光发射机及回传光接收机的测试方法

合集下载

光模块测试技术

光模块测试技术
激光器 光信号输出 电信号 驱动器 输入 光纤
图五 激光器直接调制方式 2.4.3 外调制方式 主要利用晶体旋光特性,实现的几种外调制。 1. 横向线性光电效应相位调制;
激光源 调制器 光信号输出 电信号输入 光纤
2. 横向线性光电效应幅度调制; 3. 相位调制器; 4. 马赫-曾得尔幅度调制器. 图六 激光器外调制方式
P P(N) P
光/电 或 O/E 转换
光输出光电流IO光流-+
R
暗 电 流
图三 雪崩光电二极管原理
0
反向偏压U
UB
第三节 光纤通信的特点及应用
1.3.1 光纤通信的特点 光纤通信有很多独特的优点: a.容许频带很宽,传输容量很大; b.损耗很小,中继距离很长且误码率很小; c.重量轻,体积小; e.泄露小,保密性能好 1.3.2 光纤通信的应用 光纤通信的各种应用可以概括如下: a.通信网 b.因特网 c.有线电视网 d.综合业务光纤接入网 d.抗电磁干扰性能好; f.节约金属材料,有利于资源合理使用
纤芯尺寸失配
数字孔径失配
纤芯不同心
折射率分布失配
端面间隙
轴向倾角
横向偏移
菲涅尔反射
端面粗糙
PC
APC
图一 连接损耗的机理
第二节 光偶合器
2.2.1 偶合器 耦合器的功能是把一个或多个光输入分配给多个或一个光输出. 2.2.2 偶合器的种类 1.T型偶合器是一种三端耦合或2x2耦合器. 它的功能是把一根光纤输入的光功率分配给两根光纤.
再生段层
光层
物理层(光纤)
物理层(光纤)
光模块的位置
第七节 全光通信网络
1.7.1 全光通信网络 它是指用户与用户之间的信号传输与交换全部采用光波技术,即数据从源节点 到目的节点的传输过程都在光域内进行,而其在个网络节点的交换则使用高可靠,大 容量和高度灵活的光交叉连接设备(OXC). 7网络优点 全光通信网络和传统通信网络相比具有下列优点: 1.全光网络可提供更大的带宽,可最大限度地利用光纤的传输容量; 2.全光网络具有传输透明性,对信号形式无限制,允许采用不同的速率、协议; 3.全光网络具有良好的兼容性; 4.全光网络具备可重构性,可以根据通信容量的需求,动态地改变网络结构, 可进行恢复.建立,拆除光波长的连接; 5.光网络层采用了较多无源光器件,省去了庞大的光-电-光转换的设备, 可大幅提升网络整体的交换速度,提高可靠性。

光发射机指标测试__光纤实验

光发射机指标测试__光纤实验

河南理工大学光电检测技术实验报告一、实验目的1.了解数字光发射机平均输出光功率的指标要求。

2.掌握数字光发射机平均输出光功率的测试方法。

3.了解数字光发射机的消光比的指标要求。

4.掌握数字光发射机的消光比的测试方法。

二、实验内容1.测试数字光发射机的平均光功率。

2.测试数字光发射机的消光比。

3.绘制数字光发射机的P-I特性曲线。

三、实验仪器1.光纤通信实验系统1台。

2.示波器1台。

3.光功率计1台。

4.万用表1部。

5.FC/PC光纤跳线1根。

四、实验原理光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平均光功率的测试。

下面对这三个方面进行详细的说明:1.半导体光源的P-I特性曲线测试半导体激光器的输出光功率与驱动电流的关系如下图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用Ith表示。

在门限电流以下,激光器工作于自发发射,输出荧光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激发射,输出激光,功率随电流迅速上升,基本上成直线关系。

激光器的电流与电压的关系相似于正向二极管的特性。

P-I特性是选择半导体激光器的重要依据。

在选择时,应选阈值电流Ith 尽可能小,Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。

且要求P-I 曲线的斜率适当。

斜率太小,则要求驱动信号太大,给驱动电路带米麻烦:斜率太大,则会山现光反射噪声及使自动光功率控制环路调整困难。

半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放人机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。

