子变换器的最大输出电压, • 当调节器饱和时,输出达到限幅值,输入量的变 化不再影响输出,除非有反向的输入信号使调节 器退出饱和; • 当调节器不饱和时,PI调节器工作在线性调节状 态,其作用是使输入偏差电压在稳态时为零。 • 对于静特性来说,只有转速调节器饱和与不饱和 两种情况,电流调节器不进入饱和状态 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运动控制系统设计》课程设计报告设计题目:转速、电流双闭环直流调速系统设计与实践班级:04 级自动化一班学号:姓名:指导教师:设计时间:2007.11.20 —2007.12.14目录摘要第一章概述第二章设计任务及要求2.1设计任务:2.2设计要求:2.3理论设计3.1方案论证3.2系统设计3.2.1电流调节器设计3.2.1.1确定时间常数3.2.1.2 选择电流调节器结构3.2.1.3计算电流调节器参数3.2.1.4 校验近似条件3.2.1.5 计算调节器电阻和电容3.2.2速度调节器设计3.2.2.1 确定时间常数3.2.2.2 选择转速调节器结构3.2.2.3 计算转速调节器参数3.2.2.4 校验近似条件3.2.2.5 计算调节器电阻和电容3.2.2.6 校核转速超调量第三章系统建模及仿真实验4.1MATLAB 仿真软件介绍4.2仿真建模及实验4.2.1单闭环仿真实验4.2.2双闭环仿真实验4.2.3仿真波形分析第四章实际系统设计及实验5.1 系统组成及工作原理5.2 设备及仪器5.3 实验过程5.3.1 实验内容5.3.2 实验步骤第五章总结与体会参考文献摘要从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等.给定信号为0~10V直流信号,可对主电路输出电压进行平滑调节。
由于其机械特性硬,调速范围宽,而且是无级调速,所以可对直流电动机进行调压调速。
动静态性能好,抗扰性能佳。
速度调节及抗负载和电网扰动,采用双PI调节器,可获得良好的动静态效果。
电流环校正成典型I型系统。
为使系统在阶跃扰动时无稳态误差,并具有较好的抗扰性能,速度环设计成典型Ⅱ型系统。
根据转速、电流双闭环调速系统的设计方法,用Simulink做了带电流补偿的电压负反馈直流调速系统进行仿真综合调试,分析系统的动态性能,并进行校正,得出正确的仿真波形图。
关键词:直流调速双闭环转速调节器电流调节器第一章概述为了实现转速和电流两种负反馈分别起作用,可在V-M调速系统中设计两个调节器,分别引入转速负反馈和电流负反馈。
二者之间实行嵌套联接。
把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环,形成转速、电流双闭环调速系统。
采用PI调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值I的恒流过程。
按照反馈控制规律,采用某个物理量的负反馈就可dm以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。
应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。
通过系统建模和仿真,用MATLAB/Simulink工具分析设计直流电动机速度控制系统。
第二章设计任务及要求2.1设计任务设计一个双闭环直流调速系统,要求利用晶闸管供电,整流装置采用三相桥式电路。
直流电动机:●额定功率29.92KW,额定电压220V,额定电流136A,●额定转速 1460r/m,e C=0.132Vmin/r,●允许过载倍数λ=1.5。
●晶闸管装置放大系数:s K=40●电枢回路总电阻:R=1Ω●时间常数:机电时间常数m T=0.18s,电磁时间常数l T=0.03s●电流反馈系数:β=0.05V/A●转速反馈系数:α=0.007v min/r●转速反馈滤波时间常数:onT=0.005s,oi T=0.005s●总飞轮力矩:GD2=2.5N.m●h=52.2设计要求(1)调速范围D=10,静差率≤5%;稳态无静差,电流超调量iσ≤5%,电流脉动系数S≤10%;启动到额定转速时的转速退饱和超调量σ≤10%。
n(2)系统具有过流、过压、过载和缺相保护。
(3)触发脉冲有故障封锁能力。
(4)对拖动系统设置给定积分器。
第三章理论设计3.1方案论证系统设计理论按照设计多环控制系统先内环后外环的一般原则,从内环开始,逐步向外扩展设计原则(本课题设计先设计电流内环,后设计转速外环)。
在双闭环系统中应该首先设计电流调节器,然后把整个电流环看作转速调节系统中的一个内环节,再设计转速调节器。
这样的系统能够实现良好的静态和稳态性能,结构简单,工作可靠,设计和调试方便,达到本课程设计的要求。
双闭环直流调速系统的结构框图:3.2系统设计3.2.1电流调节器设计3.2.1.1确定时间常数(1) 整流装置滞后时间常数s T 。
按书[]1表1-2,三相电路的平均失控时间:s T =0.0017s (3-1)(2) 电流滤波时间常数oi T 。
oi T =0.005s (3-2) (3) 电流环小时间常数之和i T ∑。
按小时间常数近似处理,取为:i T ∑=s T +oi T =0.0067s (3-3)3.2.1.2 选择电流调节器结构根据设计要求iσ≤5%,并保证稳态电流无差,可按典型I 型系统设计电流调节器。
