高中数学立体几何解析几何 判定&性质&公式整理(全)

合集下载

解析几何中的立体几何图形

解析几何中的立体几何图形

解析几何中的立体几何图形几何学是数学中的一个重要分支,其研究对象是形状、大小、位置等空间属性。

在几何学中,立体几何图形是一种特殊的几何图形,具有重要的理论意义和实际应用价值。

本文将对解析几何中的立体几何图形进行详细的解析和分析。

一、平面和空间在讨论立体几何图形之前,先需要了解几何中的两个重要概念,即平面和空间。

平面是指一个无限大的、无厚度的、无限制的平面,即类似于二维坐标系中的平面。

而空间是指一个三维空间,包括长度、宽度和高度三个方向。

在几何学中,我们可以利用平面来描述、研究二维图形,利用空间来描述、研究三维图形。

二、在解析几何中,对于任意一个三维几何图形,我们可以通过一个点集合来表示它。

具体的说,我们可以利用一组三元数或三元组表示一个点的位置,这些三元数或三元组分别对应于点在三个坐标轴上的坐标。

例如,对于一个三维空间中的点P,我们可以用(x, y, z)来表示它在x轴、y轴、z轴上的坐标,其中x、y、z分别表示P与三个坐标轴的交点所在的直线的截距。

而对于一个立体几何图形,我们可以用一组点集合来表示它。

这个点集合中的每个点都表示立体几何图形中的一个顶点,多个点之间用线段连接起来,便可以形成一个完整的立体几何图形。

例如,一个正方体可以用八个点来表示,这八个点的坐标分别为(0,0,0)、(0,1,0)、(1,1,0)、(1,0,0)、(0,0,1)、(0,1,1)、(1,1,1)、(1,0,1)。

