高一数学映射
映射法高一数学知识点归纳

映射法高一数学知识点归纳数学是一门抽象且能带来美妙感受的学科。
在高中阶段,学生们开始接触更加深入和细致的数学知识。
其中,映射法是一个重要的概念,它不仅在高一数学中频繁出现,还在后续的学习中扮演着重要的角色。
本文将就高一数学中与映射法相关的几个重要知识点进行归纳和探讨。
一、函数和映射函数是数学中的一个基本概念,它描述了两个集合之间的一种对应关系。
我们可以将函数理解为一种映射,将一个集合的元素映射到另一个集合中。
函数通常用一个数学表达式来表示,其中包括自变量和因变量。
高一数学中,我们学习了一元函数和二元函数的概念,并了解了函数的定义域、值域、图像等重要概念。
这些概念为后续的函数进一步学习打下了基础。
二、映射的基本性质映射是一个广义的函数,它可以将集合A中的元素映射到集合B中的一个或多个元素。
在高一数学中,我们学习了映射的一些基本性质。
首先是单射、满射和双射的概念。
其中,单射表示映射的每个自变量对应一个唯一的因变量,满射表示映射的每个因变量都有对应的自变量,而双射则同时满足单射和满射的条件。
通过研究映射的性质,我们可以更好地理解函数之间的关系和特征。
三、映射的运算映射的运算是高一数学中的重点内容之一。
我们学习了映射的复合运算、反函数和其它常见运算。
映射的复合运算可以将两个映射按照一定的规则合并成一个新的映射。
而反函数则是一个函数与其原函数互为映射的关系。
这些运算不仅帮助我们更好地理解映射的特性,还能够在解决实际问题中发挥重要作用,尤其在数学建模和函数逆向求解中。
四、关于映射的应用映射法在实际问题中具有广泛的应用。
在几何中,我们可以通过映射法来进行形状的变换和性质的推导。
在代数中,映射法可以帮助我们解决方程和不等式,并找到特定函数的性质。
在概率论中,我们可以使用映射法来计算事件的概率和条件概率。
这些应用不仅拓宽了我们对映射法的理解,还展示了数学在实际生活中的强大应用能力。
总之,映射法作为高一数学中的一个重要知识点,为我们提供了更好理解函数和解决实际问题的途径。
高一数学 函数映射、单调性

高一数学函数及函数的性质1、映射的概念(1)映射是特殊的对应,即是“一对一”的对应和“多对一”的对应,而“一对多”的对应不是映射.(2)给定一个映射f:A→B,则A中的每一个元素都有唯一的象,B的某些元素可以没有原象,如果有原象,也可以不唯一的.2、函数的概念(1)函数是特殊的映射,即集合A、B均为非空数集的映射.(2)构成函数的三要素;对应关系f、定义域A、值域{f(x)|x∈A},其中值域{f(x)|x∈A} B.正确理解函数符号y=f(x):①它表示y是x的函数,绝非f与x的积;②f(a)仅表示函数f(x)在x=a时的函数值,是一常数.(3)确定函数的条件:当对应关系f和定义域A已确定,则函数已确定,判定两个函数是否相同时,就要看定义域和对应法则是否完全一致.(4)函数的定义域,一般是使函数解析式有意义的x值的集合,在具体问题中则应考虑x的实际意义,如时间t,距离d均应为非负数等.求函数定义域的基本方法:①分式中分母不为零;②偶次根式中的被开方式不小于零;③ [f(x)]0中的底f(x)不为零;④如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使每个部分式子都有意义的实数集合.根据对应法则的性质求定义域,如已知f(x)的定义域为[a,b],则f[ψ(x)]的定义域应为ψ(x)的定义域与a≤ψ(x)≤b的解集的交集.3、函数的表示法:解析法、列表法、图象法.4、函数的值域是全体函数值所组成的集合,有观察法,换元法、配方法、图象法、反求法、判别式法等求值域的基本方法.函数的值域是函数的“三要素”之一,在一个给定的函数中,函数的值域随对应法则和定义域而确定.几个基本初等函数的值域:一次函数y=kx+b(k≠0)的值域:{y|y∈R};二次函数y=ax2+bx+c(a≠0)的值域:当a>0时,;当a<0时,;反比例函数(k≠0)的值域:(-∞,0)∪(0,+∞).求函数值域的基本方法(1)直接法:从自变量x的范围出发,推出y=f(x)的取值范围;例如:的值域为[1,+∞).这是因为x≤3,所以≥0,∴ y≥1.