将开始出现净增益的条什称为阈值条件。

一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出光,当电流大于Ith时,则输出光为激光,且输入电流和输出光功率成线性关系,该实验就是对该线性关系进行测量,以验证P-I的线性关系.I(mA)图11-1 LD 半导体激光器P-I 曲线示意图2.消光比(EXT )的测试消光比定义为:001110lg PEXT P ,式中P00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。

光纤通信测量技术

光纤通信测量技术

~ ~ ~ 滤波器
相移法光纤色散测量系统框图
27
截止波长测量 根据公式,
c
2a n12 n22
2.405
实际截止波长的测量有:
1. 在弯曲状态下,测量损耗—波长函数的传输功率法; 2. 改变波长,观察LP01模和LP11模产生的两个脉冲变为一 个脉冲的时延法;
3. 改变波长,观察近场图由环形变为高斯形的近场法。
18
OTDR曲线示例:
OTDR 连接器
熔接点
连接器 (P.P.)
光纤末端
功率 (dB)
损耗 斜率显示衰减
反射
距离 (km)
19
AE3ቤተ መጻሕፍቲ ባይዱ00介绍
RJ45网口
2个USB接口
测试端口
6.4吋TFT彩屏
便携提 手
方向控制键
单键测试
一键智 能
20
简洁直观的结果显示
21
光纤带宽的测量
1) 时域法(又称脉冲法)
频 率f / MHz 0
-6
f 6dB
H1( f )
H(f ) H2( f )
光纤频率响应和6dB电带宽
25
色散测量
光纤色散测量有相移法、脉冲时延法
和干涉法等。这里只介绍相移法,这种方
法是测C量(单)L模 光纤色散C的(基) 准方法。
Lw
26
光源 振荡器
包层模消除器
光检测器
波长选择器
被测光纤
相位计 计算机
光 源 L> Le
连 接 器 P 1
稳 态 模 光 纤
被 测 光 纤 L
连 接 器光 功 P 2 率 计
10
2. 瑞利散射光功率与传输光功率成比例。利用与传输光相反 方向的瑞利散射光功率来确定光纤损耗系数的方法,称为后向 散射法。 正向和反向平均损耗系数

华北电力大学科技学院光纤通信原理实验报告

华北电力大学科技学院光纤通信原理实验报告

科技学院课程设计(综合实验)报告( 2020-- 2021 年度第 2学期)名称:光纤通信原理综合实验院系:信息工程系班级:学号:学生姓名:指导教师:杨再旺王劭龙设计周数:1周成绩:日期:2021年6月实验名称实验一: LED的P-I 特性测量实验仪器光功率计、光纤、直流电流源、LED光源同组人实验目的测量数据,描画LED光源PI特性曲线,求出阈值电流实验原理半导体发光二极管的P-I特性曲线理论上是输出功率与注入电流成正比实验内容与步骤实验内容:使用光功率计和LED光源,在温度一定的情况下(保持实验室温度:20℃),通过改变直流电流来观察输出功率的变化,从而绘出P-I特性曲线。

实验步骤:1.用光纤把光功率计和激光器连接,通电。

2.保持温度为定值3.改变电流的数值观察功率计变化4.绘图实验数据:讨论与结论在老师指导下完成本次实验,在记录数据的时候由于机器灵敏度太高而测得的数据不是很准确,但是在误差允许的范围内画出了特性曲线,跟理论结果差不多。

实验名称实验二:光纤通信系统的码型变换、波分复用器的性能测量实验仪器光纤通信原理实验箱、示波器、光功率计,波分复用解复用器同组人实验目的记录CMI编译码波形记录测量波分复用解复用器插损和隔离度实验原理CMI编码原理:CMI编码的编码规则是:用交替的"11"和"00"两位表示基带中的一位"1";用"01"表示基带中的一位"0"。