三、常见的立体几何图形1. 立方体立方体是指一个六个面都为正方形的立体图形。

它有八个顶点和十二个棱,每个顶点有三条棱相接。

立方体的一个重要特征是,它的所有面都是相等的。

例如,上面提到的正方体就是一种立方体。

2. 圆锥圆锥是指一个上面为圆形、下面为尖锐的锥形图形。

它有一个圆锥顶点和若干个圆锥侧面,圆锥侧面上的点都在圆锥顶点与底面圆周之间的线段上。

圆锥在数学和物理学中都有广泛的应用,例如在机械工程中就有很多使用圆锥切割器来切割圆形零件的实践。

数学中的立体几何与解析几何

数学中的立体几何与解析几何

数学中的立体几何与解析几何数学是一门抽象而又具有深度的学科,其中包含了多个分支。

在这些分支中,立体几何和解析几何是两个重要的领域。

立体几何研究的是空间中的图形和物体,而解析几何则研究的是代数和几何的结合。

本文将探讨数学中的立体几何与解析几何的相关概念和应用。

立体几何是研究空间中的图形和物体的分支。

它涉及到空间的三个维度:长度、宽度和高度。

立体几何的基本概念包括点、线、面和体。

点是没有大小和形状的,它只有位置。

线是由无数个点组成的,它有长度但没有宽度和高度。

面是由无数个线组成的,它有长度和宽度但没有高度。

体是由无数个面组成的,它有长度、宽度和高度。

立体几何通过研究这些基本概念之间的关系和性质,探索空间中的图形和物体的特征。

立体几何的应用非常广泛。

在建筑设计中,立体几何被用来研究建筑物的形状和结构。

建筑师需要考虑到建筑物的稳定性和美观性,而立体几何可以帮助他们理解和分析建筑物的空间结构。

在工程领域中,立体几何可以应用于设计和制造复杂的机械零件。

通过使用立体几何的概念和方法,工程师可以更好地理解和控制机械零件的形状和运动。

此外,立体几何还可以应用于计算机图形学、地理测量学和物理学等领域。

与立体几何相对应的是解析几何。

解析几何是代数和几何的结合,它通过使用代数方法研究几何问题。

解析几何的基本概念包括点、坐标和方程。

在解析几何中,点可以用坐标来表示,坐标是一个有序数对,表示点在坐标系中的位置。

方程则是用代数表达式来描述几何图形和物体的性质。

解析几何通过研究点的坐标和方程之间的关系,探索几何图形和物体的特征。

解析几何的应用也非常广泛。

在物理学中,解析几何可以用来描述物体的运动和变化。

通过使用解析几何的方法,物理学家可以推导出物体的运动方程和变化规律。

在经济学中,解析几何可以用来研究供求关系和市场行为。

经济学家可以通过建立数学模型和方程来分析经济现象和预测市场走势。

此外,解析几何还可以应用于计算机科学、统计学和金融学等领域。

立体几何判定方法和性质汇总

立体几何判定方法和性质汇总
(1) 直线Ax+By+C=0为特殊直线y=x、 y=-x、x轴、y轴、x=a、y=b时,对称点的 坐标分别为P1(y0,x0)、P2(-y0,-x0)、 P3(x0,-y0)、P4(-x0,y0)、P5(2a-x0,y0)、 P6(x0,2b-y0)。
(2) 直线Ax+By+C=0为一般直线时,可 设P1的坐标为(x1,y1),则P P1的中点 满足直线方程Ax+By+C=0,并且PP1的斜 率与直线Ax+By+C=0的斜率之积为-1, 可以得到关于x1、y1的一个二元一次方 程组,从而可以解出x1、y1。
0 90
斜线与平面所成的角的取值范围是:
0 90
二面角的大小用它的平面角来度量;取 值范围是:0 180
最小角定理及公式 cos cos1 cos2
十、三角形的心 1 、内心:内切圆的圆心是角平分线的交点
2、外心:外接圆的圆心是垂直平分线的 交点
3、 重心:中线的交点 4、 垂心:高的交点
(2)试对你的画法给出证明.
A
P
M
F
C
N
E
B
例2 在四棱锥P-ABCD中,底面ABCD 是一直角梯形,∠BAD=90°,AD∥BC, 且PA⊥底面ABCD,
若AE⊥PD,垂足为E, 求证:BE⊥PD;
PE
A
D
B
C
例3 在正方体ABCD-A1B1C1D1中,E、F 分别为BB1、D1B1的中点, 求证:EF⊥平面B1AC
于平面,则另一条也平行于该平面 5、 平面外的一直线和两平行平面中的 一个平行,则也平行于另一个平面
三、判定面面平行的方法 1、定义:没有公共点 2、面面平行的判定定理 3、垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行

立体几何解析几何法三要素

立体几何解析几何法三要素

ห้องสมุดไป่ตู้
计算的完成是在平面内实现
用定理作辅助线 多 数 题 目 都 要 作 辅 助 线 ,
比如:求直线与平面所成的角,不作出这个角,
就无法证明或计算,作角的方法即角的位置很
多,如果作出这个角后,相关线段的长度很难 确定,计算或证明也会比较困难,因此,作图 的原则是尽可能使作出的线段长度或角容易计 算,而利用判定定理和性质定理作图可以实现 这一目标,作图的策略常常就是解题的思路
性质定理、判定定理
是指线与线、
线与面、面与面平行和垂直的判定定理和 性质定理。证明题离不开判定定理和性质 定理,判定定理和性质定理是证明的工具 甚至是方法;计算题往往是在应用判定定 理和性质定理得到相关结论后,进一步确 定 角 或 者 距 离 的大 小

化为平面问题
计算题只要是计算角和距离的大小,解
题时首先要根据定义找到或作出相关的角或者距离,然后 再求值,而角与距离都是平面图形,因此把空间问题转化
为平面问题是解题的基本方法,计算则往往通过解三角形
来完成。证明一般是证明平行和垂直,证明的方法同样是 空间问题平面化,例如,证明线面平行根据判定定理找线 线的平行也可以面面平行性质定理找面,垂直亦是如此。 有些证明题是通过计算线段长度、角的大小来论证的,而