(2)二次函数法:利用换元法将函数转化为二次函数求值域(或最值);(3)反函数法:将求函数值域转化为求反函数的定义域;4)判别式法:运用方程的思想,将函数变形成关于x的二次方程,依据二次方程有实根,求出y 的取值范围;(5)利用函数的单调性求值域;(6)图象法:作出函数的图象,由图象来确定函数的值域.1、判断下列对应是否是从集合A到集合B的映射;(1)A=R,B={x|x>0且x∈R},x∈A,f:x→|x|;(2)A=N,B=N*,x∈A,f:x→|x-1|;(3)A={x|x>0且x∈R},B=R,x∈A,f:x→x2.2、求函数的定义域.1、已知映射f:A→B,则下列说法正确的是()A.A中某一元素的象可能不止一个 B.A中两个不同元素的象必不相同C.B中某一元素的原象可能不止一个 D.B中两个不同元素的原象可能相同2、若A={2,4,6,8},B={-1,-3,-5,-7},下列对应法则:①f:x→9-2x;②f:x→1-x;③f:x→7-x;④f:x→x-9中,能确定A到B的映射的是()A.①②B.②③ C.③④D.②④3、下面四组函数f(x)与g(t)中,表示同一函数的是()A.B.C.D.4、函数的定义域是()A.(4,+∞) B.(2,3)C.(-∞,2)∪(3,+∞) D .(-∞,2)∪(2,3)∪(3,+∞)5、已知f(x)是一次函数,且满足2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为()A.3x-2 B.3x+2 C.2x-3 D.2x+36、设函数y=f(x)的定义域为[-],则函数y=f(-2)的定义域是()A.[-,2] B.[2-,2+] C.[6-4,6+4] D.[0,6+4]7、若函数的定义域为A,y=的定义域为B,的定义域为C,则集合A、B、C之间的关系是()A.A∩B=C B.A∩B C C.A∩B C D.A∪B C8、若函数y=f(x)的定义域为[0,1],则函数y=f(x+a)+f(2x+a)(0<a<1)的定义域是()A.B.C.[-a,1-a] D.9.下列图中,画在同一坐标系中,函数与的图象只可能是()A. B.C. D.10、给出四个命题:(1)函数是其定义域到值域的映射;2)是函数;(3)函数y=2x(x∈N)是一次函数;4)与g(x)=x是同一个函数.其中正确的有()A.1个B.2个 C.3个 D.4个11、设(x,y)在映射f:A→B的作用下的象是(),则在f的作用下,元素(-1,1)象是_____________,元素(3,-2)的原象是_____________.12、若f(x+1)=2x2+1,则f(x-1)= _____________.13、(1)f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x)的表达式;(2)已知:f(2x-1)=4x2-2x,求f(x)的表达式.14、已知函数y=f(x)的定义域为[0,1],设函数F(x)=f(x+a)+f(x-a),求正实数a的取值范围,并求函数F(x)的定义域.15、已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(1-)的值.6、求下列函数的值域.1、函数的单调性(1)定义: 设函数y=f(x)的定义域为 A :区间,如果对于区间I上的任意两个自变量的值,当时,都有,那么就说f(x)在区间I上是增函数. 区间I称为y=f(x)的单调增区间;如果对于区间I上的任意两个自变量的值,当时,都有,那么就说f(x)在这个区间上是减函数。
高一数学必修1《映射》课件

例2. 点(x,y)在映射f下的像是(2x-y,2x+y), (1)求点(2,3)在映射f下的像; (2)求点(4,6)在映射f下的原像. 解:(1)点(2,3)在映射f下的像是(1,7); (2)点(4,6)在映射f下的原像是(2.5,1)
3.讨论下列对应是否是从集合A到 集合B的映射.
不是
4、已知A={a,b,c},B={-1,2} (1)从集合A→B能建立多少个不同映射? (2)满足f(a)+f(b)+f(c)=0,则集合A到集合B 的映射个数
y与它对应,就称这种对应为从A到Bபைடு நூலகம்映射,记作
f:A→B A中的元素x称为原像,B中的对应元素y称为x的像, 记作 f:x y
下列是映射的有哪些?
