高速铁路隧道

合集下载

广东至湖南最长隧道

广东至湖南最长隧道

广东至湖南最长隧道广东省和湖南省都是我国的经济发展快速的城市,也是隧道交通发达的城市,那么两省份的最长隧道是哪条呢?下面是小编为大家整理的广东至湖南最长隧道的相关信息,希望对大家有帮助。

广东至湖南最长隧道大瑶山隧道是广东至湖南最长隧道,也是中国已通车的最长双线电气化铁路隧道,位于京广铁路广东省粤北瑶山山区的坪石至乐昌间,全长14295米。

隧道埋深70至910米,双线铁路电力牵引断面,由于采用截弯取直的长隧道设计方案,隧道建成后,比既有铁路坪石至乐昌间缩短约15公里。

开挖大瑶山隧道,推行了国外最先进的设计和施工的方法——“新奥法”。

采用八十年代国内外最先进的大型机械,实现了主要工序——钻爆、支护、装运三条机械化作业线。

简介大瑶山隧道处在京广铁路衡广(衡阳至广州)复线的坪石至乐昌间,自北向南穿大瑶山,位于广东省乐昌市境内,全长14.295公里,是目前国内最长的双线电气化隧道,其长度在世界铁路隧道中列第十位。

隧道采用"三斜一竖"的施工方案,隧道中部穿过的465米长的9#断层地段,最大涌水量每昼夜高达4200吨,是整座隧道的控制地段。

隧道全面运用新奥法原理施工,最高单口独头月成洞217双线米。

1981年11月开工,1989年12月建成。

获国家科技进步奖特等奖。

武广客运专线大瑶山隧道长118公里的武广客运专线韶关段是全线控制性工程最多、难度最大的路段,其中桥梁、隧道总长占境内里程的一半以上,在铁路建设史上比较罕见。

大瑶山一号隧道全长10.081公里,开挖断面为150平方米,是整个武广客运专线的重点控制性工程,也是我国设计时速350公里以上铁路客运专线最长的山岭双线隧道。

由中国中铁隧道集团有限公司承担施工的武广客运专线重点控制工程、全线最长的山岭隧道——大瑶山一号隧道胜利贯通。

这标志着我国高速铁路的隧道施工技术又提升了一个新的高度,对中国铁路建设的隧道及地下工程施工具有里程碑式的意义。

保证在粤北山区高速运行据承建大瑶山一号隧道的中国中铁隧道集团有限公司有关负责人介绍,早在20年前,该施工单位的大批专家、技术工人就来到了这座被外国专家称为“地质博物馆”、“不可能建成隧道”的南岭深山中,独立修建了当时全国第一、世界第十的衡(阳)广(州)复线大瑶山隧道。

新建高速公路桥梁上跨高速铁路隧道安全影响

新建高速公路桥梁上跨高速铁路隧道安全影响

新建高速公路桥梁上跨高速铁路隧道安全影响摘要:近年来,我国的交通行业有了很大进展,高速公路桥梁工程建设不断增加,在铁路隧道上方修建新的建(构)筑物,会导致铁路隧道周边土体应力重分布,从而导致隧道衬砌结构随之发生位移。

本文首先分析高速公路桥梁施工安全监控方案,其次探讨新建高速公路桥梁上跨高速铁路隧道主要难点,最后就新建高速公路桥梁上跨高速铁路隧道措施进行研究,以供参考。

关键词:高速公路;桥梁;上跨高速铁路隧道;变形引言新建公路桥上跨既有隧道时,桥桩施工与桥面荷载不可避免地会对周围土体产生扰动,使得原始地层和既有隧道应力平衡状态发生破坏,引起隧道结构的二次受力和变形,严重时可能引发安全事故,因此施工前应重点分析评估新建桥梁施工和结构荷载对既有隧道的影响。

