高中数学常用符号
高中数学符号

高中数学公式符号大全sA=╮+-×÷±<>•∶∴∵∷⊙∫∮∝∞∧∨º¹²³ ½ ¾ ¼≠≤≥≈≡‖=≌∽≮≯∑∏∪∩∈⊿⌒√∟㏒㏑¢∠⊥%‰℅°℃℉′〒¤○µ㎎㎏㎜㎝㎞㎡㏄㏎㏒$£¥㏕♂♀X¹X²X³1°1′1〃↑ ↓ ← → ↖↗↙↘㊣◎⊕⊙○ ● △▲☆★◇◆□■▽▼§¥£※♀♂∵∴φω ░ ▒☻☺☼♠◈♤♦◊♨♣♧♥♡▦▩▣▧▨▤▥▪ ▫ ◘ ◙ ☏☎☜☞◑◐◦ ° ☑₪╮,、~%#*‧;∶… ¨ ,• ˙ ‘ ’〃′ εїз ™ ✿。◕‿◕。◎☺☻►◄▧▨◐◑↔ ↕ ㊊㊋㊌㊍㊎㊏㊐▀▄ █ ▌▬ (ε.メ)▣▤▥▦▩♭☀ஐ☈➽〠〄㍿㊚㊛㊙℗♯♩♫♬¤큐≡:,⊆⊂⊇⊃试比较cos1°与tan44°的大小。
1、几何符号⊥‖∠⌒⊙≡≌△° |a| ⊥∽∠∟‖|2、代数符号∝∧∨~∫ ≤ ≥ ≈ ∞ :〔〕〈〉《》「」『』】【〖3、运算符号× ÷ √ ± ≠ ≡≮≯4、集合符号∪∩∈Φ ? ¢5、特殊符号∑ π(圆周率)@#☆★○●◎◇◆□■▓⊿※¥Γ Δ Θ ∧Ξ Ο ∏ ∑Φ Χ Ψ Ω ∏6、推理符号←↑→↓↖↗↘↙∴∵∶∷T ? ü7、标点符号` ˉ ˇ ¨ 、· ‘’8、其他& ; § ℃№ $£¥‰ ℉♂♀①②③④⑤⑥⑦⑧⑨⑩Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ωα β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏ ∑ ∕ √ ∝∞ ∟∠∣‖∧∨∩∪∫ ∮∴∵∶∷∽≈ ≌≈ ≠ ≡≤ ≥ ≤ ≥ ≮≯⊕⊙⊥⊿⌒指数0123:o123 〃? ? ?符号意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪集合并∩集合交≥ 大于等于≤ 小于等于≡恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况,如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除n(m,n)=1 m与n互质a ∈A a属于集合ACard(A) 集合A中的元素个数|a| ⊥∽△∠∩∪≠ ∵∴≡± ≥ ≤ ∈←↑→↓↖↗↘↙‖∧∨¼ ½ ¾§①②③④⑤⑥⑦⑧⑨⑩α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ωⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟∠∣‖∧∨∩∪∫∮∴∵∶∷∽≈≌≈≠≡≤≥≤≥≮≯⊕⊙⊥⊿⌒为了方便,也做些约定!x的平方,可以打成x^2 (其它的以此类推)x+1的开方,可以打成√(x+1),记住加括号;x分之一,可以输入1/x;如果是x+1分之一,请输入1/(x+1),分子、分母请加括号<> 或>< 表示不等于例:a<>b 即a不等于b;<= 表示小于等于(不大于)例:a<=b 即a不大于b;>= 表示大于等于(不小于)例:a>=b 即a不小于b;^ 表示乘方例:a^b 即a的b次方, 也可用于开根号,例:a^(1/2) 表示a的平方根* 表示乘……/ 表示浮点除例:3/2=1.5\ 表示整除例:3\2=1……1()广义括号,允许多重嵌套,无大、中、小之分,优先级最高。
数学中的符号

