机械臂的轨迹规划

合集下载

机械臂运动轨迹自动生成原理

机械臂运动轨迹自动生成原理

机械臂运动轨迹自动生成原理机械臂是一种高精度、高效率的工业自动化设备,广泛应用于制造业、物流仓储、医疗等领域。

随着人工智能和自动化技术的不断发展,机械臂的应用范围和功能也在不断扩大。

机械臂的核心功能之一是实现各种复杂运动轨迹的自动生成,这对于提高生产效率和精度具有重要意义。

在传统的机械臂系统中,通常需要通过编程或者手动控制来实现机械臂的运动控制。

这种方式存在着繁琐、低效的缺点,尤其是对于复杂的多轴运动控制更加困难。

因此,研究如何实现机械臂运动轨迹的自动生成成为了当前的热点问题之一。

机械臂运动轨迹的自动生成原理主要包括路径规划、轨迹规划和运动控制三个方面。

路径规划是指根据机械臂的起始姿态、目标姿态以及工作环境等因素,确定机械臂的运动路径,以保证机械臂在运动过程中不会与障碍物发生碰撞。

路径规划的关键技术包括碰撞检测、路径优化和运动规划等。

轨迹规划是指在确定了机械臂的运动路径之后,将路径离散化为一系列连续的运动轨迹点,以实现机械臂的平滑运动。

轨迹规划的关键技术包括速度规划、加速度规划和轨迹优化等。

通过合理的轨迹规划,可以使机械臂在运动过程中达到更高的运动精度和稳定性。

运动控制是指根据机械臂的轨迹规划信息,通过控制机械臂各个关节的运动,实现机械臂的精确控制。

运动控制的关键技术包括运动学建模、动力学建模和控制算法设计等。

通过运动控制,可以实现机械臂在运动过程中的快速响应和高精度控制。

为了实现机械臂运动轨迹的自动生成,需要综合考虑路径规划、轨迹规划和运动控制三个方面的技术,构建一个完整的系统。

首先,需要对机械臂系统进行建模和参数化,包括机械结构、关节运动范围和动力学性能等。

然后,根据实际应用需求确定机械臂的起始姿态和目标姿态,以及工作环境的信息。

接着,利用路径规划算法对机械臂的运动路径进行规划,并进行碰撞检测和路径优化,确保机械臂在运动过程中不会发生碰撞。

然后,通过轨迹规划算法将机械臂的运动路径离散化为一系列连续的轨迹点,实现机械臂的平滑运动。

机械臂运动控制与轨迹规划算法研究

机械臂运动控制与轨迹规划算法研究

机械臂运动控制与轨迹规划算法研究摘要:机械臂作为一种具有自主控制能力的智能装置,广泛应用于工业生产、医疗手术等领域。

机械臂的运动控制和轨迹规划是实现机械臂精准运动的关键技术。

本文对机械臂运动控制和轨迹规划算法进行了深入研究和探讨,旨在为机械臂运动控制和轨迹规划算法的设计和应用提供参考和指导。

1. 引言机械臂是一种能完成复杂运动和操作任务的智能装置,具有良好的控制性能和灵活性。

机械臂的运动控制和轨迹规划是实现机械臂高精度和高效率运动的核心内容。

目前,机械臂运动控制和轨迹规划算法的研究已经得到了广泛关注。

2. 机械臂运动控制机械臂运动控制是指通过对机械臂各关节的控制,实现机械臂在特定时间和空间内的运动。

常见的机械臂运动控制方法有位置控制、速度控制和力控制等。

位置控制是指通过控制机械臂各关节的位置,实现机械臂的运动。

速度控制是指通过控制机械臂各关节的速度,实现机械臂的运动。

力控制是指通过控制机械臂末端执行器的力,实现机械臂的运动。

不同的控制方法适用于不同的应用场景,需要根据具体情况选择合适的控制策略。

3. 轨迹规划算法轨迹规划算法是指通过对机械臂的轨迹进行优化和规划,使机械臂在运动过程中达到所期望的轨迹和运动要求。

常见的轨迹规划算法有最小二乘法、样条插值法、遗传算法等。