分析新建公路桥上跨隧道施工、运营对铁路隧道结构变形、轨道变形和衬砌结构安全系数的影响,为今后类似工程提供参考。

1高速公路桥梁施工安全监控方案大跨连续刚构桥施工过程较为复杂,利用对桥梁施工全过程的跟踪监控,对控制参数进行实时调整,以确保施工中结构受力安全可靠、成桥状态结构线形平顺、受力合理符合设计及相关规范要求,使施工过程处于控制之中,结构最大限度地接近理想状态。

为保证桥梁的施工质量,达到桥梁监控的目的,在施工时,桥梁监控的主要内容包括以下方面:根据施工方案,合理选择计算参数,施工全过程的仿真分析,并与设计单位核对,对各阶段的施工监控参数进行预测;用反馈信息修正计算,为调整施工过程出现的偏差提供依据;主墩垂直度监测、基础沉降监测及既有桥梁墩顶位移监测;主梁线形监控;主梁控制截面应力监测;某特大桥主桥转体过程中梁端标高、水平位移等进行实时监测,并对实测数据进行计算分析,当监测数据异常时,及时预警。

2新建高速公路桥梁上跨高速铁路隧道主要难点综合考虑地形现状、地层条件、相对位置关系、铁路隧道变形控制及结构安全、施工难度、风险等因素,高速公路采用桥梁型式上跨既有那了隧道。