A B
求正弦
30
0 0 0
1 2 2 2 3 2 1 0
45 60 90
0
A B
求平方
3 -3
2 -2
9
8
4
1 -1
1
A B
概括:原像必有像,像可以没有原像.
观察下面两个例子
A B
乘以2
1 2
3
2 4 6
A B
求正弦
30
0 0 0
1 2 2 2 3 2 1
45 60 90
0
二、一一映射
叫做一一映射.它满足:
一对一
在实际中,我们经常使用一种特殊的映射,通常
1.A中每一个元素在B中都有唯一的像与之对应; 2.A中的不同元素的像不同; 3.B中的每一个元素都有原像.
思考交流
三、函数与映射有什么区别与联系?
(1)函数是一种特殊的映射;
(2)两个集合中的元素类型有区别; (3)对应的要求有区别.
高一数学映射与集合知识点

高一数学映射与集合知识点数学是一门抽象而又重要的学科,而映射与集合作为数学中的基础概念之一,是我们学习数学的重要内容。
本文将以高一数学的角度来探讨映射与集合的知识点,并且分析它们在实际应用中的意义和价值。
一、映射的概念和特征映射是数学中的一种函数关系,它描述了一个集合中的每个元素都对应着另一个集合中的唯一元素。
映射通常用箭头表示,箭头的起始点表示输入,箭头的终点表示输出。
映射具有以下特征:1. 单射:如果一个映射中不同的输入元素对应不同的输出元素,则该映射是单射。
简而言之,单射意味着每个输入只对应一个输出。
2. 满射:如果一个映射中的每个输出元素都有对应的输入元素,则该映射是满射。
也就是说,满射保证了每个输出都被至少一个输入对应。
3. 双射:如果一个映射既是单射又是满射,则该映射是双射。
双射保证了每个输入都对应唯一的输出,并且每个输出都有对应的输入。
映射在实际应用中有着广泛的运用。
例如,地图是一种常见的映射形式,将实际空间上的点映射到纸面上,帮助我们理解和导航真实世界。
而在数学建模中,映射也被广泛应用于描述各种关系,帮助我们分析和解决问题。
二、集合的基本概念和操作集合是数学中另一个重要的概念,它是由一些确定的元素构成的整体,这些元素称为集合的成员。
集合有以下基本概念和操作:1. 元素:集合中的每个个体都被称为一个元素。
元素可以是数字、字母、符号等等,甚至可以是其他集合。
2. 子集:如果一个集合的所有元素都属于另一个集合,我们称这个集合为另一个集合的子集。
3. 并集:将两个或多个集合中所有的元素合并在一起,形成一个新的集合,该操作被称为并集。
4. 交集:将两个或多个集合中共有的元素提取出来,形成一个新的集合,该操作被称为交集。
5. 补集:给定一个全集,然后从全集中减去一个集合中的元素,得到的结果称为该集合关于全集的补集。
集合论在数学中有着广泛的应用,它帮助我们描述和分析各种数学概念和关系。
例如,在概率论中,集合的概念使我们能够描述和计算不同事件的发生概率。
大一高数知识点映射与函数

大一高数知识点映射与函数高等数学是大多数理工科专业大一必修的一门课程,其中包含了许多重要的数学知识点。
在这篇文章中,我们将重点讨论高数中的映射与函数。
一、映射的概念与性质映射是数学上非常重要的概念,它描述了元素之间的对应关系。
在集合论中,我们将一个元素从一个集合映射到另一个集合,这两个集合可以是相同的,也可以是不同的。
映射一般用函数符号f(x) 表示,其中 x 是原集合的元素,f(x) 是它在目标集合中的对应元素。
映射具有以下性质:1. 单射:若 f(x1) = f(x2),则 x1 = x2。
即不同的元素在映射中有不同的对应元素。
2. 满射:若对于任意的 y ∈目标集合,都存在 x ∈原集合,使得 f(x) = y。
即每一个元素都有对应的映射元素。
3. 一一映射:即又是单射又是满射的映射。
二、函数的定义与性质函数是映射的一种特殊形式,它在数学和其他学科中都有着广泛的应用。
函数的定义比较简洁,它是一种特殊的映射,其中原集合只能有一个元素对应到目标集合中的一个元素。
函数具有以下性质:1. 定义域和值域:函数的定义域是指输入变量的取值范围,值域是指函数输出的取值范围。
2. 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) = f(x) 或 f(-x) = -f(x) 是否成立。
3. 单调性:函数在定义域上的增减状况,可以分为递增、递减或保持不变。
4. 极值与最值:函数在定义域的某一点或某一区间上取得的最大值或最小值。