最小二乘法是一种数学优化方法,通过最小化误差平方和来确定机械臂的轨迹。

样条插值法是一种将给定轨迹进行平滑插值的方法,可以提高机械臂的运动稳定性和平滑度。

遗传算法是一种模拟生物进化过程的优化算法,可以有效地搜索机械臂的最优轨迹。

4. 机械臂运动控制与轨迹规划的研究进展近年来,随着智能控制技术和计算能力的不断提升,机械臂运动控制与轨迹规划的研究取得了很大的进展。

一方面,研究人员提出了各种创新的控制方法和优化算法,如基于增强学习的控制方法、深度学习的轨迹规划算法等,有效提高了机械臂的运动控制精度和轨迹规划效果。

另一方面,研究人员还通过仿真模拟和实验验证等方法,对机械臂运动控制与轨迹规划的性能进行了评估和验证,推动了这一领域的发展。

机器人手臂运动轨迹规划算法研究

机器人手臂运动轨迹规划算法研究

机器人手臂运动轨迹规划算法研究随着现代制造业的发展,机器人已经成为生产线上的重要工具,而机器人手臂则是机器人的核心部件。

机器人手臂在协作工作、自动化生产、零部件装配和物料搬运等方面都展现出了非常大的潜力。

在机器人手臂的设计和开发中,轨迹规划算法是一个不可忽略的环节。

本文主要对机器人手臂运动轨迹规划算法的研究进行阐述。

一、机器人手臂轨迹规划算法概述机器人手臂的运动轨迹规划算法是指在指定工作空间内自动生成机器人手臂的运动轨迹,使机器人能够快速、高效、精准地完成指定的任务。

机器人手臂的轨迹规划算法主要分为点到点规划和连续轨迹规划两大类。

点到点规划是指机器人从一个指定位置到达另一个指定位置的运动规划。

这种规划的优点是简单易实现,但其缺陷也很明显,例如在机械臂的运动过程中会出现震动和变速的问题,严重影响机器人手臂的稳定性和精度。

因此,点到点规划适用于一些简单的较低精度要求的机器人任务。

连续轨迹规划是指机器人在指定的时间内按照预先规划的包含多个中间点的轨迹运动。

这种规划的优点是不仅考虑到了机器人手臂的运动速度和加速度,还可以避免机器人手臂的震动和变速问题,从而保证了机器人手臂的稳定性和精度。

二、机器人手臂运动轨迹规划算法研究现状目前,机器人手臂运动轨迹规划算法已经得到了广泛的研究和应用,国内外的学者和机器人制造企业都投入了大量的精力和资源进行研究。

例如“速度规划算法”、“加速度规划算法”、“优化规划算法”等等,这些算法都使得机器人手臂在运动过程中可以更好地满足各种要求。

其中,加速度规划算法是目前应用最广泛的一种运动轨迹规划算法,它通过对参数的优化来实现机械臂的运动轨迹规划。

相比于速度规划算法和位移规划算法,加速度规划算法更好地考虑了机器人手臂的运动平滑度和精度要求,因此被广泛应用。

另外,基于优化规划算法的研究也取得了一定的成果,例如遗传算法、模拟退火算法和粒子群算法等,这些优化规划算法可使机器人手臂在运动过程中以更精确的方式执行任务,满足更高的任务要求。

机械臂的轨迹规划

机械臂的轨迹规划

机械臂运动的轨迹规划摘要空间机械臂是一个机、电、热、控一体化的高集成的空间机械系统。

随着科技的发展,特别是航空飞机、机器人等的诞生得到了广泛的应用,空间机械臂作为在轨迹的支持、服务等以备受人们的关注。

本文将以空间机械臂为研究对象,针对空间机械臂的直线运动、关节的规划、空间直线以及弧线的轨迹规划几个方面进行研究,对机械臂运动和工作空间进行了分析,同时对机械臂的轨迹规划进行了验证,利用MATLAB软件对机械臂的轨迹进行仿真,验证算法的正确性和可行性,同时此路径规划方法可以提高机械臂的作业效率,为机械臂操作提高理论指导,为机器人更复杂的运动仿真与路径规划打下基础。

