海浪谱公式总结 PPT

合集下载

海洋要素计算与预报(海浪3)

海洋要素计算与预报(海浪3)

4

( 0 )2 exp 2 2 2 0
0.076~ x 0.22
~ x gx / U 2 ~ U / g
0 0
JONSWAP谱相对于风区的成长
文氏谱(1994)
~ 无因次化
0
j 1
S ( )0 ~ ~ S ( ) m0
H1/10 1 N10
H ,
i i 1
N10
T1/10
1 N10
T ,
i i 1
N10
N10 N / 10
H1/100
1 N100
N100 i 1
H ,
i
T1/100
1 N100
N100 i 1
T ,
i
N100 N / 100
H1% H i ,
H 4% H i ,
1 H F ( H ) exp
其中
2.126, 8.42

假定波动能量集中于谱重心频率附近(Longuet-Higgins,1975) :

S ( )d
0
S ( )d
0
m1 m0
(t ) Re an expi(n t n )
n

(t ) Re ei exp(i t )
ei an exp{ i[(n )t n ]}
1
12 22 32 42 f (1 , 2 , 3 , 4 ) exp exp 2 (2 ) 0 2 2 0 22
其中
r
0

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2
g 2 S() 8.110 5 exp[0.74( ) ] U
3
g2
式中:U为海面上19.5 m高处的风速。下图为不同风速 下的P-M谱分布。
PM谱的一般特性: ①与Neumann谱相比,两者比 较接近。 ②风速相同,低风速时: Neumann谱的峰值<PM谱的峰 值,高风速时:Neumann谱的 峰值>PM谱的峰值。


频率 无关,只是组成波方向 的函数,如
G ( ) An cos n
一种简单的近似处理方法是假定方向分布函数 G 与
n
2 范围内传播与分布。 2 2
为方向分布参数, ,波浪能量在主波向 ;
2 An ITTC(国际船舶拖曳水池会议)建议取n=2, 8 An ISSC(国际船舶结构会议)建议取n=4, 3 。
《海洋工程环境学》
第四章 海洋波浪
船舶工程学院 马山 副教授
5、海浪谱
前面我们讲解的都是确定性意义上的规则波理论。如线性 艾瑞波、椭圆余弦波、孤立波等。解释自然界波浪运动特征( 深水、浅水、非线性特征等)
自然界中的海浪随时间和空间随机性地发生变化。随机过 程的海浪远比采用一个确定函数描述的规则波复杂,属于非周 期性的不规则波,各种海浪要素都是随机变量。
t an cos(nt n )
n1

相位。
an 、 n 、 n 分别是第n个余弦组成波的振幅、圆频率和
下图表示某固定点5个简谐波叠加得到的合成海面波 动结果。
5.2 频谱
对任一组成波,其单位面积波能形式为:
En ga
1 2
n
2 n
对其任意圆频率间隔 内的波能求得总 能量后再除以圆频率间隔得到的表达式为:

海浪谱公式总结

海浪谱公式总结

exp
1.03
1 TH1/
3
4
S
400.5
Hs T2
H1/ 3
2
1
5
exp1605
1
T H1/ 3
4
式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
m0
S
d
0
0
A
5
exp
B
4
d
A 4B
因 W /3
4
m0
1/ 2
m0
2 W /3 16
所以:B
4A
2 W /3
由于P M谱中A 0.0081g 2
0.78,
B
4A
2 W /3
3.12
2
4
W /3
代入后得ITTC谱:
S
0.78
5
exp
3.12
2
4
W /3
式中:ζw/3为三一平均波高(不是波幅)。 金品质•高追求 我们让你更放心!
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on

第六章 海浪.ppt

第六章 海浪.ppt

H


4

1
H
2

ln
1 F

2
H 为浅水系数, H H d
当水很深时,即H*=0,则上式还原为深水公式。
深水及浅水中各种累积频率所对应的波高模比系数: 当波由深水处移向浅水处时,平均波高将发生变化,波列
的分布规律也发生变化。
HF H
H* F%
0.5 1 2 5 … 90 95
例3:已知某浅水区d=20m,H1%=5.0m,求H5%=?
解:采用试算法
设 H =2.2m
H /d=0.11
计算得 H1% / H =2.273,查表得 H1% / H =2.239
H5% / H =1.85
则H5%=4.1m
2.周期的理论分布函数 周期的概率密度函数:
f
T


