紫金学院 差分放大电路实验报告
实验报告_差分式放大电路

实验报告_差分式放大电路一、实验目的:1.了解差分式放大电路的工作原理;2.熟悉差分放大电路的实际应用场景;3.掌握实验中的测量方法和仪器的使用。
二、实验仪器与设备:1.示波器;2.信号发生器;3.双踪电压表。
三、实验原理和内容:差分放大电路是一种常用的放大电路,它是以运放为核心组成的,通过对输入信号进行差分放大,从而实现信号放大和滤波等功能。
差分放大电路的输入端是由两个输入信号和一个共模信号组成的,一般情况下,差分输入电路的两个输入端的信号具有相同的幅值和频率,相位差为180°。
本实验使用两个预先设定的输入电压,分别作为差分放大电路的输入信号,并利用示波器测量输出信号的放大后的幅值和相位。
四、实验步骤:1.将差分放大电路的输入端分别与信号发生器的正负端子相连,并将信号发生器的输出设置为正弦信号;2.调节信号发生器的幅值和频率,观察并记录信号发生器的输出波形;3.分别将差分放大电路的输出端和电压表的两个测量端相连,调节电压表的量程,记录输出电压的幅值和相位差;4.调节信号发生器的频率,观察并记录输出信号的变化情况;5.分别改变其中一个输入信号的幅值和频率,观察并记录输出信号的变化;6.对实验数据进行处理和分析,总结实验结果和心得体会。
五、实验数据处理:1.绘制输入电压和输出电压随频率变化的曲线图;2.对输入电压和输出电压的幅值和相位差进行统计和比较;3.分析数据的相关性和实验结果的可靠性;4.从实验结果中得出结论,总结实验心得和体会。
六、实验结论:通过本实验,我们对差分式放大电路有了更深入的理解,了解了差分放大电路的基本工作原理和应用场景。
实验结果显示,差分放大电路能够有效放大输入信号,并且输出信号的幅值和相位差与输入信号有一定的关系。
实验数据的分析和处理结果也验证了差分放大电路的性能和可靠性。
七、实验改进:在实验过程中,可以尝试调整不同的输入信号和改变差分放大电路的其他参数,进一步研究其对输出信号的影响。
紫金学院 差分放大电路实验报告

对于长尾差分放大电路而言,增大 RE 的值能提高抑制共模信号的 能力,但是 RE 过大,一方面不利于电路集成,另一方面增大 RE 的同 时要增加电源电压才能澳证电路的静态工作点保持不变,因此为了提 高共模抑能力不能单纯增大 RE 的值,而应该采用恒流源差分放大电 路。
7.差分放大电路中,单端输出差模电压放大倍数与双端输出差模 电压放大倍数有什么关系?
表2
长尾差放 Aud 恒流源差放 Aud
单端输出 估算值
双端输出
-42.34 -56.45
-42.34 -56.45
单端输出 测量值
双端输出
-25.9 -38.5
-25.2 -38.5
当电路的输入信号峰值 10 mv,频率 1 khz,此时示波器波形如图所示:
(其中红线表示 1 端口,黄线表示 3 端口,绿线表示 4 端口。)
EDA(一)模拟部分 电子线路仿真实验报告
实验名称: 差分放大电路 姓 名: 学 号: 120403116 班 级: 时 间: 2014. 4.23
南京理工大学紫金学院电光系
一. 实验目的 1.熟悉差分放大电路的结构。 2.了解差分放大电路抑制零点漂移的原理。 3.掌握差分放大电路静态工作点的估算方法及仿真分析方法。 4.掌握差分放大电路的电压放大倍数、输入电阻、输出电阻的估算方 法及仿真分析方法。 5.了解差分放大电路的大信号特性。 6.理解差分放大电路提高共模抑制比的方法。 二、实验原理
长尾差放 6.902 6.902 13.166 13.166 0.561 0.561
42.6 42.6
恒流源差放 7.093 7.093 12.723 12.732 0.541 0.541 1.109 42.6 42.6
差分放大器实验报告

差分放大器实验报告实验报告——差分放大器一、实验目的本次实验旨在掌握差动放大器的基本原理和实验方法,熟悉差动放大器的电路组成及其参数的测量方法。
二、实验原理差动放大器是运放常用电路之一,由两个反相输入、一个反相输出和一个非反相输出组成。