本文一共分为四章:第一章,首先总结了机械臂运动控制与轨迹规划问题的研究现状及研究方法,归纳了各种轨迹规划的算法及其优化方法,阐述了机械臂的研究背景和主要内容。

第二章,对机械臂的空间运动进行分析研究,采用抽样求解数值法—蒙特卡洛方法,进行机械臂工作空间求解,同时在MATLAB中进行仿真,直观展示机械臂工作范围,为下一章的轨迹规划提供理论基础;同时通过D-H参数法对机械臂的正、逆运动分析求解,分析两者的区别和联系。

第三章,主要针对轨迹规划的一般性问题进行分析,利用笛卡尔空间的轨迹规划方法对机械臂进行轨迹规划,同时利用MATLAB对空间直线和空间圆弧进行轨迹规划,通过仿真验证算法的正确性和可行性。

第四章,总结全文,分析本文应用到机械臂中的控制算法,通过MATLAB 结果可以得出本文所建立的算法正确性,能够对机械臂运动提供有效的路径,而且改进了其他应用于空间机械臂的路径规划问题。

【关键词】运动分析工作空间算法研究轨迹规划ABSTRACTSpace manipulator is a machine, electricity, heat, charged with high integration of space mechanical system integration. With the development of science and technology, especially the birth of aviation aircraft, a robot has been widely used, the trajectory of space manipulator as the support and services to people's attention. This article will space manipulator as the research object, according to the linear motion of the space manipulator, joint planning, space of the straight line and curve, the trajectory planning of several aspects of mechanical arm movement and working space are analyzed, and the trajectory planning of manipulator is verified, the trajectory of manipulator is to make use of MATLAB software simulation, verify the correctness and feasibility of the algorithm, at the same time this path planning method can improve the efficiency of mechanical arm, improve the theoretical guidance for mechanical arm operation, simulation and path planning for robot more complicated movement.This article is divided into four chapters altogether:The first chapter, first summarizes the mechanical arm motion control and path planning problem research status and research methods, summarizes the variety of trajectory planning algorithm and the method of optimization, and expounds the research background and main content of mechanical arm.The second chapter, the paper studied the space motion of mechanical arm, the numerical method, monte carlo method are deduced with the method of sampling, the workspace for mechanical arm is, at the same time the simulation in MATLAB, intuitive display mechanical arm work scope, providing theoretical basis for the next chapter of trajectory planning. At the same time through d-h method of positive and inverse kinematic analysis of the mechanical arm, analyze the difference and contact. The third chapter, mainly aims at the general problem of trajectory planning is analyzed, using cartesian space trajectory planning method for trajectory planning, mechanical arm at the same time, MATLAB is used to analyse the spatial straight line and arc trajectory planning, through the simulation verify the correctness andfeasibility of the algorithm.The fourth chapter, summarizes the full text, analysis of the control algorithm is applied to the mechanical arm in this paper, through the MATLAB results can be concluded that the correctness of algorithm, can provide effective path of mechanical arm movement, and improved the other used in space manipulator path planning problem.[key words] motion analysis,work space,trajectory planning,algorithm research目录摘要......................................................................................................................... - 1 - ABSTRACT .............................................................................................................. - 2 - 第一章绪论............................................................................................................. - 5 - 第一节研究背景及意义.................................................................................. - 5 - 第二节国内外发展现状.................................................................................. - 6 -一、国内现状............................................................................................. - 6 -二、国外现状............................................................................................. - 6 - 第二章机械臂的运动分析..................................................................................... - 8 - 第一节机械臂的正运动学分析...................................................................... - 8 - 第二节机械臂的逆运动学求解.................................................................... - 10 - 第三章五轴机械臂轨迹规划与仿真................................................................... - 11 - 第一节轨迹规划一般问题............................................................................ - 11 - 第二节关节空间的轨迹规划........................................................................ - 12 -一、三次多项式插值法........................................................................... - 12 -二、五次多项式插值............................................................................... - 15 -第三节笛卡尔空间的轨迹规划.................................................................... - 17 -一、空间直线轨迹规划........................................................................... - 18 -二、空间圆弧的轨迹规划....................................................................... - 21 -三、一般空间轨迹规划........................................................................... - 25 - 第四章总结与展望............................................................................................... - 30 - 参考文献................................................................................................................. - 31 -第一章绪论第一节研究背景及意义随着宇宙空间的开发,70 年代美国提出了在宇宙空间利用机器人系统的概念,并且在航天飞机上实施。