5. 对称性:函数是否具有关于某个轴的对称性。
三、常见的函数类型在高数课程中,我们学习了许多常见的函数类型。
下面是其中一些重要的函数:1. 幂函数:y = x^n,其中 n 是正整数。
2. 指数函数:y = a^x,其中 a 是正实数且不等于 1。
3. 对数函数:y = log_a(x),其中 a 是正实数且不等于 1。
4. 三角函数:包括正弦函数、余弦函数和正切函数等。
5. 反三角函数:包括反正弦函数、反余弦函数和反正切函数等。
高一数学映射

第一章 1.2.2 课题:
数学
函数的表示法 映射
授课者: 朱海棠
问题提出
1.设集合A={x|x是正方形},B={y|y>0},对 应关系f:正方形→面积,那么从集合A到集 合B的对应是否是函数?为什么? 2.函数是“两个数集A、B间的一种确定的对 应关系”,如果集合A、B不都是数集,这种 对应关系又怎样解释呢?
例3 下列对应关系f是否为从集合A到集合B的 函数?
(1) A R, B { y | y 0}, f : x | x |;
(1) A R, B { y | y 0}, f : x | x |; (2) A R, B R, f : x x 2 ; (3) A Z , B R, f : x x ;
; 消防风机 隧道风机;
多姆大帝,此时也在嘀咕着,这个家伙还真是壹个痴情种呀,和当年の情圣壹样呀,怪不得是情圣の传人.根汉在这里枯坐了近三年,三年之间,滴水未进.多姆大帝也劝过他好多回,但是根汉壹直就没有离开这三生池.三年之后,根汉突然站了起来,他壹步迈向了三生池."小子,你疯了!"多 姆大帝大惊,根汉这是要自己走进三生池吗?这不是疯了吗?根汉却没有听他の劝,还是慢慢の走向了三生池.至尊剑立即壹横,挡在了根汉の面前,要拦住根汉の去路."小子,你别疯了!""你要是进去了,八成要挂掉!"多姆大帝现在也有些郁闷,怒斥道:"你小子就这么点出息吗!不就是壹 个女人吗!天下美人多の是,要多少有多少!你至于自暴自弃吗!""你现在寻死,你剩下の女人怎么办!"多姆大帝现在对根汉可以说是恨铁不成钢,他没想到根汉会自寻死路.他好歹也是壹个天神了,天神の承受能力怎么会这么差.根汉却没有听他の话,根汉の意识好像很淡,整个人
映射法高一数学知识点总结
映射法高一数学知识点总结在高一的数学学习中,映射法是一种重要的解题方法,它能够帮助我们在解决各种数学问题时更加清晰地思考。
在本文中,我将总结高一数学中的一些重要知识点,并结合映射法来进行讲解和应用。
一、映射与函数在数学中,映射是指一种从一个集合到另一个集合的对应关系。
而函数则是一种特殊的映射,它要求每个输入值都有唯一对应的输出值。
我们可以通过映射的图象、对应法则和定义域等方面来描述一个函数。
在解题中,我们可以通过映射的性质来简化计算,找到问题的关键所在。
二、集合与映射集合是数学中的基本概念,而映射则是将一个集合中的元素对应到另一个集合中的元素。
在解决集合和映射相关的问题时,我们可以运用映射法来分析和解答。
比如,在排列组合和概率等问题中,我们可以通过建立集合与映射的对应关系来快速求解。
三、函数的性质与应用函数是高中数学中的重点内容,它有很多重要的性质和应用。
其中,一次函数、二次函数和反比例函数是我们比较常见的函数类型。
在解决函数相关的问题时,我们可以利用映射法来推导函数的性质和应用,从而更好地理解和应用函数概念。
四、映射法在直角坐标系中的应用映射法在直角坐标系中有广泛的应用。
我们可以利用映射法来求解两点间的距离、两直线间的夹角以及两点间的中点等问题。
此外,映射法也可以帮助我们理解平移、旋转和翻折等几何变换,从而更好地解决相关的几何问题。
五、映射法在函数图象中的应用在研究函数的图象时,映射法可以帮助我们更好地分析和理解函数的性质。
通过建立函数的图象与输入输出的对应关系,我们可以求解函数的零点、最值和增减性等问题。
此外,映射法还可以帮助我们研究函数图象的对称性和周期性,进一步加深对函数的理解。
六、映射法在数列与数列极限中的应用数列是高中数学中的重要内容,而映射法可以帮助我们更好地研究数列的性质。
通过建立数列与输入输出的对应关系,我们可以求解数列的通项公式、前n项和以及极限等问题。
此外,映射法还可以帮助我们研究数列的收敛性和发散性,提高解题的效率和准确性。
高一数学映射
A中的元素x称为原像,B中的对应元素y称为x的像,
记作
f:x y
思考
交流 1.P37
练习1
2.函数与映射有什么区别和联系?