高速铁路隧道施工

高速铁路隧道施工

支护方案等方 面论述 了隧道施 工技 术 ,将施工各要素进行科 学、合理地安排, 在一定 的时间和 空间 内 有 组织、有计划、有秩 序地开展施工 ,有利 于指导隧道工程的施工管理。
w m Ⅲ * . ¨ ^* w w m m w M M { “ * ÷ ’ * * * * 、 。 、 … …
高速铁路 隧道施 工
◎侯彦博
现代铁路隧道必须加 强施工管理 ,强化资源配置,坚决贯彻 即两掌子面未过竖井前的压入通风阶段 、掌子面过竖井后的通风 “ 短进尺、弱爆破、强支护、勤量测、早衬砌”的施工原则,统筹 阶段 , 隧道贯通后 的通风阶段。 本文以有斜井的的无瓦斯隧道 ( 独 6 0 0 m)为例介绍施工通风。 安排、科学施工。高度重视爆破 方案 与施工通风方案设计、加强 头掘进 2 支护、进行地质分析 与监控量测工作 ,做好各项施工预案 ,正确 通风计算 :依据规范及相关通风质量 的要求,对瓦斯 的绝对 涌 出量 ( 有瓦期涌出的隧道 ) 、同时作业的最大人数需要量、内燃 选 择施工方法,为安全、优质、快速施工创造条件。 作业所需要的风量、 爆破排烟需风量、 巷道回风量等进行计算 , 五 作业人员与瓦斯涌出量及 优化爆破设计方案、 减小 围岩扰动 、 确保开挖质量 者取大。在采取无轨运输时 ,内燃设备+ 针对不同围岩 的地质特性 , 设计不同的爆破方案 , 合理布置炮 回风要求三者取大即可满足要求。 内燃设备+ 作业人员需要风量计算:洞内同时工作 的内燃设备 眼,严格控制炮眼间距与装药量 ,在减小围岩扰动 的同时,确保设 计轮廓尺寸,减小施工成本。隧道开挖施工爆破直接影响隧道的稳 是在上部装运与二次衬砌时需风量最大,因此主要设备为装载机 、 6 0 0 m,同时在洞内工作 定性 , 爆破方案必须考虑最大限度减少对 围岩的扰动 , 减 少应力集 运输车辆及砼运输车辆。由于独头最长仅 2 1 5 K m/ h) 、二次衬砌运输罐车考虑 1台, 中,有利于形成 自然拱 ,以最大限度保护周边岩体 的稳定性,发挥 的运输重车最多仅 3台 ( 装载机 1 台, 其功率累计为 : ∑Nl = 3 x 2 2 5 + l x 1 6 2 + 1 x 1 2 5 - 9 6 2 ( K W o 围岩的自身承载能力 , 针对现场围岩岩性进行优化爆破设计 ,不断 同时工作的人员只有司机、二次衬砼的工人、其它人员 ,按 3 0人 调整爆破设计参数 ,制定相应 的爆破方案是隧道开挖控制的关键。 = 3 x 9 6 2 + 3 x 3 0 = 2 9 7 6 m ̄ / m i n 。 在钻爆设计 时要充分考虑爆破对地质条件 的影响 :岩体层厚 考虑为保守计算 ,两者需要风量为 Ql 隧道施工规范规定每人、每 K W 均为 3 I I 1 3 / mi n 。 ) <0 . 5 m,节理裂隙极 为发育 的岩体 , 爆破易引起垂直层理 方向的 ( 按允许 的回风速度计算风量 : 《 铁路隧道施工规范》 规定按最 掉块或坍 方, 在易坍塌 之处均采用密钻眼, 少装药的爆破技术。破 低允许风速计算的需风量为 Q 3 = 1 2 o x o . 5 x 6 0 = 3 6 0 0 m / mi n 。 