数学中的符号由于研究的需要,人类制造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的进展。
在中学数学中,常见的数学符号有以下六种:一、数量符号如3/4,圆周率;a,x等。
二、运算符号如加号(+),减号(-),乘号(或),除号(或-),比号(:)等。
三、关系符号如“=”是“等号”,读作“等于”;“”或“=”是“约等号”读作“约等于”;“”是“不等号”。
读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“∥”是“平行符号”,读作“平行于”;“”是“垂直符号”,读作“垂直于”等。
四、结合符号如小括号(),中括号[ ],大括号{ }。
五、性质符号如正号(+)、负号(-),绝对值符号(||)。
六、简写符号如三角形(△),圆(⊙),幂()等。
这些符号的产生,一是来源于象形,实际上是缩小的图形。
如平行符号“∥”是两条平行的直线;垂直符号“”是互相垂直的两条直线;三角形符号“△”是一个缩小了的三角形;符号“⊙”表示一个圆,中间的一点表示圆心,以免与数0及英文字母O混淆。
二是来源于会意,即由图形就能够看出某种专门的意义。
如用两条长度相等的线段“=”并列在一起,表示等号;加一条斜线“”,表示不等号;用符号“>”表示大于(左侧大,右边小),“<”表示小于(左侧小,右边大),意思不难明白得;用括号“()”、“[ ]”、“{}”把若干个量结合在一起,也是不言而喻的。
三是来源于文字的缩写。
如我们以后将要学到的平方根号“”中的“”,是从拉丁字母Radi x(根值)的第一个字母r演变而来。
相似符号“∽”是把拉丁字母S横过来写,而S是Sindlar(相似)的第一个字母。
还有大量的符号是人们通过规定沿用下来的。
因此这些符号并不是一开始就差不多上这种形状,而是有一个演变过程的,那个地点就不多讲了。
数学符号的产生,为数学科学的进展提供了有利的条件。
第一,提高了运算效率。
数学中数的分类及符号

数学中数的分类及符号
数学里,常用一些特定的大写英文字母来表示某些常见数集。
高中数学里的常见数集及其字母表示(符号表示)分别如下:
中学数学常见数集的符号表示
(1)正整数集:所有正整数构成的集合。
正整数包括:1,2,3,4,5,……。
正整数集的集合符号为:N+(注:“+”为下标),也可记为N*(注:“*”为上标)。
(2)自然数集:不小于0的所有整数构成的数集,也称为“非负整数集”。
自然数(非负整数)包括:0,1,2,3,4,5,……。
自然数集的集合符号为:N。
(3)整数集:所有整数构成的集合。
整数包括:0,±1,±2,±3,±4,±5,……。
整数集的集合符号为:Z。
(4)有理数集:所有有理数构成的集合。
有理数包括:整数、分数、有限小数、无限循环小数等。
有理数集的集合符号为:Q。
(5)实数集:所有实数构成的集合。
实数包括:有理数、无理数。
实数集的集合符号为:R。
(6)复数集:所有复数构成的集合。
复数包括:实数、虚数。
复数集的集合符号为:C。
高中数学常用符号3篇

高中数学常用符号第一篇:数字和基本运算符号数字和基本运算符号是初中数学学习的基础,也是高中数学学习的必备内容。
下面是关于数字和基本运算符号的常用符号及其意义。
一、数字0, 1, 2, 3, 4, 5, 6, 7, 8, 9表示自然数,其中0是最小的自然数。
二、基本运算符号加法:+减法:-乘法:×除法:÷次方:^取余:%三、其他符号等于:=大于:>小于:<不等于:≠大于等于:≥小于等于:≤括号:( )四、使用方法数字和基本运算符号的使用方法如下:(1)加法运算:用“+”表示。
例如,3+4=7表示3加4得到7。
(2)减法运算:用“-”表示。
例如,5-2=3表示5减2得到3。
(3)乘法运算:用“×”表示。
例如,6×4=24表示6乘4得到24。
(4)除法运算:用“÷”表示。
例如,10÷2=5表示10除以2得到5。
(5)次方运算:用“^”表示。
例如,2^3=8表示2的3次方等于8。
(6)取余运算:用“%”表示。
例如,5%2=1表示5除以2的余数是1。
(7)括号的使用:括号用于改变运算顺序和表示小数。
例如,(3+4)×2=14表示先计算括号里的3+4,再乘以2。
五、总结数字和基本运算符号是数学学习的基础,掌握这些符号的含义和使用方法是非常重要的。
在实际应用中,我们需要用数字和基本运算符号来表达数学知识和解决实际问题。
因此,需要通过大量的练习来提高运用这些符号的能力。
高中生数学符号念法教案

高中生数学符号念法教案一、教学目标:学生能够正确念读常见数学符号,提高数学符号的准确掌握程度。
二、教学内容:1. 常见数学符号(1)\(+\):念作“加”;(2)\(-\):念作“减”;(3)\(\times\):念作“乘”;(4)\div:念作“除”;(5)\(\leq\):念作“小于等于”;(6)\(\geq\):念作“大于等于”;(7)\(\neq\):念作“不等于”;(8)\(\pm\):念作“加减”;(9)\(\cdot\):念作“点乘”;(10)\(\sqrt{}\):念作“根号”。
2. 练习题目(1)\(3 + 2 = \_\_\_);(2)\(6 \times 4 = \_\_\_);(3)\(8 - 5 = \_\_\_);(4)\(12 \div 3 = \_\_\_);(5)\(9 \geq 7\),这个不等式的含义是什么?(6)\(2\sqrt{9} = \_\_\_);(7)\(5 \cdot 7 = \_\_\_);(8)\(4 \neq 3\),这个不等式的含义是什么?三、教学步骤:1. 引入新知识:向学生介绍常见数学符号并让他们尝试念读;2. 给学生示范正确的念读方式,并纠正错误的发音;3. 练习题目:让学生尝试念读练习题目中的数学符号,并解答相应的问题;4. 达标检测:进行小测验,测试学生对数学符号的准确掌握程度。
四、教学反馈:对学生在学习过程中的表现给予积极的肯定和指导,帮助他们进一步巩固所学知识。
五、课堂延伸:引导学生在日常生活中多留意数学符号的使用,加强对数学符号的认识和掌握。
六、作业布置:布置相关的作业,巩固学生对数学符号的掌握。
七、教学总结:对本节课的教学做出总结,并展望下节课的内容。
以上为高中生数学符号念法教案范本,希望能够对您有所帮助。
高中数学符号