机械臂运动轨迹规划算法研究

机械臂运动轨迹规划算法研究

机械臂运动轨迹规划算法研究近年来,机器人技术得到了长足的发展,在工业制造、医疗卫生、航空航天等领域得到了广泛应用。

而机械臂作为一种重要的机器人装置,具有灵活、高效的特点,能够完成各种任务。

在机械臂的运动过程中,轨迹规划算法的优化对于提高机械臂的性能和减少系统的能耗具有重要意义。

本文将介绍机械臂运动轨迹规划算法的研究进展,并探讨其在实际应用中的意义和挑战。

一、机械臂运动轨迹规划算法的意义机械臂的运动轨迹规划算法是指在给定起始点和目标点的情况下,通过算法计算得到机械臂在运动过程中的最佳运动路径,以实现高效、精确的目标达成。

这个过程包括路径的选择、速度的调整、避障等。

首先,机械臂运动轨迹规划算法能够提高机械臂的运动速度和精度。

通过算法的优化,机械臂能够以最短的路径和最快的速度完成任务,提高生产效率和产品质量。

其次,机械臂运动轨迹规划算法可以减少机械臂系统的能耗。

通过优化机械臂的运动路径,减少不必要的运动和能耗,可以降低机械臂系统的电力消耗,提高能源的利用效率。

最后,机械臂运动轨迹规划算法在实际应用中可以减少事故和损坏的发生。

在机械臂运动过程中,往往需要避开障碍物,保证机械臂运动的安全。

通过合理的轨迹规划算法,机械臂可以避免与障碍物碰撞,降低事故和损坏的发生率。

二、机械臂运动轨迹规划算法的研究进展机械臂运动轨迹规划算法的研究主要涉及六轴机械臂和SCARA机械臂两个方向。

六轴机械臂是目前最常用的机械臂类型之一,其有六个自由度,可以实现多方向的运动。

对于六轴机械臂的运动轨迹规划算法,研究者主要关注的是如何使机械臂在给定时间内完成任务,同时保证机械臂的运动轨迹光滑连续,避免抖动和震动。

目前,已经有许多优化算法被提出,如遗传算法、模糊控制、人工神经网络等。

这些算法通过提取机械臂的运动学模型和动力学模型,结合目标函数和限制条件,进行运动轨迹规划和路径选择,从而实现机械臂的高效运动。

而SCARA机械臂则是一种具有平面运动能力的机械臂,常用于装配和搬运等任务。

机械手臂的路径规划与控制

机械手臂的路径规划与控制

机械手臂的路径规划与控制机械手臂是一种可编程、多关节的机械设备,能够在三维空间中进行精确运动和操作。

它广泛应用于工业生产线、医疗手术、物流仓储等领域。

而机械手臂的路径规划与控制是保证其高效运作的关键技术之一。

一、机械手臂的路径规划路径规划是指在给定的环境中,通过算法确定机械手臂的运动路径和关节角度,以实现所需的目标位置或动作。

在进行路径规划时,需要考虑到机械手臂的结构、工作空间限制、物体的位置和形状等多个因素。

1.几何路径规划几何路径规划是一种基于几何学的方法,通过计算机算法确定机械手臂的最优路径。

其中,最常用的算法包括线性插补、圆弧插补和样条插补等。

线性插补适用于直线运动,圆弧插补适用于弧线轨迹,而样条插补则可以实现更加灵活的曲线运动。

2.动力学路径规划与几何路径规划不同,动力学路径规划考虑了机械手臂的质量、惯性和运动约束,更加接近于实际应用情况。

常用的动力学路径规划算法包括逆运动学、优化算法和遗传算法等。