碎岩体 ,层破碎带的岩体破碎, 有时软硬 间隔, 处理不 当会引起严 计 算风速确定 :通过计算比较 ,计算风量 3 6 0 0 m / mi n 。 重坍方 , 除采用隧道减轻振动控制爆破技术外, 还应采取台阶法或 百米漏风量计算 :加强管理可将百米漏风控制在 1 %以内, 最 分部法开挖,并严格控制循环进尺在 0 . 5 ~ 1 . O m 内。非均质岩体对 大独头距离约 2 6 0 0 m,则漏风量 约 2 6 %。 爆破作 用的影响十分明显 ,分部开挖时应将石质差的一侧先开挖 通 风机选型 与布置。送入 到最大通风位置的实际风量估算 : 或掏槽 区设在该侧 ; 爆破参数应根据两种岩体的特性分另 0 采用 ; 为 3 6 0 0 x( 1 . 2 6 %) = 2 6 6 4 m / mi n 。 防止掉块, 坍塌, 开挖后及时支护。人字形节理发育成人字形,隧 到最大通风位置的实际风量仅为: 通风机选择 :轴流风机选择 :根据计算需要风量 3 6 0 0 m / mi n ,而 道拱部易出现坍塌, 爆破时应控制药量,加密炮眼。 计入漏风后实际风机的供风羹应该达到 3 6 0 0 / 0 . 7 4 = 4 8 6 4 m / mi n 。 般双 线隧道采用台阶法分次松动爆破开挖 ,宜采用楔形陶 x 2 2 0 K W 风 机 或选 择 2 台 槽 ,在对称 的陶槽眼中间加一排预裂 空眼 ,先起爆预裂孔 ,预裂 根 据 这 一 通 风 量 要 求 ,可 选 择 2 x 1 3 5 K W 风机 。前者供风量 可达到 5 0 0 0 m ̄ / mi n ,后者 单台约 孔装药量少 ,可有效降低震速 ;爆破雷管跳段时差控制 l O O ms 左 2 6 0 0 ~ 3 0 0 0 m / mi n ,两 台合计 约 5 2 0 0 — 6 0 0 0 m / mi n 射流 风机选 右 ,避免爆破地震叠加 :为 了减 少上半断面掏槽爆破对拱部围岩 2 择 :由于通 风量满足要求,但要满足回风巷速度 ,故在洞内适 当 的影响 ,拱部周边布置密空眼, 将上半断面掏槽区尽量放在底部 , 位置布置射流风机 ,依靠其升压将洞内平均风速提高到 O . 5 m/ s 的 减 小主掏槽眼之间的间距 ,同时对上半断面周边炮 眼采用密孔布 置 ,隔孔装药的技术措施 ,以减 轻爆破振动对围岩 的扰动。对下 要求。 由于边界条件复杂,计算比较 困难 ,依据经验单 口可选择 ~ 3台 7 5 k w 射流风机能满足要求 。 是否能满足要求可依据 实际通 半断面爆破 ,重视底板眼外插角、间距及装药量 的控制 ,将地板 2 风质量检测情况调整。 眼分成 3  ̄ 4个段位起爆 ,减 小爆破效应对底板围岩的扰动 ,严格 通风管选择与管理。轴流风机选择风螺旋风管 ,管径不小于 控 制底板的超挖 ,边墙周边密空眼布置 ,可以靠改变炮眼的起爆 . 8 m, 拉链连接靠连接。设置专门班组进行通风管理负责通风机 、 顺序来提高侧边墙的爆破效果 ,达到设计轮廓与减小砼回填量。 1 通风管安装 ,维护 ,以及通风方式变换 ,承担通风效果的责任。 爆破施工技术要点 :对隧道现场光面爆破进行试验 ,根据 不