波分复用器性能实验原理:光波分复用器是对光波波长进行分离与合成的光器件,其原理如图所示,其中的一个端口作为器件的输出/输入端,而N个端口作为器件的输入/输出端。

当作为对光波波长起合成作用的器件时,从N个端口各自注入不同波长的光信号,在一个端口处将获得按一定光波波长顺序分开的光波信号;当器件作为解复用器时,注入到入射端的各种光波信号,将分别根据其波长的不同,传输到对应的不同出射端口(N个端口之一).由以上分析可以知道,各端口可以作为输入端口,也可以作为输出端口.实 验 内容 与步骤CMI 编码:1.连接线路,连接示波器 2.分别观察记录原始波形、cmi 编码和译码后的波形。

大学光纤传输实验报告

大学光纤传输实验报告

一、实验目的1. 了解光纤传输系统的基本结构和各部件的选配原则。

2. 熟悉光纤传输系统中电光/光电转换器件的基本性能。

3. 训练如何在光纤传输系统中获得较好的信号传输质量。

二、实验原理光纤传输技术是一种利用光导纤维传输信号的通信技术。

光纤具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰等优点,已成为现代通信的主要传输手段。

光纤传输系统主要由以下几部分组成:1. 光源:将电信号转换为光信号,常用的光源有LED、激光二极管等。

2. 光纤:传输光信号的介质,分为单模光纤和多模光纤。

3. 光发射机:将电信号转换为光信号,并驱动光源。

4. 光接收机:将光信号转换为电信号,并进行放大处理。

5. 传输介质:连接光发射机和光接收机的介质,如光缆等。

实验中,我们主要研究LED-传输光纤组件的电光特性,并验证硅光电二极管可以将传输的光信号转换为电信号。

三、实验仪器1. TKGT-1型音频信号光纤传输实验仪2. 信号发生器3. 双踪示波器四、实验步骤1. 连接实验仪器,包括光源、光纤、光发射机、光接收机和传输介质。

2. 将信号发生器输出的电信号输入光发射机,驱动光源发光。

3. 通过光纤将光信号传输到光接收机。

4. 在光接收机输出端连接示波器,观察接收到的电信号波形。

5. 调整光源的偏置电流和调制信号的幅度,观察信号传输质量的变化。

五、实验结果与分析1. 在合适的偏置电流下,LED-传输光纤组件具有线性电光特性,信号传输质量较好。

2. 随着偏置电流的增加,LED-传输光纤组件的光输出功率增加,信号传输质量提高。

3. 调整调制信号的幅度,可以改变信号传输质量。

当调制信号幅度过大时,会产生谐波失真,信号传输质量下降。

六、实验结论1. 光纤传输技术具有损耗低、频带宽、抗干扰能力强等优点,是现代通信的主要传输手段。

2. 通过调整光源的偏置电流和调制信号的幅度,可以优化信号传输质量。

3. 本实验验证了LED-传输光纤组件的电光特性,为实际应用提供了理论依据。

实验二 光发射机与光接收机实验

实验二 光发射机与光接收机实验

实验二光发射机与光接收机实验学号:XXX 姓名:XXX一、实验目的1.了解光源的调制的原理2.学习光发送模块的电路原理3.了解光接收机的组成4.了解光收端机灵敏度的指标要求二、实验内容1.介绍光源的调制方法2.介绍光发射电路的框图3.了解光接收机的组成三、实验仪器1.光纤通信实验系统1 台2.示波器1台3.光纤跳线1根4.万用表5.光功率计四、实验原理1、光发射机、光调制。

根据调制与光源的关系,光调制可以分为直接调制和间接调制两大类。

直接调制方法仅适用于半导体光源(LD和LED),这种方法是把要传送的信息转变为电信号注入LD或LED,从而获得相应的光信号,所以是采用电源调制方法。

直接调制后的光波电场振幅的平方与调制信号成一定比例关系,是一种光强度调制(IM)的方法。

间接调制是利用晶体的光电效应、磁光效应、声光效应等性质来实现对激光辐射的调制,这种调制方式既适应于其他类型的激光器。

间接调制最常用的外调制的方法,即在激光形成以后加载调制信号。

对某些类型的激光器,间接调制也可以采用内调制的方法,即在激光器的谐振腔内放置调制元件,用调制信号控制调制元件的物理性质,将改变谐振腔的参数,从而改变激光输出特芯以实现其调制。