逆运动学方法通过已知目标位置,反推出机械手臂的关节角度,而优化算法和遗传算法则通过迭代寻找最优解。

二、机械手臂的控制机械手臂的控制是指通过控制器对机械手臂的电机、驱动器、传感器进行控制,实现路径规划和动作执行。

机械手臂的控制系统通常包括五个主要部分:传感器系统、执行器系统、控制算法、控制器和用户界面。

1.传感器系统传感器系统用于对机械手臂周围环境进行感知,从而获取物体位置、形态和力量等信息。

常见的传感器包括摄像头、激光测距仪、力传感器等。

传感器所获取的数据可以用于路径规划、动作控制和碰撞检测等。

2.执行器系统执行器系统包括电机、传动装置和关节,用于实现机械手臂的运动。

电机通过驱动器接受控制信号,驱动关节实现机械手臂的位移或转动。

在选择执行器系统时,需要考虑负载能力、精度和效率等因素。

3.控制算法控制算法是机械手臂控制系统的核心部分,根据传感器数据和用户指令,计算出适合的控制信号。

常见的控制算法包括PID控制、模糊控制和神经网络控制等。

机械臂的运动轨迹规划与优化研究

机械臂的运动轨迹规划与优化研究

机械臂的运动轨迹规划与优化研究引言:机械臂作为一种重要的工业机器人,广泛应用于制造业、医疗、农业等领域。

机械臂的运动轨迹规划与优化是提高机械臂运动精度和效率的关键问题,也是当前研究的热点之一。

一、机械臂的运动轨迹规划方法1.1 轨迹生成方法机械臂的运动轨迹规划包括离线轨迹规划和在线轨迹规划。

离线轨迹规划在机械臂开始运动前生成一条完整轨迹,其中常用的方法有路径规划、插值法和优化方法等。

在线轨迹规划则是在机械臂运动过程中不断生成新的轨迹点,以应对实时性要求。

1.2 轨迹优化方法为了提高机械臂的运动效率和精度,轨迹优化是必不可少的一步。

常见的轨迹优化方法有速度规划、加速度规划和力矩规划等。

通过对运动过程中的速度、加速度和力矩等参数进行优化,可以使机械臂的运动更加平滑和高效。

二、机械臂运动轨迹规划与优化的挑战和难点2.1 多目标优化机械臂运动轨迹规划与优化往往涉及到多个目标,如运动时间最短、能耗最低、碰撞避免等。

这些目标之间往往存在着冲突和矛盾,如速度与力矩之间的平衡。

因此,如何有效地进行多目标优化是一个挑战。

2.2 动态环境下的规划在实际应用中,机械臂通常需要在动态环境中进行运动。

此时,不仅需要考虑各个关节的运动规划,还需要考虑与环境的交互和碰撞避免。

如何在动态环境中高效地生成运动轨迹是一个难点。

三、机械臂运动轨迹规划与优化的研究进展3.1 具体问题具体分析目前,机械臂运动轨迹规划与优化研究已经涉及到不同的应用领域。

例如,针对医疗领域中手术机器人的运动规划问题,研究人员提出了针对手术刀具的运动规划方法,以实现更高精度的手术指导。

3.2 智能算法的应用随着人工智能技术的不断发展,智能算法在机械臂运动轨迹规划与优化中得到了广泛的应用。

遗传算法、模拟退火算法和粒子群算法等智能算法可以有效解决多目标优化问题,提高机械臂的运动效率。

四、机械臂运动轨迹规划与优化的发展前景4.1 自适应机械臂研究人员正在探索机械臂运动轨迹规划与优化的自适应方法,使机械臂能够根据不同任务和环境自动调整运动轨迹,提高适应性。