交通隧道的分类及其作用

交通隧道的分类及其作用

交通隧道的分类及其作用隧道是一种人工开凿或挖掘的通路,通常是位于地下或山体内部,用于交通运输或供给其他基础设施的通道。

隧道的分类主要根据其用途和结构特点来划分,不同类型的隧道在交通运输和城市建设中发挥着不同的作用。

一、按用途分类1.公路隧道:公路隧道是指用于公路交通的隧道,一般位于山区或城市地下。

公路隧道能够穿越山脉和障碍物,缩短路程,提高交通效率。

同时,公路隧道还能够减少对自然环境的破坏,保护生态平衡。

2.铁路隧道:铁路隧道是指用于铁路交通的隧道,主要用于高速铁路和山区铁路的建设。

铁路隧道具有较长的隧道长度和较大的断面,能够适应高速列车的运行需求。

铁路隧道的建设能够连接起不同城市和地区,促进区域经济的发展。

3.地铁隧道:地铁隧道是指用于城市地铁交通的隧道,一般位于城市地下。

地铁隧道能够分担道路交通压力,提高城市交通效率。

地铁隧道还能够减少空气污染和噪音污染,改善城市环境质量。

4.水利隧道:水利隧道是指用于水利工程的隧道,主要用于引水、排水、输水等方面。

水利隧道能够将水资源引入到需要的地方,满足农田灌溉、城市供水等需求。

水利隧道还能够调节水位,防止洪水和干旱等自然灾害。

5.矿井隧道:矿井隧道是指用于矿山开采的隧道,主要用于矿石的运输和人员的出入。

矿井隧道能够提高矿石的开采效率,减少人力物力的浪费。

矿井隧道还能够保护矿工的安全,防止矿山事故的发生。

二、按结构特点分类1.软土隧道:软土隧道是指隧道穿越软弱土层的隧道,一般需要进行土工处理和加固。

软土隧道在设计和施工中需要考虑土层的承载力、稳定性和沉降等因素。

软土隧道的建设能够解决地下软土地区的交通问题,提高交通运输的安全性和便捷性。

2.硬岩隧道:硬岩隧道是指隧道穿越坚硬岩石的隧道,一般需要进行爆破和掘进。

硬岩隧道具有较高的岩石强度和稳定性,能够承受较大的地压和水压。

硬岩隧道的建设能够穿越山脉和地质断层,缩短路程,提高交通效率。

3.泥水隧道:泥水隧道是指隧道穿越泥状土层或含水层的隧道,一般需要进行盾构和涌水处理。

高速铁路桥隧建筑物技术标准 防护、动力、救援设备及河调建筑技术标准

高速铁路桥隧建筑物技术标准 防护、动力、救援设备及河调建筑技术标准

防护、动力、救援设备及河调建筑技术标准
第3.14.4条 隧道救援通道走行面不应低于轨面,走行面应平整、铺设稳固,并与相邻沟槽盖板顶面平齐。
第3.14.5条
隧道内紧急救援站长度应在450~500m; 紧急救援站内站台宽度宜为2.3m,疏散横 通道间距不宜大于50m,横通道内应设有 两道密闭防护门、通行宽度不应小于3.4m。 避难所设置在救援通道的疏散出口通道内。
防护、动力、救援设备及 河调建筑技术标准
01 高速铁路桥梁救援疏散通道 技术标准
02 高速铁路隧道防灾救援疏散 通道技术标准
03 河道、防护设备及调节河流 建筑物技术标准
04 高速铁路安全检查及动力设 备技术标准
05 高速铁路涵洞及框构顶进技 术标准
06 高速铁路运营其它技术规定
防护、动力、救援设备及河调建筑技术标准
防护、动力、救援设备及河调建筑技术标准
第3.16.5条 全长大于500m的钢梁桥,应在桥头设动力设备,并在桥上安装风管、水管、电力动力线 及储风、储砂桶等相应的设备。
第3.16.6 条
河道可航行的桥梁应配备检修船只, 常年有水桥梁应配备水下检查设备。
防护、动力、救援设备及河调建筑技术标准
5.高速铁路涵洞及框构顶进技术标准 第3.8.1条 涵洞宜采用钢筋混凝土框架箱涵。 第3.8.2条 排洪涵洞的最小孔径不应小于1.25m,且全长不应大于25m;当全长大于25m时,孔 径相应加大。无淤积的灌溉涵孔径不应小于1.0m,长度不宜超过15m;当全长大于 15m时,孔径相应加大。 第3.8.3条 交通涵不应积水。排洪涵应与路基排水沟、外部的自然水系及地方排灌系统顺接,确 保排水畅通。
1.25m;节间密封不得渗漏水,路基和地基应具有抗渗稳定性;出入口与渠道连接的

中南大学《隧道工程》第11章国外高速铁路隧道简介

中南大学《隧道工程》第11章国外高速铁路隧道简介

闭”结构,不允许地下水流入隧道,衬砌结构除考虑围岩
和其他荷载外,还承受部分水压力。
8
J3 德国高速铁路隧道
德国早期高速铁路隧道横断面图
加强导线 接触网导线 工作有效空间 信号
公路标
保护层空间
隧图1道1-横6 断德国面第积2代(新线轨隧面道横以断面上(单)位约:m为) 82m2
9
J3 德国高速铁路隧道
《隧 道 工 程》
国外高速铁路隧道简介
中南大学隧道与地下工程系
1
国外高速铁路隧道简介
主要内容
➢日本新干线隧道 ➢韩国高速铁路隧道 ➢德国高速铁路隧道 ➢法国高速铁路隧道 ➢其他国家高速铁路隧道
2
J1 日本新干线,数量最多; 2.日本新干线铁路隧道多采用单洞双线断面,其 净空有效面积只有62~64m2,是目前世界各国双线高 速铁路隧道中断面最小者; 3.为解决乘车舒适度和降低洞口微气压波,日本 新干线铁路隧道采用了提高列车密封性能和在洞口设 置缓冲结构的措施;
5.隧道主要采用复合式衬砌,初期支护为主要受 力结构,多采用型钢钢架支护,二次衬砌的主要作用 是安全储备,厚度一般采用30cm。
5
J1 日本新干线隧道
6
J2 韩国高速铁路隧道
1.韩国首尔至釜山高速铁路列车运行速度设计目标值为 350km/h,隧道净空有效面积采用107m2,是世界各国高速铁路 隧道中断面最大者;
14
J4 其它国家高速铁路隧道 3.奥地利高速铁路隧道横断面图
FD5.30
隧道横图11断-8 面奥地积利新(建高轨速铁面路隧以道横上断面)(单约位:为m) 66m2 15
J4 其它国家高速铁路隧道 4.瑞士高速铁路隧道横断面图
隧道横断面积(轨面以上)约为66m2 16