结论:1.函数是一种特殊的映射; 2.两个集合中的元素类型有区别; 3.对应的要求有区别.
一一映射:是一种特殊的映射
1.A中的不同元素的像也不同
2.B中的每一个元素都有原像
知识应用
实例分析
• 1.集合A={全班同学},集合B=(全班 同学的姓},对应关系是:集合A中的每一个 同学在集合B中都有一个属于自己的姓. •2.集合A={中国,美国,英国,日本}, B={北京,东京,华盛顿,伦敦},对应关 系是:对于集合A中的每一个国家,在集合 B中都有一个首都与它对应. •3.设集合A={1,-3,2,3,-1,-2},
知识应用
2. 点(x,y)在映射f下的象是(2x-y,2x+y), (1)求点(2,3)在映射f下的像;
(2)求点(4,6)在映射f下的原象.
(1)点(2,3)在映射f下的像是(1,7); (2)点(4,6)在映射f下的原象是(5/2,1)
3.设集合A={1,2,3,k},B={4,7,a4,a2+3a}, 其中a,k∈N,映射f:A→B,使B中元素y=3x+1 与A中元素x对应,求a及k的值.
集合B={9,0,4,1,5},对应关系是: 集合A中的每一个数,在集合B中都有一个其 对应的平方数.
高一数学映射知识点
高一数学映射知识点数学是一门综合性科学,映射是其中的重要概念之一。
在高一数学学习中,映射是一个需要深入理解和掌握的知识点。
本文将从映射的定义、映射的性质以及映射的应用等方面进行详细介绍。
一、映射的定义映射是一种对应关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
映射常常用符号“f”表示,表示一个元素或者一组元素通过某种规则对应到另一个集合中。
对于集合A和集合B,如果存在一个映射f,使得对于A中的任意元素a,都有唯一的对应元素b在集合B中,即f(a)=b,那么我们可以说A中的元素通过映射f对应到B中的元素。
二、映射的性质1. 单射:如果映射f中不同的元素在B中有不同的对应元素,即对于任意的a1和a2,如果f(a1)=f(a2),则a1=a2。
这种映射被称为单射或一一映射。
单射保证了映射的唯一性。
2. 满射:如果映射f中的所有元素都有对应的元素存在于B中,即对于任意的b∈B,都存在a∈A,使得f(a)=b。
这种映射被称为满射。
满射保证了映射的完备性。
3. 双射:既是单射又是满射的映射被称为双射。
双射保证了映射的一一对应关系,即A中的每一个元素都有唯一对应的元素在B中,B中的每一个元素也都有唯一对应的元素在A中。
4. 逆映射:如果映射f是一个双射,那么它存在一个逆映射g,使得g(f(a))=a对于任意的a∈A成立,同时f(g(b))=b对于任意的b∈B也成立。
逆映射可以实现映射的互逆。
三、映射的应用映射在数学中的应用非常广泛,尤其在解决实际问题时起到了重要的作用。
以下是映射在几个常见领域的应用示例:1. 函数关系:函数是一种特殊的映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
函数在数学中有着广泛的应用,例如描述物理规律、经济关系以及建立模型等。
2. 图论:映射在图论中有重要作用。
图是由一系列的顶点和边组成的数学模型,而映射则常常用于描述顶点之间的关系,例如在社交网络中描述用户之间的关注关系。
高一数学最新课件-映射 精品
作
象
或唯一
xx
例一、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} f:乘2 加1 2 A=N+,B={0,1} f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 ss 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
解:1 是 2是 3 不是。B中有两个元素与A中一个元素对应 4 不是。A中元素0在B中无元素与之对应
例7:以下给出的对应是不是从集合A到B的映射? (1)集合A={P|P是数轴上的点},集合B=R, 对应关系f:数轴上的点与它所代表的实数对应. (2)集合A={P|P是平面直角坐标系中的点},集合 B={( X,Y)|X∈R,y∈R},对应关系f:平面直角坐 标系中的点与它的坐标对应. (3)集合A={x|x是三角形},集合B={x|x是圆},对 ? 应关系f:每一个三角形都对应它的内切圆改为外接圆呢 ; (4)集合A={x|x是新华中学的班级},集合B={x|x 是新华中学的学生},对应关系f:每一个班级都对 若对应关系改为:每一个学 应班里的学生.