该电路对于输入信号中公共模信号即同等量级的噪声信号具有一定的抵消作用,能够提高电路的增益,并减小电路的噪声。
差动放大器主要由晶体管、共模抑制电容、偏置稳定电阻等组成。
三、实验器材1. 信号发生器2. 示波器3. 电压表、电流表4. 直流电源5. 差分放大器电路板6. 大量电缆、万用表等组成四、实验步骤1. 准备工作:将电源和差动放大器电路板连接,并将电源接通并连接交、直流电源与电路板。
根据电路原理和电路板图纸在板上焊接所有器件,并按照图纸接线。
2. 测试偏置电压:将示波器负极接地,正极接输入端差模(+)和差模(-)互相交替。
记录偏置电压。
3. 测量差动放大器电压增益:将信号发生器输出一个50mV幅值、1kHz正弦波,在输入端交替连接同相、反相信号。
测量差分放大器输出信号幅值。
4. 测量输入电阻:将信号发生器接入差动放大器输入端,固定一个电压,改变电压源内阻,读取两个数值,计算差分放大器的输入电阻。
5. 测量输出电阻:通过连接负载和电压表,固定输出电压,测量输出电流,通过计算得到输出电阻。
6. 测量共模抑制比:将信号发生器产生信号,同时加入同相和反相信号,测量差模输出电压,并计算共模抑制比。
七、实验结果分析通过本次实验,我们顺利的实现了差动放大器的电路部署,并测量了其电压增益、输入电阻、输出电阻,以及共模抑制比等参数。
数据表明,本实验设计和测试方法正确可行,并为近期电路实验提供了较为完备的技术积累。
结语本次实验通过学习和实践的相结合,让我们了解了电路基本原理和电路参数测量知识,也帮助我们掌握了差动放大器的电路结构和工作原理。
期望未来在电路设计和开发中积累更多的宝贵经验和有效技术指导。
第四 差分放大电路

+
+V RC CC
RL
这种方式适用于将 差模信号转换为单 端输出的信号。 端输出的信号。
uo
ui
− RW
RE
− VEE
若从3端输出(同相输出)若从4端输出 反相输出) 若从 端输出(同相输出)若从 端输出(反相输出) 端输出 端输出(
uo u o1 Ad = = ui u i1 − u 1 = 同, 由于 V1与 V2 参数基本相同, IC1 UBE1 = UBE2,则: IB1 = IB2 = IB IC1 = IC2 = IC
V1
V2
IO = IC1 = IR − 2IB = IR − 2IC2 / β
所以
1 IO = IR 1+ 2/ β
VCC −UBE1 IO = IR = R
RW
RE
− VEE
u i1
ui2
T℃
IC1 IC2
∵对称
⊿IC1= ⊿IC2
⊿UC1= ⊿UC2
⊿UO=⊿UC1 - ⊿UC2 =0 南理工紫金学院
模拟电子线路
3)对信号的作用 输入信号加在1端和2 输入信号加在1端和2端 有两种输入方式 ⑴差模信号输入:ui1=-ui2, 差模信号输入: 为大小相等, 即ui1和ui2为大小相等,相 位相反的一对信号。 位相反的一对信号。
RW / 2
RL
uo
-
-
uo − βRC || RL − βRC || RL AC = = ≈ u i RB1 + rbe + ( 1 + β )( 2 RE + RW / 2 ) RB1 + rbe + ( 1 + β )( 2 RE )
差分电路放大电路实验报告

差分电路放大电路实验报告差分电路放大电路实验报告引言:差分放大电路是电子工程中常用的一种电路,它具有放大信号、抵消噪声等优点。
本实验旨在通过搭建差分电路放大电路,探究其工作原理和性能表现。
一、实验目的通过差分电路放大电路的实验,达到以下目的:1. 掌握差分放大电路的基本原理;2. 了解差分放大电路的性能指标;3. 实际搭建差分放大电路,观察其放大效果。
二、实验原理差分放大电路由两个输入端和一个输出端组成,其中输入端的信号被分别送入两个放大器中,再将两个放大器的输出信号相减得到差分输出信号。
差分放大电路的工作原理基于放大器的放大特性,通过差分输入信号的放大,可以得到更高的输出信号。