论坛发贴常遇到数学公式表达困难的请进(提供两种方法)论坛经常遇到发贴的数学公式的表达问题,这是需要统一的方式,不了解的可以参照此来表达数学公式。
因为自然科学的讨论经常要用到数学,但用文本方式只能表达左右结构的数学公式,上下结构、根式、指数等都很难表达。
为了便于我们在讨论中有一种统一的相互能共通的用文本方式表达:x^n …………………………表示x 的n 次方,如果n 是有结构式,n 应外引括号;(有结构式是指多项式、多因式等表达式)x^(n/m) ……………………表示x 的n/m 次方;SQR(x) ……………………表示x 的平方;sqrt(x) ……………………表示x 的开平方;√(x) ………………………表示x 的开方,如果x 为单个字母表达式,x 的开方可简表为√x ;x^(-n) …………………… 表示x 的n 次方的倒数;x^(1/n) ……………………表示x 开n 次方;log_a,b……………………表示以a 为底b 的对数;x_n ……………………… 表示x 带足标n;∑(n=p,q)f(n) …………表示f(n)的n从p到q逐步变化对f(n)的连加和,如果f(n)是有结构式,f(n)应外引括号;∑(n=p,q ;r=s,t)f(n,r)…………表示∑(r=s,t)[∑(n=p,q)f(n,r)],如果f(n,r)是有结构式,f(n,r)应外引括号;∏(n=p,q)f(n)……………………表示f(n)的n从p到q逐步变化对f(n)的连乘积,如果f(n)是有结构式,f(n)应外引括号;∏(n=p,q;r=s,t)f(n,r)…………表示∏(r=s,t)[∏(n=p,q)f(n,r)],如果f(n,r)是有结构式,f(n,r)应外引括号;lim(x→u)f(x) 表示f(x) 的x 趋向u 时的极限,如果f(x)是有结构式,f(x)应外引括号;lim(y→v ;x→u)f(x,y)…………表示lim(y→v)[lim(x→u)f(x,y)],如果f(x,y)是有结构式,f(x,y)应外引括号;∫(a,b)f(x)dx……………………表示对f(x) 从x=a 至x=b 的积分,如果f(x)是有结构式,f(x)应外引括号;∫(c,d;a,b)f(x,y)dxdy ………表示∫(c,d)[∫(a,b)f(x,y)dx]dy,如果f(x,y)是有结构式,f(x,y)应外引括号;∫(L)f(x,y)ds……………………表示f(x,y) 在曲线L 上的积分,如果f(x,y)是有结构式,f(x,y)应外引括号;∫∫(D)f(x,y,z)dσ ………………表示f(x,y,z) 在曲面D 上的积分,如果f(x,y,z)是有结构式,f(x,y,z)应外引括号;∮(L)f(x,y)ds………………… …表示f(x,y) 在闭曲线L 上的积分,如果f(x,y)是有结构式,f(x,y)应外引括号;∮∮(D)f(x,y,z)dσ …………………表示f(x,y,z) 在闭曲面D 上的积分,如果f(x,y)是有结构式,f(x,y)应外引括号;∪(n=p,q)A(n) ………………表示n从p到q之A(n)的并集,如果A(n)是有结构式,A(n)应外引括号;∪(n=p,q ;r=s,t)A(n,r) …表示∪(r=s,t)[∪(n=p,q)A(n,r)],如果A(n,r)是有结构式,A(n,r)应外引括号;∩(n=p,q)A(n) …………………表示n从p到q逐步变化对A(n)的交集,如果A(n)是有结构式,A(n)应外引括号;∩(n=p,q;r=s,t)A(n,r) …表示∩(r=s,t)[∩(n=p,q)A(n,r)],如果A(n,r)是有结构式,A(n,r)应外引括号;……。
命题数学符号大全