光源的调制方法及所利用的物理效应如下表所示。

光源的各种调制方法本实验系统采用的是直接调制的方法。

2、模拟信号调制与数字信号调制模拟信号调制是直接用连续的模拟信号(如话音、电视等信号)对光源进行调制从而使LED 或LD的输出光功率跟随模拟信号变化,如下图所示:由于光源,尤其是激光器的非线性比较严重,所以目前模拟光纤通信系统仅仅用于对线性要求较低的地方,要实现大容量的频分复用还比较困难,仅自一些小系统中使用。

对一些容量较大、通信距离较长的系统,多采用对半导体激光器进行数字调制的方式。

数字调制主要是用数字信号的“1”和“0”来控制激光的“有”和“无”,如下图所示:与LED 相比,LD 的调制问题要复杂得多。

光接收机极限测试解决方案,400 Gbs 以太网 (技术资料)

光接收机极限测试解决方案,400 Gbs 以太网 (技术资料)

Keysight N4917BSCA光接收机极限测试解决方案,400 Gb/s 以太网— IEEE 802.3bs技术资料适用于 400GbE 光收发信机的完整光接收机极限测试解决方案,提供自动极限眼图校准和性能一致性测试目录适用于 400 Gb/s 以太网的光接收机极限测试 (03)200 GBASE-LR4/-FR4 光极限测试的典型装置 (04)200 GBASE-FR4/LR4/DR4、400 GBASE-FR8/LR8 光接收机极限测试面临的挑战 (05)N4917BSCA 用户界面 (08)N4917BSCA 功能特性 (11)N4917BSCA 要求 (11)配置指南 (12)是德科技相关文献 (18)适用于 400 Gb/s 以太网的光接收机极限测试以 IEEE 为代表的通信行业决定结合采用高频谱效率 PAM-4 调制方案与成熟的直接调制/直接检测技术,以较低成本满足数据中心内部和彼此之间稳步增长的带宽需求。

与 100 Gb 以太网光收发信机相比,摒弃传统的 NRZ 调制,转而采用 PAM-4 调制,可有效地使线路速率翻倍,同时保持 26.56125 Gbaud 的调制速度,从而可以继续使用部分现有的 100 G 元器件。

因此,为下一代 400 GBase 收发信机制定的一致性测试流程与 IEEE 802.3ba 标准 NRZ 100 GBASE 收发信机中采用的流程类似。

但两者之间也存在一些显著区别:–采用新的 TDECQ 参数来取代传统眼图模板分析,对发送/接收信号的质量进行表征。

–需要采用数字参考均衡器,在发射机性能测试或在接收机极限测试的极限信号校准期间计算各种信号参数。

–由于调制方案从传统的 NRZ 方案转换到 PAM4 方案,导致灵敏度显著下降,因此在标准定义的极限条件下或在典型使用期间,光收发信机预计会出现一些误码,同时正向误码校正(FEC )通常在收发信机模块之外完成。

