高中数学立体几何判定定理及性质大全

合集下载

高中数学立体几何判定定理及性质

高中数学立体几何判定定理及性质

高中数学立体几何判定定理及性质-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中立体几何判定定理及性质一、公理及其推论文字语言符号语言图像语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

ααα⊂⇒∈∈∈∈lBAlBlA,,,①用来验证直线在平面内;②用来说明平面是无限延展的公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)llP∈=⋂⇒⋂∈P且βαβα①用来证明两个平面是相交关系;②用来证明多点共线,多线共点。

公理3经过不在同一条直线上的三点,有且只有一个平面确定一个平面不共线CBACBA,,,,⇒用来证明多点共面,多线共面推论1经过一条直线和这条直线外的一点,有且只有一个平面αααα⊂∈⇒∉aAA,使,有且只有一个平面推论2经过两条相交直线,有且只有一个平面ααα⊂⊂⇒=⋂baPba,使,有且只有一个平面推论3经过两条平行直线,有且只有一个平面ααα⊂⊂⇒baba,使,有且只有一个平面∥公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫用来证明线线平行二、平行关系文字语言符号语言图像语言作用(1)公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

ααα∥∥ababa⇒⎪⎭⎪⎬⎫⊂⊄(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

baabb∥∥⇒⎪⎭⎪⎬⎫⊂=⋂ββαβ(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.βαααββ∥∥∥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⊂⊂=⋂baObaba(5)面面平行的判定如果两个βαβα∥⇒⎭⎬⎫⊥'⊥'OOOO平面垂直于同一条直线,那么这两个平面平行。

高中数学立体几何证明定理及性质总结

高中数学立体几何证明定理及性质总结

高中数学立体几何证明定理及性质总结高中数学立体几何是数学的一个重要分支,主要研究与三维空间中的几何形体相关的性质和定理。

在学习过程中,我们会遇到许多重要的定理和性质,下面是对其中一些重要的定理和性质进行总结的文章,以便于我们更好地掌握该知识点。

一、三角形的五种中线定理:1.三角形的三条中线交于一点,并且该点离三角形三个顶点的距离相等,这个点称为三角形的重心。

2.三角形的三条中线外接圆半径为内接圆半径的两倍。

3.三角形的三条中线构成的小三角形,其面积之和等于三角形面积的三分之一4. 中线长与边长的关系:三角形三边长分别为a、b、c,则三角形的三条中线长分别为m_a = 0.5*sqrt(2*b^2+2*c^2-a^2),m_b =0.5*sqrt(2*a^2+2*c^2-b^2),m_c = 0.5*sqrt(2*a^2+2*b^2-c^2)。

5.中线垂直性质:三角形的三条中线互相垂直,且互相平分。

二、三角形的四种高定理:1.三角形的三条高交于一点,并且该点到三角形三个顶点的距离相等,这个点称为三角形的垂心。

2.高线长与边长的关系:三角形三边长分别为a、b、c,则三角形的三条高线长分别为h_a=2*S/a,h_b=2*S/b,h_c=2*S/c,其中S为三角形的面积。

3.垂心到顶点距离的关系:设山脚底角为A,垂足为D,有AH/HD=BH/HE=CH/HF=2,其中H为垂心,E,F为垂足。

4.垂心角的关系:设山脚底角为A,垂足为D,有∠BHC=2∠A,∠BHC=2∠A,∠CHB=2∠A。

三、三角形的欧拉定理:设O为三角形的外心,G为重心,H为垂心,则有OG=1/3GH。

四、圆的性质:1.垂径定理:直径AB垂直于弧CD,则弦CD的中点E与弦AB的中点F,以及圆心O在一条直线上,且OE=OF=1/2CD。

2.正接定理:一个直角三角形的斜边上的圆的直径与该斜边上的直角边成正切关系。

3.切线定理:从一个点外切于圆的切线恒垂直于该点至圆心的半径。

(完整版)高中立体几何八大定理

(完整版)高中立体几何八大定理

lmβααba线面位置关系的八大定理一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行图形语言: 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α 作用:线线平行⇒线面平行二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