以下是数学命题中常用的符号:
∀:全称量词,表示“对于所有”的意思。
∃:存在量词,表示“存在某个”的意思。
∈:属于符号,表示某个元素属于某个集合。
∉:不属于符号,表示某个元素不属于某个集合。
∪:并集符号,表示两个集合的并集。
∩:交集符号,表示两个集合的交集。
¬:否定符号,表示某个命题的否定。
→:推出符号,表示如果前面的命题成立,则后面的命题也成立。
↔:等价符号,表示两个命题等价。
∧:合取符号,表示两个命题同时成立。
∨:析取符号,表示两个命题中至少有一个成立。
∅:空集符号,表示没有任何元素的集合。
≠:不等于符号,表示两个数或两个集合不相等。
≤:小于等于符号,表示左边的数小于或等于右边的数。
≥:大于等于符号,表示左边的数大于或等于右边的数。
≈:近似符号,表示两个数或两个表达式近似相等。
≠≠:严格不等于符号,表示两个数或两个集合完全不相等。
⊂:子集符号,表示左边的集合是右边的集合的子集。
⊄:非子集符号,表示左边的集合不是右边的集合的子集。
∪:补集符号,表示某个集合在全集中的补集。
这些是数学命题中常用的符号,使用它们可以帮助我们更清晰地表达数学概念和逻辑关系。
高中数学符号读法大全

高中数学符号读法大全引言在高中数学学习中,学生们不可避免地会接触到各种各样的数学符号。
正确理解这些符号的含义和读法,对于学习和理解数学概念和定理都至关重要。
本文将为大家提供一个高中数学符号读法大全,帮助大家更好地掌握这些符号的含义和读法。
数字和运算符号•数字:0、1、2、3、4、5、6、7、8、9•负号:-•加号:+•减号:-•乘号:×、\*、或直接省略•除号:÷、/•等号:=•不等号:≠•大于号:>•小于号:<•大于等于号:≥•小于等于号:≤基本数学符号•加法:a + b•减法:a - b•乘法:a × b、a \* b、ab、a · b (中点表示)•除法:a ÷ b、a / b、a⁄b•求和:∑(大写希腊字母Sigma)•平方:a²•立方:a³•平方根:√•立方根:∛•其他次方根:∜•百分号:%•小数点:.希腊字母•α(Alpha)•β(Beta)•γ(Gamma)•δ(Delta)•ε(Epsilon)•ζ(Zeta)•η(Eta)•θ(Theta)•ι(Iota)•κ(Kappa)•λ(Lambda)•μ(Mu)•ν(Nu)•ξ(Xi)•ο(Omicron)•π(Pi)•ρ(Rho)•σ(Sigma)•τ(Tau)•υ(Upsilon)•φ(Phi)•χ(Chi)•ψ(Psi)•ω(Omega)关系运算符•等于:=•不等于:≠•大于:>•小于:<•大于等于:≥•小于等于:≤•约等于:≈•相似于:∼数学函数和常用符号•绝对值:|x|•平均值:μ•最大值:max•最小值:min•阶乘:n!•自然对数:ln•对数:log•指数函数:exp•三角函数:sin、cos、tan、cot、sec、csc•反三角函数:arcsin、arccos、arctan、arccot、arcsec、arccsc•积分:∫•微分:d•极限:lim•无穷大:∞•空集:∅其他特殊符号•分数线:/•并集:∪•交集:∩•包含于:⊂•包含等于:⊆•元素属于:∈•空集:∅•直角符号:∠•向量符号:→•无理数:π(圆周率)、e(自然对数底数)结论本文列举了高中数学中常用的符号及其读法,希望能够帮助学生们更好地理解和掌握这些符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学符号
如加号(+),减号(-),乘号(×或?),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“?”是“包含”符号等。
结合符号
如小括号“()”中括号“[]”,大括号“{}”横线“—”
性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
n!-阶乘,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列
φ空集
∈属于(∉不属于)
|A| 集合A的点数
⊂包含
⊂(或下面加≠)真包含
∪集合的并运算
∩集合的交运算
a ∈A a属于集合A
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系R的自反闭包
s(R) 关系的对称闭包
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
C 复数集
N自然数集:
N* 正自然数集
P 素数集
Q 有理数集
R 实数集
Z 整数集
数学符号的意义
符号(Symbol)意义(Meaning)
= 等于is equal to
≠不等于is not equal to
< 小于is less than
> 大于is greater than
|| 平行is parallel to
≥大于等于is greater than or equal to
≤小于等于is less than or equal to
≡恒等于或同余
π圆周率
|x| 绝对值absolute value of X
∽相似is similar to
≌全等is equal to(especially for triangle ) >> 远远大于号<< 远远小于号
∞无穷大
ln(x)以e为底的对数
lg(x)以10为底的对数
floor(x)上取整函数
ceil(x)下取整函数
x mod y求余数
x - floor(x) 小数部分
∫f(x)dx不定积分
∫[a:b]f(x)dx a到b的定积分。