4 4
• 惯性离心力同运动方向相垂 直,自曲率中心沿半 径指向 外缘,其大小同空气运动的 线速度(U)的 平方成正比, 与曲率半径(r)成反比。
• 实际大气空气运动曲率半径(几十千米——几千千米)很 大,故C很小。但在低纬度或空气运动速度大而曲率半很小时, C 较大并可能超过G。
• 作用——只改变风向,不改变风速大小。
例:△p=5hPa, △n=3.5, F=30°, △T=5℃, 则:Us=? m/s,
Ug=? m/s
二、我国近海风况的特点
1.季风——海陆间热力差异导致。 2.寒潮大风——气温在24小时内降低10度以上,且最低气 温降至5度以下,称为寒潮。 3.台风——热带气旋
台风(12级及以上) 强热带风暴(10~11级) 热带风暴(8~9级) 热带低压(8级以下)

海浪谱公式总结ppt课件

海浪谱公式总结ppt课件
2.P-M谱
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964 年提出。适用于充分成长的海浪。
S
式中:a=0.0081;
β=0.74;
ag2
5
exp
g
U
4
g为重力加速度;
U为离海面19.5m处的风速。
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on
%3.ITTC谱 h=2.8; w=0.3:0.01:4; S3ittc=0.78./(w.^5).*exp(-3.12/(h^2)./(w.^4)); plot(w,S3ittc,'g-'),hold on
S 1 4
j
4j
4
1
mj
4
j
j
H sj2
4 j1
exp
4j
4
1
mj
4
式中:j=1、2分别表示低频和高频部分。 六参数谱可表达任何发展阶段的风浪谱。
10.Wallops谱
1981年,美国Huang等基于理论研究和美国航空航天局wallops飞 行中心风浪流水槽实验资料,提出通用的二参数谱—wallops。他们认 为此谱适用于波浪发展、成熟和衰减各个阶段。合田把它改进成下列 形式,建议用于工程设计(Goda, 1999)
S f
0.257

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2
0.076(
gF 0.22 ) 2 U10
为量纲为一的常数
F为风区长度,
U10为海面上10m高处风速;
为峰形参数,取


=0.07 =0.09

m m
第17届ITTC推荐如下的JONSWAP波浪谱。并引入 有义波高h1/3和特征周期T1两个参数,并考虑 T1=0.834T0得:


频率 无关,只是组成波方向 的函数,如
G ( ) An cos n
一种简单的近似处理方法是假定方向分布函数 G 与
n
2 范围内传播与分布。 2 2
为方向分布参数, ,波浪能量在主波向 ;
2 An ITTC(国际船舶拖曳水池会议)建议取n=2, 8 An ISSC(国际船舶结构会议)建议取n=4, 3 。
2g S ( ) 6 exp( 2 2 ) U
式中:U为海面上7.5 m高处的风速。下图给出不同 风速下的Neumann谱分布。
2.4
2
海浪谱特征初步认识: 谱的能量集中在窄的频带内; 随着风速的增大,谱峰频率变小。
不同风速下的Neumann谱分布
② Pierson-Moscowitz谱(P-M谱):根据北大西洋 1955~1960年间的观测资料进行谱分析得到,并被第11届 ITTC(国际船模水池会议)(1966)列为标准单参数谱。
不同风速下的P-M谱分布
③单参数谱不能合理表征非充分发展海浪特征,第15届 ITTC(1978)给出的频谱形式为:
S ( )
173H123 T 5
2m0 T m1
4
exp(
691
4T
4

海洋工程环境课件第5章 海洋波浪

海洋工程环境课件第5章 海洋波浪
第5章
5.1 海洋波动现象概述
海洋波浪
海洋中存在着各种形式的波动, 它既可发生在海洋的表面, 又可发生在海洋内部不同密 度层之间,有着不同的波动尺度、机理和特性,各种波动现象复杂。海洋波动是海水运动的 主要形式之一。 海洋表面总被形容为时而波涛汹涌,时而涟漪荡漾,呈现出一种复杂的波动现象。引 起海水表面波动的自然因素有很多, 如海洋表面受到风与气压的作用、 天体的引潮力及海底 地震与火山的作用等,它们引起的波动现象有不同的尺度,造成各种波动的周期、波高、波 长等波动特性的不同,各自具有不同的能量范围,对海洋工程结构的作用影响也不同。如图 5-1 所示。
5.1.1 海浪概述
海浪(Ocean Wave)是海洋中常见的一种自然现象,海面风力的作用是其起因,一般可将 海浪分为由风直接驱动产生的风浪 (Wind Wave)及由风浪随后发展形成的涌浪 (Swell) 两部 分。
1.海浪类型
风浪因受到海面风的直接作用,其传播方向基本与风同向。风浪的形成及其浪高、周期 等大小自然与风的状态,如海面作用风速的大小、作用风区( Fetch)的范围及作用风时(Wind Duration)的长短直接相关,它们相互间存在着很复杂的非线性关系,这些构成了海浪研究和 海浪预报的主要内容。此外风浪的产生还与作用海域的水深、地形等有关。风浪的波形外观 表现奈乱,背风面比迎风面更陡,波峰线较短,在时间上和空间上都表现为不规则的随机变
对于实际海面波动直接应用海洋观测仪器进行观测将是对现场海浪的真实记录此时的海面波动杂乱无章而可看作一个随机过程应用数理统计分析的方法可进行合理分析和研究并可得到海浪的运动方向特征其结果将反映现场实际海浪的运动情况其实测资料也可用于检验海浪理论为海洋工程设计提供最可靠的数据但观测仪器的精确度及大范围的现场观测带来的大量费用成本等是其主要制约