图形语言:符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m作用:线面平行⇒线线平行 三、平面与平面平行的判定定理文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 作用:线线平行⇒ 面面平行四、平面与平面平行的性质定理:文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行 图形语言:符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭作用: 面面平行⇒线线平行nmAαaαbaBA l βαaβα五、直线与平面垂直的判定定理: 文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面 图形语言: 符号语言: ,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭作用:线线垂直⇒线面垂直六、直线与平面垂直的性质定理:文字语言:若两条直线垂直于同一个平面,则这两条直线平行 图形语言: 符号语言://a a b b αα⊥⎫⇒⎬⊥⎭作用:线面垂直⇒线线平行七、平面与平面垂直的判定定理:文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

图形语言:符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭注:线面垂直⇒面面垂直八、平面与平面垂直的性质定理: 文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭作用:面面垂直⇒线面垂直。

高中数学立体几何判定定理与性质.docx

高中数学立体几何判定定理与性质.docx

高中立体几何判定定理及性质一、公理及其推论文字语言符号语言图像语言公理 1A l ,B l , A, B如果一条直线上的两l点在一个平面内,那么这条直线上所有的点都在这个平面内。

公理 2作用①用来验证直线在平面内;②用来说明平面是无限延展的如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)公理 3经过不在同一条直线上的三点,有且只有一个平面推论1经过一条直线和这条直线外的一点,有且只有一个平面推论 2经过两条相交直线,有且只有一个平面推论 3经过两条平行直线,有且只有一个平面公理 4 (平行公理)平行于同一条直线的两条直线平行Pl 且 P lA, B, C 不共线A, B,C 确定一个平面A有且只有一个平面,使 A, aa b P有且只有一个平面,使 a,ba ∥ b有且只有一个平面,使 a,ba ∥ ba ∥ cb ∥c ①用来证明两个平面是相交关系;②用来证明多点共线,多线共点。

用来证明多点共面,多线共面用来证明线线平行二、平行关系文字语言(1)公理 4 (平行公理)平行于同一条直线的两条直线平行(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行 .符号语言图像语言作用a ∥ ba ∥ cb ∥ ca ∥ ba a ∥bb∥b a ∥ baa ∥b ∥a b O∥ab(5)面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。

OOOO∥(6)面面平行的性质定理如果两个∥a a ∥ b平行平面同时和第三b个平面相交 ,那么它们的交线平行。

( 7)面面平行的性∥质如果两个平面平行 , a ∥那么其中一个平面内a的直线平行于另一个平面。

立体几何判定方法和性质汇总

立体几何判定方法和性质汇总
(1) 直线Ax+By+C=0为特殊直线y=x、 y=-x、x轴、y轴、x=a、y=b时,对称点的 坐标分别为P1(y0,x0)、P2(-y0,-x0)、 P3(x0,-y0)、P4(-x0,y0)、P5(2a-x0,y0)、 P6(x0,2b-y0)。
(2) 直线Ax+By+C=0为一般直线时,可 设P1的坐标为(x1,y1),则P P1的中点 满足直线方程Ax+By+C=0,并且PP1的斜 率与直线Ax+By+C=0的斜率之积为-1, 可以得到关于x1、y1的一个二元一次方 程组,从而可以解出x1、y1。
0 90
斜线与平面所成的角的取值范围是:
0 90
二面角的大小用它的平面角来度量;取 值范围是:0 180
最小角定理及公式 cos cos1 cos2
十、三角形的心 1 、内心:内切圆的圆心是角平分线的交点
2、外心:外接圆的圆心是垂直平分线的 交点
3、 重心:中线的交点 4、 垂心:高的交点
(2)试对你的画法给出证明.
A
P
M
F
C
N
E
B
例2 在四棱锥P-ABCD中,底面ABCD 是一直角梯形,∠BAD=90°,AD∥BC, 且PA⊥底面ABCD,
若AE⊥PD,垂足为E, 求证:BE⊥PD;
PE
A
D
B
C
例3 在正方体ABCD-A1B1C1D1中,E、F 分别为BB1、D1B1的中点, 求证:EF⊥平面B1AC
于平面,则另一条也平行于该平面 5、 平面外的一直线和两平行平面中的 一个平行,则也平行于另一个平面
三、判定面面平行的方法 1、定义:没有公共点 2、面面平行的判定定理 3、垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行

高中数学立体几何判定定理及性质

高中数学立体几何判定定理及性质

高中立体几何判定定理及性质一、公理及其推论文字语言 符号语言图像语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

ααα⊂⇒∈∈∈∈l B A l B l A ,,,①用来验证直线在平面内; ② 用来说明平面是无限延展的公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)ll P ∈=⋂⇒⋂∈P 且βαβα① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。