三、实验步骤1. 准备实验所需材料:电源、电阻、电容、运放等;2. 按照电路图搭建差分放大电路,注意连接的正确性和稳定性;3. 调整电源电压,使其符合放大电路的工作要求;4. 输入不同的信号,观察输出信号的变化,并记录数据;5. 对比不同输入信号的放大效果,分析差分放大电路的性能。
四、实验结果与分析通过实验,我们得到了一系列的实验数据,并进行了分析。
在不同的输入信号下,差分放大电路的输出信号均有所放大,而且在抵消噪声方面表现出色。
这验证了差分放大电路的工作原理和性能。
五、实验总结差分放大电路是电子工程中常用的一种电路,它具有放大信号、抵消噪声等优点。
通过本次实验,我们对差分放大电路的原理和性能有了更深入的了解。
在实际应用中,差分放大电路可以用于信号放大、噪声抑制等方面,具有广泛的应用前景。
六、实验心得通过本次实验,我对差分放大电路有了更加深入的认识。
在搭建电路的过程中,我学会了正确连接电路元件,保证电路的稳定性。
在观察实验结果时,我发现不同的输入信号对输出信号的影响,这让我对差分放大电路的性能有了更加直观的认识。
通过实验,我不仅提高了实验操作能力,还加深了对电子工程的理解。
七、参考文献[1] 电子电路设计与仿真实验教程. 邓志东, 陈乃渊. 电子工业出版社, 2009.[2] 电子电路实验与设计教程. 刘同英, 刘红刚. 电子工业出版社, 2016.[3] 电子电路基础与实验. 赵文瑞, 姚文涛. 电子工业出版社, 2018.注:本实验报告仅供参考,实际操作请遵循实验室安全规定。
差分放大电路实验报告

差分放大电路实验报告差分放大电路实验报告引言:差分放大电路是电子工程中常见的一种电路,它具有放大信号、抑制噪声等优点,因此在信号处理、通信系统等领域得到了广泛的应用。
本实验旨在通过搭建差分放大电路并进行实际测量,验证其性能和特点。
一、实验器材和原理本实验所需器材包括函数发生器、示波器、电阻、电容、运放等。
差分放大电路由两个输入端和一个输出端组成,输入端通过电阻与电源相连,输出端与负反馈电阻相连。
差分放大电路的原理是:当两个输入端的电压不同时,输出端会产生一个差分电压,其放大倍数由负反馈电阻决定。
二、实验步骤1. 按照电路图连接实验电路,注意正确接线和电阻、电容的数值。
2. 将函数发生器的输出接入电路的输入端,设置合适的频率和幅度。
3. 使用示波器测量电路的输入电压和输出电压,并记录数据。
4. 逐渐改变函数发生器的频率和幅度,观察电路的响应情况,并记录数据。
三、实验结果及分析在实验中,我们分别测量了电路的输入电压和输出电压,并记录了数据。
通过数据的分析,我们可以得出以下结论:1. 输入电压与输出电压之间存在一定的线性关系,即差分放大电路具有线性放大的特性。
2. 随着输入电压的增加,输出电压也相应增加,但增长的速率逐渐减小,说明差分放大电路具有饱和特性。
3. 在一定频率范围内,输入电压和输出电压之间的相位差保持不变,说明差分放大电路具有相位不变性。
四、实验总结通过本次实验,我们对差分放大电路的原理和性能有了更深入的了解。
差分放大电路在实际应用中具有很高的实用性,可以用于信号放大、噪声抑制等方面。
在今后的学习和工作中,我们将进一步探索差分放大电路的应用,并不断提高自己的实验技能和理论水平。
结语:差分放大电路是一种重要的电子电路,在信号处理和通信系统中具有广泛的应用。
通过本次实验,我们不仅加深了对差分放大电路的理解,还提高了实验操作和数据分析的能力。
希望今后能够将所学知识应用于实际工程中,为科学技术的发展做出自己的贡献。
差分放大电路实验报告
差分放大电路实验报告一、实验目的1.了解差分放大电路的基本原理和特点;2.掌握差分放大电路的设计和调试方法;3.熟悉差分放大电路的频率特性;4.学习使用示波器进行电路信号的观测和测量。
二、实验器材1.差分放大电路实验箱;2.示波器;3.信号源;4.直流电压源。
三、实验原理差分放大电路是众多电子设备中常见的一类电路,采用了差分输入方式可以有效降低共模干扰,提高了电路的抗干扰能力。