映射
A 9 4
开平方
B 3 -3 2 -2 1 -1 B 1 4 9
A 300
求正弦
B
1 2
2 2 3 2
450
600 900 A 乘以2 1 2 3
1
1
B 1 2 3 4 5 6
A 1 -1 2 -2 3 集合,如果按照某种对应法 则f,对于集合A中的任何一个元素,在集合B中都有唯一的一 个元素和它对应,那么这样的对应(包括集合A,B以及A到B的 对应法则f)叫做集合A到集合B的映射,记作: f : A B 其中,如果 a A, b B ,且元素a和元素b对应,那么我 们把元素b叫做元素a的象,元素a叫做元素b的原象 说明:1 映射 f : A B 有方向性,即它只表示从集合A 到集合B的映射 2 映射 f : A B 要求集合A的每一个元素在 f 3 用下都有唯一的象 映射f : A B 不要求集合B中的元素都有原
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
买球网平台大全 www.jeLeabharlann
膈下逐瘀汤主治A.胸中血瘀证B.瘀阻头面证C.瘀血痹阻经络证D.瘀血阻滞膈下证E.寒凝血瘀证 越鞠丸的主治不包括A.饮食不消B.嗳腐吞酸C.脘腹胀痛D.恶心呕吐E.心胸烦热 DCJ或FCJ在该道岔区段的失磁落下时复原。 女性肺癌多见A.腺癌B.腺鳞癌C.小细胞癌D.大细胞癌E.鳞癌 暂时冠的作用不是。A.避免牙髓再度受刺激B.保持患牙的牙位C.避免面磨损D.保持近、远中间隙E.为戴冠提供便利 下列案件纠纷中,受《仲裁法》调整的是。A.婚姻、继承纠纷B.建设工程施工合同纠纷C.农业承包合同纠纷D.加工承揽合同纠纷E.劳动争议纠纷 根据《中华人民共和国行政许可法》规定,行政机关采用等其他行政管理方式能够解决的,可以不设行政许可。 因工程量增加造成的工期延长,承包商可以根据合同约定要求进行工期索赔。工期确认时间根据合同约定为天。A.7B.14C.21D.28 第二心音反常分裂的论述,错误的是A.第二心音反常分裂见于主动脉瓣狭窄B.以上都不是C.主动脉瓣关闭迟于肺动脉瓣D.第二心音反常分裂见于重度高血压E.第二心音反常分裂是病理性体征 《血证论》提出的治血四法是A.止血、活血、宁血、凉血B.止血、消瘀、活血、补血C.行血、消瘀、宁血、补血D.行血、活血、凉血、补血E.止血、消瘀、宁血、补血 下列不符合新生儿期特点的是。A、易发生适应环境不良综合征B、常因分娩带来产伤和窒息C、发病率高,死亡率也高D、免疫功能低下和多发感染性疾病E、生理调节功能基本成熟 马血清抗毒素是A.是抗体,不是抗原B.是抗原,不是抗体C.即是抗体,又是异种抗原D.即非抗原,又非抗体E.是异嗜性抗原 重量分析中常用滤纸过滤. 折断后有银白色胶丝的是A.藕节B.菟丝子C.杜仲D.败酱草E.柴胡 地球上恒温动物的总体平均温度接近多少℃?A、36B、39C、42D、45 下列哪项是次紧急评估采用“CrashPlan”的顺序A.心脏、呼吸、腹部、脊柱、头颅、骨盆、四肢、动脉、神经B.头颅、心脏、呼吸、腹部、脊柱、骨盆、四肢、动脉、神经C.头颅、神经、心脏、呼吸、腹部、脊柱、骨盆、四肢、动脉D.神经、呼吸、心脏、腹部、脊柱、头颅、骨盆、四肢、动脉 急性肾衰竭患儿尿量逐渐增多,全身水肿减轻,24h尿量大于多少时,即为利尿期A.200ml/m2B.250ml/m2C.300ml/m2D.350ml/m2E.400ml/m2 出版专业助理编辑的主要职责不包括。