机械臂运动轨迹规划算法研究

机械臂运动轨迹规划算法研究

机械臂运动轨迹规划算法研究1. 引言机械臂是一种常见的工业自动化设备,具有灵活性和精准性等优点,在许多领域中得到广泛应用。

机械臂的运动轨迹规划是指在给定的起点和终点位置之间,寻找一条合适的轨迹路径,以确保机械臂的运动效果最佳。

为了实现高效的机械臂运动轨迹规划,研究者们提出了多种算法和方法。

2. 基本原理机械臂运动轨迹规划的基本原理是通过构建数学模型,解决机械臂路径规划问题。

其中,常见的数学模型包括几何模型、运动学模型和动力学模型。

几何模型用于描述机械臂的结构和各个关节的位置关系,运动学模型用于描述机械臂末端执行器的位置和姿态,动力学模型用于描述机械臂的运动学和动力学性能。

3. 基础算法3.1 直线插补算法直线插补算法是机械臂运动轨迹规划中的一种基础算法,适用于直线运动的路径规划。

该算法通过在起点和终点之间构建一条直线路径,以实现机械臂的直线运动。

它简单易懂,计算速度快,但对于复杂的路径规划问题效果不佳。

3.2 贝塞尔曲线插值算法贝塞尔曲线插值算法是机械臂运动轨迹规划中的一种常用算法,适用于曲线运动的路径规划。

该算法通过通过控制点以及权重系数来构造一条光滑的曲线路径,以实现机械臂的曲线运动。

它具有良好的曲线拟合性能,能够满足复杂路径的规划需求。

4. 改进算法4.1 遗传算法遗传算法是一种模拟生物进化过程的优化算法,近年来在机械臂运动轨迹规划中得到广泛应用。

该算法通过定义适应度函数,使用基因编码和演化操作,优化机械臂的路径规划问题。

遗传算法具有较强的全局搜索能力和自适应性,能够找到较优的解决方案。

4.2 神经网络算法神经网络算法是一种模仿人脑神经元网络结构和工作原理的算法,用于模式识别和函数逼近等领域。

近年来,研究者们将神经网络算法应用于机械臂运动轨迹规划中。

通过训练神经网络模型,可以实现机械臂路径规划的自动学习和优化,提高规划效果和运动精度。

5. 应用案例机械臂运动轨迹规划算法在工业自动化领域中得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械臂运动的轨迹规划摘要空间机械臂是一个机、电、热、控一体化的高集成的空间机械系统。

随着科技的发展,特别是航空飞机、机器人等的诞生得到了广泛的应用,空间机械臂作为在轨迹的支持、服务等以备受人们的关注。

本文将以空间机械臂为研究对象,针对空间机械臂的直线运动、关节的规划、空间直线以及弧线的轨迹规划几个方面进行研究,对机械臂运动和工作空间进行了分析,同时对机械臂的轨迹规划进行了验证,利用MATLAB软件对机械臂的轨迹进行仿真,验证算法的正确性和可行性,同时此路径规划方法可以提高机械臂的作业效率,为机械臂操作提高理论指导,为机器人更复杂的运动仿真与路径规划打下基础。

本文一共分为四章:第一章,首先总结了机械臂运动控制与轨迹规划问题的研究现状及研究方法,归纳了各种轨迹规划的算法及其优化方法,阐述了机械臂的研究背景和主要内容。

第二章,对机械臂的空间运动进行分析研究,采用抽样求解数值法—蒙特卡洛方法,进行机械臂工作空间求解,同时在MATLAB中进行仿真,直观展示机械臂工作范围,为下一章的轨迹规划提供理论基础;同时通过D-H参数法对机械臂的正、逆运动分析求解,分析两者的区别和联系。