它由两个共模输入信号为零的晶体管组成,通过二极管连接的虚地点对共模信号进行抑制,只放大差模信号。
差模信号指的是两个输入信号的差值,共模信号指的是两个输入信号的平均值。
在差分放大电路中,晶体管的放大倍数由输入电流决定,输入电流越大,放大倍数越大。
同时,将两个输入信号松耦合,可以大幅度减小共模信号的放大倍数,从而达到抑制共模干扰的目的。
四、实验步骤1.搭建差分放大电路,接入示波器和信号源;2.分别接入正向输入信号和负向输入信号,将其调节至理想值;3.调节直流电压源和输入电阻,使差分放大电路的工作点稳定;4.调节输入信号频率,记录输出信号幅度和相位的变化情况;5.结束实验,关闭相关设备。
五、实验结果与分析通过实验,我们可以得到差分放大电路的输入输出特性曲线。
根据实验数据,我们可以计算出差分传输增益、共模抑制比和输出相位等。
实验结果显示,差分放大电路能够很好地放大差模信号,同时将共模信号压制得很低。
由于输入阻抗大,输入信号能够有效地传入差分放大电路中,而输出阻抗小,可以将信号有效地传递到下一个级联电路中。
此外,差分放大电路的相位可以随输入信号的频率变化而变化,相位差可达到180度。
六、实验总结通过本次实验,我们了解了差分放大电路的基本原理和特点,掌握了差分放大电路的设计和调试方法。
实验结果表明,差分放大电路能够有效地抑制共模干扰,提高电路的抗干扰能力。
在实际应用中,差分放大电路被广泛应用于增加电路增益、提高系统灵敏度、减小噪声等方面。
差分放大器实验报告
差分放大器实验报告
差分放大器是一种常见的放大电路,用于放大两个输入信号之间的差异。
在电子电路中,差分放大器通常被用来抑制共模干扰,提高信号的传输质量。
在本次实验中,我们将对差分放大器进行测试,并分析其性能。
实验设备和材料包括电源、示波器、信号发生器、电阻、电容、运放等元件。
首先,我们按照电路图连接好电路,并给电路供电。
然后,我们通过信号发生器输入测试信号,观察示波器上的波形变化。
通过调整电路参数,我们可以得到不同的放大倍数和频率响应。
在实验过程中,我们发现差分放大器具有以下特点:首先,它能够有效地放大输入信号的差分部分,抑制共模信号的影响。
其次,差分放大器具有较高的共模抑制比和输入阻抗,能够提高信号的传输质量。
最后,差分放大器的频率响应较宽,适用于不同频率范围内的信号放大。
通过本次实验,我们深入了解了差分放大器的工作原理和性能特点。
差分放大器在实际电路设计中具有重要意义,能够有效提高信号传输的稳定性和质量。
我们相信,在今后的学习和工作中,差分放大器这一知识点将会对我们有很大的帮助。
总的来说,本次实验对差分放大器的理解和应用起到了积极的促进作用。
通过实际操作和观察,我们更加深入地理解了差分放大器的
工作原理,为今后的学习和研究奠定了坚实的基础。
希望在以后的实验中,我们能够继续深入探讨电子电路的相关知识,不断提升自己的实践能力和创新意识。
感谢老师和同学们的支持和帮助,让我们能够顺利完成这次实验,收获满满的成果和收获。
愿我们在未来的学习和工作中,继续努力奋斗,不断进步,为科学技术的发展贡献自己的力量。
实验三 差分放大电路
Au1
2[RB1
(RC // RL ) rbe (1 )RW
/
2]
Ro Ro1 RC
5)恒流源放大电路静态分析
U AB
RB 2 RB1 RB2
( VCC
VEE
)
IE3
U AB U BE3 RE
IC3
UCE1 UCE 2 VCC IC RC UBE I B1RB
I E1
IE2
表3
长尾差放 Aud 恒流源差放 Aud 输入、输出信号波形双
估算值
3 端口输出 测量值
-24 -25.36
-24 -25.36
估算值
4 端口输出 测量值
24 25.36
24 25.36
5、通过 3、4 问求出放大电路双端输出、单端输出电压放大倍数的比值,分析该比值和什么 参数有关系。 该比值和 RC 与 RL 有关,当 RC=RL 时单端输出差模放大倍数和双端输出差模放大倍数比值为 4:3;当负载为空载时比值为 2:1.