A.在编辑指导下练习组稿B.练习撰写书评C.承担校样的文字技术整理D.在编辑指导下加工稿件 目前小轿车常采用之传动型式为A.F.RB.FC.M.RD.R.R 信息分类中,指分类体系的建立应满足事物的不断发展和变化的需要,在分类体系中应留有适当的空位,以便新的事物或概念增加时,在体系中有一定的位置安排,而不至于由于新的事物或概念头的增加而导致分类体系又推倒重来A、科学性B、系统性C、可扩充性D、兼容性E、综合实用性(信息 当腹压突然增加时,尿液不随意地流出,此类尿失禁属A.真性尿失禁B.假性尿失禁C.压力性尿失禁D.充溢性尿失禁E.急迫性尿失禁 材料质量控制的主要内容有:材料的性能,材料取样,试验方法及等。A.材料的质量标准B.材料的强度C.试验设备D.试验人员 预防口腔癌,定期检查的对象是40岁以上,长期吸烟量约为A.1支/日B.5支/日C.10支/日D.15支/日E.20支/日以上 每升输液中含钾量最多可用至:A.1gB.2gC.3gD.4gE.5g 皮肤黏膜红色斑点不凸出皮肤,压之不褪色称为A.蜘蛛痣B.紫癜C.斑疹D.小红痣E.玫瑰疹 提高功率因数的方法,是在负载上并联适当的电容。A、电阻性B、感性C、容性D、磁性 是口头创作和流传的,则是书面形式创作和流传的。 ___是人类特有的一种反映形式,是人区别于动物心理的一大特征。A.自我体验 B.自我认知 C.自我观察 D.自我分析 临床诊疗道德的原则是A.患者健康利益第一的原则B.最优化原则C.身心统一原则D.以上都是E.以上都不是 是以国家为主体,通过政府的收支活动,集中一部分社会资源,用于履行政府职能和满足社会公共需要与经济活动。A.财政B.税收C.国债D.股票 患者,女性,25岁,戴镜(-2.00D)4年。眼部检查未见有器质性病变,调节力为6D。她的远点是()A.眼前16.7mmB.眼前10mmC.眼前50mmD.眼前25mmE.眼前12.5mm 患者男性,62岁,咳嗽,咳痰20年,有高血压、肝炎病史。查体:BP150/83mmHg,肺肝界位于第六肋间。心界缩小,心率110次/分,律不齐,P亢进,胸骨左缘第五肋间可闻及收缩期杂音。肝肋下3.5cm,双下肢水肿。心电图报告:顺钟向转位,V,V呈QS型。作为诊断慢性肺心病的主要依据,以下 能破坏中止燃烧的物质是灭火剂.A.正确B.错误 仲裁庭不能形成多数意见时,裁决应当按照()的意见作出。A.法院B.检察院C.首席仲裁员D.公安局 图纸上标注的比例是1:1000则图纸上的10mm表示实际的。A.10mmB.100mmC.10mD.10km 检测沙眼病人标本时,一般采用做预处理的抗生素是。A.青霉素B.链霉素C.红霉素D.利福平E.庆大霉素 汽车动力性的评价指标是什么? 出生时体重为3kg的小儿,10个月时其体重应大约为。A.6.8kgB.7kgC.7.6kgD.8kgE.8.5kg 下列哪项不是口腔癌警告标志A.口腔内溃疡1周以下尚未愈合B.口腔黏膜有白色、红色和发暗的斑C.口腔与颈部有不正常的肿胀和淋巴结肿大D.口腔反复出血,出血原因不明E.面部、口腔、咽部等因拔牙而出现麻木与疼痛 CPD保养液对红细胞的保存时间为()A.1周B.2周C.3周D.4周E.5周