高速铁路隧道隧道结构设计与技术标准

25(15)
第42页/共132页
二.主要设计原则及措施
(三)洞门及缓冲结构设计
1、洞门设计考虑的因素
第43页/共132页
二.主要设计原则及措施
(三)洞门及缓冲结构设计
2、洞口里程的确定
第44页/共132页
二.主要设计原则及措施
(三)洞门及缓冲结构设计
3、洞门及洞口处理措施
第45页/共132页
二.主要设计原则及措施
(3)开孔设计
第56页/共132页
二.主要设计原则及措施
(四)防排水设计
满足《地下工程防水技术规范》(GB50108)规定的一级防水标准,不允许渗水,衬砌表面无湿渍。
1、防排水需要达到的目标
堵水有效、防水可靠、排水通畅、系统可维护
第57页/共132页
二.主要设计原则及措施
(四)防排水设计
2、防排水设计型式
最长隧道
速度目标值
名称
长度
数据
24
32
31.1%
1-10800
1-10800
狮子洋隧道
10800
350km/h
(二)国内高铁隧道概况
3、广深港客运专线
一.境内外高铁隧道概况
第13页/共132页
二.主要设计原则及措施
(一)建筑限界及内轮廓
1、内轮廓需要主要设计原则及措施
工况
计算模式
地层—结构
荷载—结构
III级
工况一
对称20m
对称8.6m
工况二
偏压中心20m
偏压中心10m
工况三
300m
深埋
IV级
工况一
对称30m
对称17.2m
工况二

隧道高度标准

隧道高度标准如下:
1. 道路隧道高度标准:国际公路联盟(IRU)规定,为了保证卡车等大型货车的安全行驶,普通的双向行车隧道中的净高应该不少于4.5米。

在高速公路中,净高应该达到5.0米以上。

2. 铁路隧道高度标准:一般来说,铁路隧道的净高应该不小于4.5米,以满足铁路列车的通行需要。

在特殊情况下,如山区铁路建设,在允许列车减速的前提下,可以适当降低净高标准。

3. 地铁隧道高度标准:地铁隧道的净高要根据所选用地铁列车类型和运营方式进行确定。

一般来说,为了保证乘客的舒适度和安全性,地铁隧道的净高应该不小于2.8米。

以上就是隧道的高度标准。

高速铁路隧道隧道结构设计与技术标准

(二)结构设计
1、衬砌类型的选取 根据二次衬砌结构在运营期间是否承受水压力
排水型衬砌型式 复合式衬砌 结构 防水型衬砌型式
不承受水压力
承受水压力
二种类型结构的设计原则与支护参数有所不同。
二.主要设计原则及措施
(二)结构设计
1、衬砌类型的选取
暗挖隧道采用复合式衬砌; 明挖隧道采用整体式衬砌; Ⅲ~Ⅵ级围岩隧道衬砌应采用曲墙有仰拱的形式;
钢支撑
钢支撑 125H
喷混凝土 20cm
喷混凝土 15cm
图 10
日本 Narashinodai 隧道开挖步骤
一.境内外高铁隧道概况
(一)境外高铁隧道概况
5、台湾
台北-高雄高速铁路
台湾南北高速铁路 全线长394km,设计时 速350km/h,运行时速 300km/h,其中暗挖施 工隧道42座,总长 39km。 隧道净空有效面积 为90m2。双线隧道净空 跨度为15.35m,净高 10.5m,线间距4.5m, 实际开挖面积 147~155m2。
一.境内外高铁隧道概况
(二)国内高铁隧道概况
1、武广客运专线
ቤተ መጻሕፍቲ ባይዱ
乌龙泉 武汉
咸宁
韶关
广州
岳阳
长沙
株洲 衡阳 郴州 衡山
隧道概况如下:
项目 数据 隧道数 (座) 222 隧道总长 度(km) 172 隧线比 19.8% 特长隧道 数(座-m) 1-10081 3~10km隧道数 (座-m) 12-67163 最长隧道 名称 大瑶山一号 长度 10081 速度目标 值 350km/h
排水型结构支护参数表
初期支护 锚杆 间距(m) (环×纵) 钢架 间距 (m) 二次衬砌 预留变形 量(cm)

高速铁路隧道毕业设计

毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档