R i d 2R i1
R o 2R o1
长尾电路双端输出电压放大倍数估算
3)静态时与双端输出相同。 4)动态分析: 共模放大倍数:
AC
uo ui
RB1 rbe
RC || RL (1 )(2RE
RW
/ 2)
RB1
RC || RL rbe (1 )(2RE )
差模放大倍数:
Ad
1 2
典型电路
恒流源电路
IE
[U EE U BE ] RE
I C1
IC2
IE 2
(认为 UB1=UB2≈0)
IC3
IE3
[R2 (UCC U EE (R1 R2 ) U BE
电路实验报告书
实验名称:差分放大电路性能测试实验日期:2024年9月15日实验地点:模拟电路实验室一、实验目的1. 理解差分放大电路的基本原理和性能特点。
2. 掌握差分放大电路的测试方法,包括差模电压放大倍数和共模电压放大倍数的测量。
3. 分析差分放大电路中RE电阻的作用以及晶体管恒流源的优势。
二、实验原理差分放大电路由两个元件参数相同的基本共射放大电路组成,其原理是利用两个晶体管的电流放大特性,使电路对共模信号具有抑制能力,而对差模信号有良好的放大效果。
1. 差模电压放大倍数(A_diff):差模电压放大倍数表示差分放大电路对差模信号的放大能力,其计算公式为:A_diff = V_out_diff / V_in_diff2. 共模电压放大倍数(A_comm):共模电压放大倍数表示差分放大电路对共模信号的放大能力,其计算公式为:A_comm = V_out_comm / V_in_comm三、实验设备及器材1. 模拟电路实验箱2. 实验线路板3. 万用电表4. 信号发生器5. 示波器6. 线路连接线四、实验过程及数据记录与处理分析1. 连接电路:按照实验电路原理图,将差分放大电路连接到实验线路板上,包括两个基本共射放大电路、RE电阻和晶体管恒流源。
2. 调节电路:调整电路中的电位器,使晶体管的静态工作点Q点达到最佳状态。
3. 测试差模电压放大倍数:将信号发生器产生的差模信号输入差分放大电路,使用示波器观察输出电压,记录数据。
4. 测试共模电压放大倍数:将信号发生器产生的共模信号输入差分放大电路,使用示波器观察输出电压,记录数据。
5. 分析数据:根据测试数据,计算差模电压放大倍数和共模电压放大倍数,并与理论值进行比较。
五、实验结论与发现1. 实验测得的差模电压放大倍数和共模电压放大倍数与理论值接近,表明实验准确度较高。
2. 具有恒流源的差分放大电路的共模抑制比(CMRR)大于典型差分放大电路的CMRR,说明恒流源能够有效提高差分放大电路抑制共模信号的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EDA(一)模拟部分电子线路仿真实验报告
实验名称:差分放大电路
姓名:
学号:*********
班级:
时间:2014. 4.23
南京理工大学紫金学院电光系
一.实验目的
1.熟悉差分放大电路的结构。
2.了解差分放大电路抑制零点漂移的原理。
3.掌握差分放大电路静态工作点的估算方法及仿真分析方法。
4.掌握差分放大电路的电压放大倍数、输入电阻、输出电阻的估算方法及仿真分析方法。
5.了解差分放大电路的大信号特性。
6.理解差分放大电路提高共模抑制比的方法。
二、实验原理
1.单端输出差模电压放大倍数可正可负,当信号从3端口输出时,1端口称为同相输入端,2端口称为反相输入端;当信号从4端口输出时,1端口称为同相输入端,2端口称为反相输入端。
2.单端输出差模电压放大倍数与双端输出差模放大倍数的比值与负载大小有关系,当RL=RC时比值为4:3,当负载为空载时比值为2:1。
3.共模电压放大倍数为负值。
4.恒流源差分放大电路抑制共模信号的能力远大于长尾差分放大电路。
5.对于长尾差分放大电路而言,增大RE的值能提高抑制共模信号的能力,但是RE过大,一方面不利于电路集成,另一方面增大RE 的同时要增加电源电压才能保证电路的静态工作点保持不变,因此为了提高共模信号抑制能力不能单纯增大RE值,而因该采用恒流源差
分放大电路。
三.实验内容
包括搭建的电路图,必要的文字说明,对结果的分析等。
1)按要求连接电路
长尾差分放大电路:
恒流源差分放大电路:即将上图中的J1拨到右边。
2)仿真分析长尾差分放大电路的静态工作点,计算三极管的β
长尾差放:恒流源差放:
表1