公理3经过不在同一条直线上的三点,有且只有一个平面 确定一个平面不共线C B A C B A ,,,,⇒用来证明多点共面,多线共面推论1经过一条直线和这αααα⊂∈⇒∉a A A ,使,有且只有一个平面条直线外的一点,有且只有一个平面推论2经过两条相交直线,有且只有一个平面ααα⊂⊂⇒=⋂baPba,使,有且只有一个平面推论3经过两条平行直线,有且只有一个平面ααα⊂⊂⇒baba,使,有且只有一个平面∥公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫用来证明线线平行二、平行关系文字语言符号语言图像语言作用(1)公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那ααα∥∥ababa⇒⎪⎭⎪⎬⎫⊂⊄么这条直线和这个平面平行。

(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

baabb∥∥⇒⎪⎭⎪⎬⎫⊂=⋂ββαβ(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.βαααββ∥∥∥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⊂⊂=⋂baObaba(5)面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。

高中数学立体几何判定定理及性质

高中数学立体几何判定定理及性质

高中立体几何判定定理及性质一、公理及其推论文字语言符号语言图像语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

ααα⊂⇒∈∈∈∈lBAlBlA,,,①用来验证直线在平面内;②用来说明平面是无限延展的公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)llP∈=⋂⇒⋂∈P且βαβα①用来证明两个平面是相交关系;②用来证明多点共线,多线共点。

公理3经过不在同一条直线上的三点,有且只有一个平面确定一个平面不共线CBACBA,,,,⇒用来证明多点共面,多线共面推论1经过一条直线和这条直线外的一点,有且只有一个平面αααα⊂∈⇒∉aAA,使,有且只有一个平面推论2经过两条相交直线,有且只有一个平面ααα⊂⊂⇒=⋂baPba,使,有且只有一个平面推论3经过两条平行直线,有且只有一个平面ααα⊂⊂⇒baba,使,有且只有一个平面∥公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫用来证明线线平行二、平行关系文字语言符号语言图像语言作用(1)公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

ααα∥∥ababa⇒⎪⎭⎪⎬⎫⊂⊄(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

baabb∥∥⇒⎪⎭⎪⎬⎫⊂=⋂ββαβ(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.βαααββ∥∥∥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⊂⊂=⋂baObaba(5)面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。

βαβα∥⇒⎭⎬⎫⊥'⊥'OOOO(6)面面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

立体几何8个定理

立体几何8个定理

立体几何定理1、直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭2、直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

l l l m m αβαβ⎫⎪⊂⇒⎬⎪⋂=⎭如图,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH .求证:AP ∥GH .3、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面. a m a n m n A a m n ααα⊥⎫⎪⊥⎪⎪⋂=⇒⊥⎬⎪⊂⎪⊂⎪⎭4、直线与平面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行。

a ab b αα⊥⎫⇒⎬⊥⎭证明过程:书本P375、两个平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.a b a b A a b ββαβαα⎫⎪⎪⎪⋂=⇒⎬⎪⊂⎪⊂⎪⎭ 6、两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。

a ab b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭7、平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.l l ααββ⊥⎫⇒⊥⎬⊂⎭8、平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. l AB AB AB l αβαβαβ⊥⎫⎪⋂=⎪⇒⊥⎬⊂⎪⎪⊥⎭在三棱锥P-ABC 中,PA ⊥面ABC,平面PAB ⊥平面PBC求证:BC ⊥AB公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

公理2如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.是可以用来判定点在平面内
知识清单
图形语言
基本性质 2
文字语言
符号语言
•A ••
B C
经过不在同一条直线上 C 直线AB 的三点 , 有且只有一个平面. 存在唯一的平面 ,
A
简单地说成:不共线的 使得 B
三点 , 确定一个平面.
C
作用
确定平面的依据.
知识清单




作用
直线 平面 平面 平面
知识清单
线 ⊥ 面的性质定理
图形语言
文字语言
符号语言
如果两个平面互相垂直,
那么在一个平面内垂直于它 们交线的直线垂直于另一个 平面.

a a
MN

MN


a


作用
平面 平面 直线 平面
知识清单
面∥面的判定定理
立体几何基本定理
知识清单
图形语言
基本性质 1
文字语言
符号语言
如果一条直线上的两个 Al
A •
• B
点在一个平面内, 那么这条
线上的所有点都在这个平面
Bl
A