第四章 海浪观测

第四章 海浪观测

100
( 4 )频率直方图
以模比系数为纵坐标,平均频率为横坐标, 以模比系数为纵坐标,平均频率为横坐标,绘 制波高平均频率直方图(见图.1)。 )。图上各个 制波高平均频率直方图(见图 )。图上各个 矩形的面积正是各组的区间频率, 矩形的面积正是各组的区间频率,其面积之和 为1.0。当组距趋于无限小时,直方图趋于曲线, 。当组距趋于无限小时,直方图趋于曲线, 该曲线与纵轴包围的面积就是 1.0,此时横坐标 , 转化为频率密度,而曲线即频率密度曲线。 转化为频率密度,而曲线即频率密度曲线。该 曲线的特点是“中间大、两头小” 曲线的特点是“中间大、两头小”,即平均值 附近的波高出现机会最多。 附近的波高出现机会最多。
压力测波仪
美国Inter Ocean公司的S4ADW型系列产品
五、波浪玫瑰图
表示某海区各向各级波浪出现频率基多大小的图. 表示某海区各向各级波浪出现频率基多大小的图 绘制方法同风玫瑰图类似
波向 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW ╳ C ∑ 观测总 数
0.8~1.0 m m p /% 4 0.14 9 0.33 4 0.14 2 1 0.07 0.04
1.1~1.2 m m p /% 4 0.14 6 0.22 2 0.07
1.3~1.5 m m p /% 6 0.22
1
0.04
7 20 6
0.25 0.72 0.22
3 4
0.11 0.14
1 4 4
H /m 1.3 3.2 5.3 3.3 1.5 1.2 1.9 1.5 3.1 1.8 1.4 1.8 1.8 1.5 4.3 4.8 4.1 3.9 2.9 0.7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