U CE1/V U CE2/V I B1/μA I B2/μA I C1/m A I C2/m A I C3/m A β1β2长尾差放 6.902 6.902 13.166 13.166 0.561 0.561 42.6 42.6 恒流源差放7.093 7.093 12.723 12.732 0.541 0.541 1.109 42.6 42.6 (3)差放单端输出、双端输出,估算电路的电压放大倍数。
估算过程:
差模信号输入时,长尾电阻或恒流源动态电阻上流过的交流电流为0,故长尾电阻在差模信号输入时不起作用。
差分放大电路的电压放大倍数只与输出方式有关。
差放电路单端输出时,差模电压放大倍数为A d单=-(βRc//R L)/2(R B1+rbe)
L c Q=(12-0.7)/2*10k=0.565mA
Rbe=50+42.6*(26/0.565)=2.029k
A d单=-42.34
双端输出时,差模电压放大倍数为A d双=-(βRc//(R L/2)/ (R B1+rbe)
A d双=-56.45
表2
长尾差放A ud恒流源差放A ud
估算值单端输出-42.34 -42.34 双端输出-56.45 -56.45
测量值单端输出-25.9 -25.2 双端输出-38.5 -38.5
(其中红线表示1端口,黄线表示3端口,绿线表示4端口。
)
(4)差放单端输入,单端输出时,令信号由1端口输入,输入信号峰值为10mv,频率为1khz 1):
如图为长尾差放(J1开关拨到右边即为恒流源差放)当信号由3端口输出时,估算电路的电压放大倍数示波器观察到的1、3端口波形如图。
仿真分析差模放大倍数:
长尾差放的输出电压和输入电压:
恒流源差放的输出电压和输入电压:2):
如图为长尾差放(J1开关拨到右边即为恒流源差放),当信号由4端口输出时,估算电路的电压放大倍数示波器观察到的1、3端口波形如图。
仿真分析差模放大倍数:
长尾差放的输出电压和输入电压:
恒流源差放的输出电压和输入电压:
差放电路单端输出时,差模电压放大倍数为A d单=-(βRc//R L)/2(R B1+rbe)
L c Q=(12-0.7)/2*10k=0.565mA
Rbe=50+42.6*(26/0.565)=2.029k
A d单=-42.34
表3
长尾差放A ud 恒流源差
放A ud
输入、输出信号波形双
3端口输出估
算
值
-42.34 -42.34
测
量
值
-25.9 -25.2
4端口输出估
算
值
42.34 42.34
测
量
值
25.6 25.2
5)Aud双/Aud单=1.48
与输出是否为空载有关。
表4
u om/V 输出信号波形
估算值
表5
单端输入双端输出单端输入单端输出
四.思考题
最少回答4个思考题
1.为什么差分放大电路可以抑制共模信号?
共模信号是无用信号差模信号可以抑制零点漂移因为差分放大器中两管相同,因此静态工作点的零漂相同相当于两输入端加上共模信号,共模信号ib在Re上压降=2*ib*(1+β)*Re,若设ib>0,共模信号Icm在Re上压降Vre=2*ib*Re反馈到输入端Vb=Vbe+Vre,(Vb=常数)使Vbe减小,因此使iB减小;对差模信号相当输入端1加上ib另一端2加上-i在Re上压降Vre=Re*(1+β)*ib+Re*(1+β)*(-ib)=0,Vb=Vbe+Vre=Vbe+0=Vbe即没有使Vbe减小,(Vb=常数)
5.共模电压放大倍数总是负值吗?为什么?
不是。
所谓的共模信号是指两个差动放大管VT1和VT2的基极接入幅度相同、极性相同的信号。
共模电压放大倍数就是接入的信号是电压信号的放大倍数。
共模信号对两个管子的作用是同相的,若两个电压信号均为正,将引起两个管子电流同量增加,而两个管子集电极电压将同量减少,故从两个管子集电极输出的共模电压为零。
所以,共模电压放大倍数为零。
当差动放大电路对称时,对共模信号无放大作用,即完全抑制了共模信号。
6为什么要用恒流源代替长尾电阻RE?
对于长尾差分放大电路而言,增大RE的值能提高抑制共模信号的能力,但是RE过大,一方面不利于电路集成,另一方面增大RE的同时要增加电源电压才能澳证电路的静态工作点保持不变,因此为了提高共模抑能力不能单纯增大RE的值,而应该采用恒流源差分放大电路。
7.差分放大电路中,单端输出差模电压放大倍数与双端输出差模电压放大倍数有什么关系?
单端输出差模电压放大倍数与双端输出差模电压放大倍数的比值与负载大小有关系,当RL=RC时,比值为4:3,当负载为空载是比值为2:1.
10.如何增加差模输入电压的线性动态范围?
抑制零点漂移。