AB


平面内.
B
我们说:直线在平面内
or : 平面经过直线
l
Pl


P

作用
1.是可以用来判定一条直线是否在平面内
a
b




a

a

b

作用
直线∥直线 直线∥平面
知识清单
线∥面的性质定理
图形语言
文字语言
符号语言
如果一条直线和一个平 面平行 , 经过这条直线的平
a∥
面和这个平面相交 , 那么这 a



a∥b
条直线和交线平行.
I b
作用
直线∥平面 直线∥直线
1. 是判定两个平面相交,L 2. 是判定点在直线上,L
图形语言
知识清单
基本性质 4
文字语言
符号语言
a b
c
如果两条直线都和第三 条直线平行 , 那么这两条直 线平行.
a∥b c∥b


a

c
作用
判定:线∥线的依据
知识清单
图形语言
C'
'
A' B'
C

A
B
等角定理
文字语言
符号语言
如果一个角的两边和另 一个角的两边分别平行 , 并 且方向相同 , 那么这两个角
知识清单
面∥面的判定定理
图形语言
文字语言
符号语言
aA b

如果一个平面内有两条 相交直线都平行于另一个平 面 , 那么这两个平面平行.
a∥
a b∥






b

a I b A
作用
直线∥平面 平面∥平面
知识清单
面∥面的性质定理
图形语言
文字语言
符号语言
如果两个平行平面同时 与第三个平面相交 , 那么它
图形语言
文字语言
符号语言
l
A
如果一个平面内有两条 相交直线都平行于另一个平 面 , 那么这两个平面平行.
l l







B
作用
直线 平面 平面∥平面
图形语言
文字语言
符号语言
lm

如果两条直线垂直于同
一个平面 , 那么这两条直线 平行.
a b
⊥ ⊥


a
∥b
作用
直线 平面 直线//直线
知识清单
面 ⊥ 面的判定定理
图形语言
文字语言
符号语言
如果一个平面经过另一 个平面的一条垂线 , 那么这 两个平面互相垂直.
a a


们的交线平行.


I


a


a∥b I b来自作用平面∥平面 直线∥直线
知识清单
面∥面的性质定理
图形语言
文字语言
如果两个平面平行,

a
其中一个平面内的直线平行
另一个平面.

符号语言
∥ a


a∥
作用
平面∥平面 直线∥平面
知识清单
线 ⊥ 面的判定定理

经过两条平行直线 有且只有一个平面.
a∥b
存在唯一的平面 ,
使得
a b


知识清单
图形语言
基本性质 3
文字语言
如果两个平面有一个公 共点 , 那么它们还有其它公 共点 , 且所有这些公共点的 集合是一条过这个公共点的 直线.
符号语言
P I


P
I
l

l
作用
a∥b
a ⊥


b

作用
直线∥直线 直线 平面
知识清单
线⊥面的性质定理
图形语言
文字语言
符号语言
l

a
如果一条直线垂直于一 个平面 , 那么这条直线垂直 于这个平面内的任意直线.
l ⊥ a


l

a
作用
直线 平面 直线 直线
知识清单
线 ⊥ 面的性质定理
基本性质 2的推论
图形语言
文字语言
符号语言


a
1 A•
推 论a

2
Ab
推 论b a 3
经过一条直线和这 A直线a
条直线外的一点有且只 存在唯一的平面 ,
有一个平面.
使得
A a
经过两条相交直线 有且只有一个平面.
aI b A
存在唯一的平面 ,
使得
a b

uuur uuuur
AB ∥ uuur AC ∥
A'B' uuuur

A'C '
相等.
BAC B' A'C '
作用
判定两个角相等( 或互补) 的依据
知识清单
线∥面的判定定理
图形语言
文字语言
符号语言
如果平面外一条直线和 这个平面内一条直线平行 , 那么这条直线和这个平面 平行.
图形语言
文字语言
符号语言
l
A ab
如果一条直线和一个平 a
面内的两条相交直线都垂直 , 那么这条直线垂直于这个平 面.
a
b I
b


A

l

l⊥a

l ⊥ b
作用
直线 直线 直线 平面
知识清单
线 ⊥ 面的判定定理
图形语言
文字语言
符号语言
lm

如果两条平行直线中 , 有一条垂直于平面 , 那么另 一条直线也垂直于这个平面.
相关文档
最新文档