光纤测试方法

光纤测试方法

光纤测试方法光纤是一种用于传输光信号的细长柔软的玻璃或塑料纤维。

在现代通信和数据传输中,光纤扮演着至关重要的角色。

为了确保光纤传输系统的正常运行,我们需要对光纤进行测试,以便发现潜在的问题并及时进行修复。

本文将介绍光纤测试的方法和步骤,以帮助您更好地了解光纤测试的重要性和实施过程。

首先,我们需要了解光纤测试的基本原理。

光纤测试的主要目的是检测光纤传输系统中的信号损耗、反射损耗、色散、偏振相关问题等。

在进行光纤测试之前,我们需要准备好相应的测试设备,如光源、光功率计、光谱分析仪、OTDR(光时域反射仪)等。

其次,我们需要进行光纤测试的准备工作。

首先,清洁光纤连接头,确保光纤连接的质量良好。

其次,连接测试设备,设置好测试参数。

接下来,我们可以开始进行光纤测试了。

在进行光纤测试时,我们需要注意以下几点。

首先,保持光纤连接的稳定性,避免外界干扰。

其次,记录测试数据,包括光纤长度、光功率损耗、反射损耗等。

最后,对测试数据进行分析,找出问题所在并及时进行修复。

在实际的光纤测试中,有几种常用的测试方法。

首先是光功率测试,用于检测光信号在光纤传输过程中的功率损耗情况。

其次是反射损耗测试,用于检测光信号在光纤连接头处的反射情况。

此外,还有色散测试、偏振相关测试等。

除了常规的光纤测试方法外,还有一些高级的测试技术,如OTDR测试。

OTDR是一种通过发送和接收脉冲光信号来检测光纤中的反射和衰减情况的测试设备。

通过OTDR测试,我们可以更准确地定位光纤中的问题,并对光纤进行精细的检测和分析。

总之,光纤测试是保证光纤传输系统正常运行的关键步骤。

通过合理的测试方法和设备,我们可以及时发现和解决光纤传输中的问题,确保数据和信号的准确传输。

希望本文所介绍的光纤测试方法能够对您有所帮助,使您能够更好地理解和实施光纤测试工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光发射机及回传光接收机的测试方

光发射机及回传光接收机的测试方法
光发射机及回传光接收机的测试是用于通信系统中的高精度检测,主要检测其能力和性能。

光发射机及回传光接收机的测试方法有多种,根据不同的需求而定,主要分为现场测试、室内测试和实验室测试三种,以下简要介绍一下这三种测试方法。

一、现场测试
现场测试是在实际环境中进行的,可以及时发现实际环境中出现的问题,反映实际环境下系统的性能。

对光发射机及回传光接收机的现场测试主要检测其发送功率、接收功率、接收灵敏度以及温度、电压等环境参数的变化情况。

在现场测试中,首先应检查光发射机及回传光接收机的状态,包括外观状况、连接端子、安装位置是否正确等,并确保其工作正常,如果出现异常现象,应及时采取纠正措施。

接着,将应用于现场测试的仪器设备连接好,使其能与光发射机及回传光接收机相连接,并依据操作规程进行设置,然后开始测试。

在现场测试中,应检测光发射机及回传光接收机的发射功率、接收功率以及接收灵敏度等,并随机测试其在不同环境中的温度、电压等参数的变化情况,确保其具有良好的稳定性。

二、室内测试
室内测试也是对光发射机及回传光接收机性能进行检测,其优点是不受外界环境影响,能获得较准确的测试结果。

室内测试主要检测光发射机及回传光接收机的发射功率、接收功率、接收灵敏度以及光纤损耗等性能指标。

在室内测试中,首先应将检测设备连接好,然后将光发射机及回传光接收机连接到设备上,确保其与设备正确连接,并依据操作规程进行设置,然后开始测试。

室内测试要求测试设备、光发射机及回传光接收机均在室内,环境条件保持稳定,在测试过程中不受外界环境影响,以确保测试结果的准确性。

在室内测试中,应检测光发射机及回传光接收机的发射功率、接收功率以及接收灵敏度等,并确保光纤损耗等指标符合规定要求。

三、实验室测试
实验室测试是在专业的实验室中进行的,可以获得较准确的测试结果。

实验室测试主要检测光发射机及回
传光接收机的发射功率、接收功率、接收灵敏度以及光纤损耗等性能指标。

在实验室测试中,首先应将检测设备安装在实验室,并调节环境参数,使其能够满足检测所需的环境条件,然后将光发射机及回传光接收机连接到设备上,依据操作规程进行设置,然后开始测试。

实验室测试要求测试设备、光发射机及回传光接收机均在实验室,且环境条件都必须满足规定的要求,以保证测试结果的准确性。

在实验室测试中,应检测光发射机及回传光接收机的发射功率、接收功率以及接收灵敏度等,并确保光纤损耗等指标符合规定要求。

总之,光发射机及回传光接收机的测试方法有三种,即现场测试、室内测试和实验室测试,以上三种测试方法均可用于测试光发射机及回传光接收机的性能,但各有特点,在实际应用中应根据实际情况选择合适的测试方法。

相关文档
最新文档