exp
691
T14 4
5.ISSC谱
国际船舶结构会议ISSC1964推荐下列谱公式,且常 称之为ISSC谱。
2
S
f
0.11
Hs T2
0.1
1 f5
exp
0.44
1 T0.1
f
4
6.JONSWAP谱
该谱由“北海海浪联合计划”测量分析得到,在60年代末期提 出,适合像北海那样风程被限定是海域,有两种表示形式。
4
W /3
代入后得ITTC谱:
S
0.78
5
exp
3.12
2
4
W /3
式中:ζw/3为三一平均波高,有义波高(不是波幅)。
4.双参数海浪谱
1978年第15届ITTC采用了双参数谱,双参数谱改进了ITTC谱,对成 长中的海浪也适用。
基于ITTC谱有:
m1
S
d
0
0
A
5
exp
B
a.由风速和风程表示的谱公式
S
g 2 5
exp
1.25
p
4
e
xp
p 2 p 2
式中:α为无因次常数,可取α=0.0076(gx/U2)-0.22; x为风区长度(风程);U为平均风速; ωp为谱峰频率,可取 ωp=22(g/U)(gx/U2)-0.33 ; γ为谱峰提升因子,平均值为3.3; σ为峰形参数,当ω≤ωp时,可取 σ=0.07;当ω>ωp时,取σ=0.09.
S f
0.257
Hs T2
H1/ 3
2
1 f5
TH1/ 3
exp
1.03
1 TH1/
3
4
S
400.5
Hs T2
H1/ 3
2
1
5
exp1605
1
T H1/ 3
4
式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
海浪谱公式总结
1.Neumann谱
由半经验的方法,假定海浪的某些外观特征反映其内部结构,由 观测到的波高和周期间的关系推导出来。于50年代首先提出。
S
C
4
1
6
exp
2g2
U 22
式中:U为海面上7.5米高处的风速;常数C=3.05m/s2
2.P-M谱
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964 年提出。适用于充分成长的海浪。
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on
%3.ITTC谱 h=2.8; w=0.3:0.01:4; S3ittc=0.78./(w.^5).*exp(-3.12/(h^2)./(w.^4)); plot(w,S3ittc,'g-'),hold on
国际拖曳水池会议(ITTC, 1972)对P-M谱进行了修改,得到ITTC谱。
基于P M谱有:
m0
S
d
0
0
A
5
exp
B
4
d
A 4B
因 W /3
4
m0
1/ 2
m0
2 W /3 16
所以:B
4A
2 W /3
由于P M谱中A 0.0081g 2
0.78,
B
4A
2 W /3
3.12
2
S f
H T2 1m w 1/3 p
f
m
exp
m 4
Tp f
4
10.Wallops谱
式中:
w
0.06238mm1/ 4 4m5/ 4 m 1
1 0.7458 m 2 1.057
Tp
TH 1/ 3 1 0.238 m 1.5
0.684
m,βw为两个参数,改变m即可改变谱的宽窄形状,βw用于调整 谱面积,使之等于波浪总能量。
1
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
2
2.5
3
3.5
4
注:ITTC谱中的三一平均波幅是按照 风速U=11.5kn,U=6.85(ζw/3 )0.5 计算得 出h=2.8。
谢谢您的聆听!
S
式中:a=0.0081;
β=0.74;
ag2
5
exp
g
U
4
g为重力加速度;
U为离海面19.5m处的风速。
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包
含一个参数U,不足以表征复杂的海浪情况。
3. ITTC谱
8.斯科特谱
斯科特(Scott,1965)对于充分发展的海浪建议用下列谱公式:
S
0.214H s 2
exp
0.065
p p
2
0.26
1/
2
式中:-0.26<ω-ωp<1.65, Hs为有效波高;ωp为谱峰频率。 此谱和北大西洋以及印度西海岸实测谱符合得很好。
9.六参数谱
奥启和汉伯尔(Ochi,Hubble, 1976)提出了一个六参数谱公式, 它把整个谱分成低频部分和高频部分两个组成部分,每一部分分别用 三个参数—有效波高Hs、谱峰频ωp和形状参数λ表示。
形状参数m和JONSWAP谱中的γ一样,其选用依靠工程师的经验 和判断。一般小的无因次风距gX/U2和大的γ或m值相关,而大的无因 次风距值gX/U2导致γ=1或m=5。在浅水,上述谱中采用m=3或4是合 适的。
11.方向谱
长峰不规则波是假定海浪沿单一方向传播的;实际海浪除了沿 主方向传播外,还向其他方向扩散,称为短峰不规则波;短峰不规则 波可以看成传播方向不同的长峰不规则波叠加而成。描述海浪沿不同 方向组成的波谱,称为方向谱。
S 1 4
j
4j
4
1
mj
4
j
j
H sj2
4 j1
exp
Hale Waihona Puke 4j 41
mj
4
式中:j=1、2分别表示低频和高频部分。 六参数谱可表达任何发展阶段的风浪谱。
10.Wallops谱
1981年,美国Huang等基于理论研究和美国航空航天局wallops飞 行中心风浪流水槽实验资料,提出通用的二参数谱—wallops。他们认 为此谱适用于波浪发展、成熟和衰减各个阶段。合田把它改进成下列 形式,建议用于工程设计(Goda, 1999)
S, SD,
式中:S(ω)为长峰不规则波的海浪谱;θ为组成波与主浪向的夹角。
D(ω,θ)的一般形式为: D , kn cosn
(|θ|≤π)
国际船舶结构协会会议(ISSC)建议用一下两种n值
n=2, k2=2/π; n=4, k4=8/3π;
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on
4
d
1 3
A B3/4
1
3 4
式中:为函数,1
3 4
0.91906,因此有:
m1 0.30638A / B3/ 4
T1 2m0 / m1 5.127 / B1/ 4或B 691/ T14
A 4Bm0
B 2 W /3 4
173
2
W
T14
/3
代入后得到双参数海浪谱:
S
173
2
W
/3
T145
%4.双参数海浪谱 h=2.8; w=0.3:0.01:4; B=3.12/(h^2)./(w.^4); T1=5.127./(B.^0.25); S4=173*h^2./(T1.^4)./(w.^5).*exp(-691./(T1.^4)./(w.^4)); plot(w,S4,'m-')
1.4
1.2
6.JONSWAP谱
b.由波高和波浪周期表示的谱公式
S
319.34
2 W /3
Tp45
1948
Tp 4
3.3e
xp
0.159Tp
2 2
12
式中:Tp为谱峰周期,波谱峰值对应的周期。
7.Bretschneider谱
布氏于1959年由无因次波高和无因次波长的联合分布函数导出二参数 谱,适用于成长阶段或者充分成长的风浪。后经日本光易恒(Mitsuyasu)改进 如下:
相关文档
最新文档