电流环控制对象是双惯性型的,因此可用PI 电流调节器,它的传递函数为:)(s W ACR =(1)i i i K s sττ+ (3-4) 图3.1 双闭环直流调速系统的动态结构图检查对电源电压的抗扰性能:48.40067.003.0==∑i l T T (3-5) 符合典型I 型系统动态抗扰性能,并且各项性能指标都是可以接受的。
3.2.1.3计算电流调节器参数电流调节器超前时间常数:i τ=l T =0.03s 。
(3-6)电流环开环增益:要求i σ≤5%是按书[]1表2-2,应取I i K T ∑=0.5,因此:63.740067.05.0==i K (3-7)于是,ACR 的比例系统为:12.1==KsRK Ki i i βτ(3-8)3.2.1.4 校验近似条件电流环截至频率:63.74==ci I K ω (3-9)晶闸管整流装置传递函数近似的条件为:111196.1330.0017ci s s T ω-==>⨯ ( 3-10) 忽略反电动势对电流环动态影响的近似条件为:1394.87ci s ω-==< (3-11) 电流环小时间常数近似处理条件为:13180.8ci s ω-==> (3-12)3.2.1.5 计算调节器电阻和电容按所用的运算放大器取得040R K =Ω。
各电容和电阻值为:R R K ii =、i i i C R =τ、oi oi C R T 041= (2-13)Ri=40k Ω (2-14)按照上面计算所得的参数,电流环内环可以达到的动态跟随性能指标为i σ=4.3%<5%,满足课题所给要求。
3.2.2速度调节器设计3.2.2.1 确定时间常数(1)电流环等效时间常数1/I K 。
取i I K T ∑=0.5,则:0134.00067.021=⨯=IK (3-15) (2)转速滤波时间常数on T 。
根据所用测速发电机波纹情况,取:on T =0.005s 。
(3-16)(3)转速环小时间常数n T ∑。
按小时间常数近似处理,取:0184.01=+=∑on In T K T (3-17)3.2.2.2 选择转速调节器结构按设计要求,选用PI 调节器,其传递函数为:n n ASR(s)n K (s+1)W =sττ (3-18)3.2.2.3 计算转速调节器参数按跟随性能和抗扰性能都较好的原则,现取h=5,则ASR 的超前时间常数为:i n==hT 50.0274=0.137s τ∑⨯ (3-19) 并且求得转速环开环增益为:2N 222n 6h+1K =159.842h T 225(0.0274)s -∑==⨯⨯ (3-20) 则可得ASR 的比例系数为:n n (h+1)630.1130.1K =15.62h RT 2250.0059.50.0274e m C T βα∑⨯⨯⨯==⨯⨯⨯⨯ (3-21)3.2.2.4 校验近似条件转速截止频率为:11159.840.13721.9N cn N n K K s ωτω-==⨯=⨯= (3-22)电流环传递函数简化条件为:1363.7cn s ω-==> (3-23) 转速环外环的小时间常数近似处理条件为:1327.4cn s ω-==> 32-24)3.2.2.5 计算调节器电阻和电容按所用的运算放大器取0R =40k Ω。
各电容和电阻值为:015.640625n n R K R K K =⨯=⨯Ω=Ω, (3-25) 0.1370.22625n n n C F R K τμ===Ω(3-26)3.2.2.6 校核转速超调量当h=5时,由书[]1可以查得:n σ=37.6%,这并不能满足课题所给要求。
实际上,由于表2-6是按线性系统计算的,而突加阶跃给定时,ASR 已经饱和,不符合如今系统的前提要求,所以应该按ASR 退饱和的情况重新计算超调量。
如下:()max max n**T 2b N n b b m C n C n z C n C n T σλ∑⎛⎫⎛⎫∆∆∆∆==-⎪ ⎪⎝⎭⎝⎭1.29.50.02740.113281.2% 2.1 4.2%10%16000.1⨯=⨯⨯⨯⨯=< (3-27)满足课题所给要求。
第四章 系统建模及仿真实验4.1MATLAB 仿真软件介绍本设计所采用的仿真软件是MATLAB 7.1。
MATLAB 7.1是一种科学计算软件,专门以矩阵的形式处理数据。
MATLAB 7.1提供了基本的数学算法,例如矩阵运算、数值分析算法, 它还 集成了 2D 和 3D 图形功能,以完成相应数值可视化的工作,并且提供了一种交互式的高级编程语言—— M 语言,利用 M 语言可以通过编写脚本或者函数文件实现用户自己的算法。
Simulink 是基于 MATLAB 7.1 的框图设计环境,可以用来对各种动态系统进行建模、分析和仿真,它的建模范围广泛,可以针对任何能够用数学来描述的系统进行建模。
4.2仿真建模及实验4.2.1单闭环仿真实验仿真设计采用MATLAB7.1软件进行系统建模。
按照课题所给要求,我们先用单闭环直流调速系统进行仿真设计,运用MATLAB的simulink进行系统建模,单闭环直流调速系统仿真模型如图4.1所示:图4.1带比例放大器的闭环直流调速系统仿真模型单闭环直流调速系统转速图4.2和电流仿真波形图4.3 所示:图4.2单闭环直流调速系统转速仿真波形图4.3单闭环直流调速系统电流仿真波形由图4.2与图4.3可以看到,转速和电流波形都不太好,都带有较大的震荡,并且带有静差,无法使转速最后维持在1600r/s。