第三章,主要针对轨迹规划的一般性问题进行分析,利用笛卡尔空间的轨迹规划方法对机械臂进行轨迹规划,同时利用MATLAB对空间直线和空间圆弧进行轨迹规划,通过仿真验证算法的正确性和可行性。

第四章,总结全文,分析本文应用到机械臂中的控制算法,通过MATLAB 结果可以得出本文所建立的算法正确性,能够对机械臂运动提供有效的路径,而且改进了其他应用于空间机械臂的路径规划问题。

【关键词】运动分析工作空间算法研究轨迹规划ABSTRACTSpace manipulator is a machine, electricity, heat, charged with high integration of space mechanical system integration. With the development of science and technology, especially the birth of aviation aircraft, a robot has been widely used, the trajectory of space manipulator as the support and services to people's attention. This article will space manipulator as the research object, according to the linear motion of the space manipulator, joint planning, space of the straight line and curve, the trajectory planning of several aspects of mechanical arm movement and working space are analyzed, and the trajectory planning of manipulator is verified, the trajectory of manipulator is to make use of MATLAB software simulation, verify the correctness and feasibility of the algorithm, at the same time this path planning method can improve the efficiency of mechanical arm, improve the theoretical guidance for mechanical arm operation, simulation and path planning for robot more complicated movement.This article is divided into four chapters altogether:The first chapter, first summarizes the mechanical arm motion control and path planning problem research status and research methods, summarizes the variety of trajectory planning algorithm and the method of optimization, and expounds the research background and main content of mechanical arm.The second chapter, the paper studied the space motion of mechanical arm, the numerical method, monte carlo method are deduced with the method of sampling, the workspace for mechanical arm is, at the same time the simulation in MATLAB, intuitive display mechanical arm work scope, providing theoretical basis for the next chapter of trajectory planning. At the same time through d-h method of positive and inverse kinematic analysis of the mechanical arm, analyze the difference and contact.The third chapter, mainly aims at the general problem of trajectory planning is analyzed, using cartesian space trajectory planning method for trajectory planning, mechanical arm at the same time, MATLAB is used to analyse the spatial straight line and arc trajectory planning, through the simulation verify the correctness and feasibility of the algorithm.The fourth chapter, summarizes the full text, analysis of the control algorithm is applied to the mechanical arm in this paper, through the MATLAB results can be concluded that the correctness of algorithm, can provide effective path of mechanical arm movement, and improved the other used in space manipulator path planning problem.[key words] motion analysis,work space,trajectory planning,algorithm research目录摘要......................................................................................................................... - 1 - ABSTRACT .............................................................................................................. - 2 - 第一章绪论............................................................................................................. - 5 - 第一节研究背景及意义.................................................................................. - 5 - 第二节国内外发展现状.................................................................................. - 6 -一、国内现状............................................................................................. - 6 -二、国外现状............................................................................................. - 6 - 第二章机械臂的运动分析..................................................................................... - 8 - 第一节机械臂的正运动学分析...................................................................... - 8 - 第二节机械臂的逆运动学求解.................................................................... - 10 - 第三章五轴机械臂轨迹规划与仿真................................................................... - 11 - 第一节轨迹规划一般问题............................................................................ - 11 - 第二节关节空间的轨迹规划........................................................................ - 12 -一、三次多项式插值法........................................................................... - 12 -二、五次多项式插值............................................................................... - 15 -第三节笛卡尔空间的轨迹规划.................................................................... - 17 -一、空间直线轨迹规划........................................................................... - 18 -二、空间圆弧的轨迹规划....................................................................... - 21 -三、一般空间轨迹规划........................................................................... - 25 - 第四章总结与展望............................................................................................... - 30 - 参考文献................................................................................................................. - 31 -第一章绪论第一节研究背景及意义随着宇宙空间的开发,70 年代美国提出了在宇宙空间利用机器人系统的概念,并且在航天飞机上实施。

相关文档
最新文档