高中几何题型及解题方法

高中几何题型及解题方法

高中几何题型及解题方法
一、高中几何的基本概念和分类
高中几何是数学中的一门重要分支,主要研究空间中点、线、面及其相关性质。

根据研究对象的不同,高中几何可以分为以下几类:平面几何、立体几何、解析几何。

二、高中几何题型的特点和分类
高中几何题目种类繁多,大致可以分为以下几类:
1.证明题:要求根据已知条件和公理、定理,证明某一结论。

2.计算题:要求根据已知条件和公式,计算出未知量的值。

3.作图题:要求根据已知条件和要求,完成图形绘制。

4.分析题:要求分析几何图形的性质和关系,找出规律。

三、高中几何解题方法的概述
解题方法可以分为两类:一类是利用几何图形的性质直接解题,另一类是运用数学公式和定理推导解题。

在解题过程中,要学会观察、分析和转化问题。

四、针对不同题型的解题策略和技巧
1.证明题:首先要熟悉证明的格式和要求,理清思路,根据已知条件和定理逐步推导。

2.计算题:要熟练掌握公式和计算方法,注意步骤的严谨性。

3.作图题:要熟练画图技巧,注意图形规范,正确表达题目要求。

4.分析题:要善于从图形中发现线索,运用逻辑思维分析问题。

五、高中几何的学习建议和注意事项
1.打好基础,熟悉基本概念、定理和公式。

2.多做练习,提高解题能力和熟练度。

3.学会分类总结,梳理知识点和解题技巧。

4.注重课堂学习和自主学习,勤于思考和提问。

5.及时复习,巩固学过的内容,避免遗忘。

通过以上分析,我们可以发现高中几何的学习关键在于掌握基本概念、定理和公式,以及运用恰当的解题方法。

平面与立体几何的解析几何方法

平面与立体几何的解析几何方法

平面与立体几何的解析几何方法在数学中,平面几何和立体几何是解析几何的重要分支。

解析几何是运用代数和分析工具来研究几何问题的数学学科。

平面几何研究平面上的图形和性质,立体几何则研究三维空间中的图形和性质。

本文将介绍平面与立体几何中常用的解析几何方法。

一、平面几何中的解析几何方法1. 坐标系和坐标表示在平面几何中,我们通常会使用坐标系来描述平面上的点和图形。

一般来说,平面上的点可以用两个坐标值表示,通常以x轴和y轴为基准。

以直角坐标系为例,任意点P的坐标可以表示为P(x, y),其中x 表示距离x轴的水平距离,y表示距离y轴的垂直距离。

2. 距离和中点公式解析几何中,我们可以通过坐标计算两点之间的距离,并且可以得到线段的中点坐标。

对于平面上两点P(x1, y1)和Q(x2, y2),它们之间的距离可以用以下公式表示:d(P, Q) = √((x2 - x1)^2 + (y2 - y1)^2)同样地,线段PQ的中点坐标可以通过以下公式得到:M((x1 + x2)/2, (y1 + y2)/2)3. 直线的斜率和方程在平面几何中,直线是研究的重点之一。

解析几何中,我们可以通过直线上的两个点的坐标来求解直线的斜率。

对于两点P(x1, y1)和Q(x2, y2)所确定的直线,它的斜率可以通过以下公式得出:k = (y2 - y1)/(x2 - x1)另外,在解析几何中,我们还可以通过已知直线上的一点和它的斜率来确定直线的方程。

以点P(x, y)和斜率k为例,直线的方程可以表示为:y - y1 = k(x - x1)二、立体几何中的解析几何方法1. 坐标系和坐标表示与平面几何类似,立体几何中也可以使用坐标系来描述三维空间中的点和图形。

一个常用的坐标系是笛卡尔坐标系,其中三个坐标轴x、y、z相互垂直。

一个点P的坐标可以表示为P(x, y, z),其中x表示距离x轴的水平距离,y表示距离y轴的水平距离,z表示距离z轴的垂直距离。

讲透重点难点高中数学立体几何

讲透重点难点高中数学立体几何

讲透重点难点高中数学立体几何全文共四篇示例,供读者参考第一篇示例:高中数学立体几何是数学中的一个重要分支,涉及内容广泛,包括空间几何体的基本性质、体积表面积的计算、空间几何体之间的关系等等。

在学习立体几何的过程中,往往会遇到一些重点和难点问题,下面就让我们来一一讲解。

一、常见的难点问题1. 空间几何体的基本概念和性质:在学习立体几何时,首先要掌握各种空间几何体的基本概念和性质,如平行六面体、正方体、棱台、棱锥等。

这些几何体的性质涉及到各种角、棱、面的关系,需要认真学习和掌握。

2. 体积和表面积的计算:计算空间几何体的体积和表面积是立体几何中的重要内容。

对于不规则的几何体,如圆柱、圆锥等,更需要动脑筋来计算其体积和表面积。

这就需要学生掌握各种计算公式和方法,如用积分法计算体积、表面积公式的推导等。

3. 空间几何体之间的关系:在解决实际问题时,需要对不同空间几何体之间的关系有深入的了解。

比如正方体、球体、圆柱体等之间的关系,学生需要灵活运用几何知识,才能解决这些问题。

二、针对难点问题的解决方法1. 多做题:在解决立体几何的问题时,多做练习题是非常重要的。

通过大量的练习,可以加深对立体几何问题的理解,掌握解题的方法和技巧。

2. 学会应用数学工具:在解决立体几何问题时,学会应用数学工具是至关重要的。

比如学会运用向量、坐标系等数学工具来解决几何问题。

3. 多请教老师:如果遇到难以理解的问题,不妨多请教老师。

老师会给予指导和帮助,帮助学生解决疑惑。

三、总结高中数学立体几何是一个需要细心、灵活和耐心的学科,在学习过程中往往会遇到一些难点和重点问题。

通过多做题、学会应用数学工具、多请教老师等方法,可以帮助学生更好地掌握立体几何知识,提高解题的能力和水平。

希望同学们在学习立体几何的过程中能够克服困难,取得更好的成绩。

【文章2000字】以上所述,就是关于讲透重点难点高中数学立体几何的文章,希望对同学们有所帮助。

如果有不足之处,还望谅解。

高考解析几何大题题型归纳

高考解析几何大题题型归纳

高考解析几何大题题型归纳高考解析几何大题题型归纳一、三角形的性质与判定在高中数学中,三角形是一个重要的图形。

学生在高考中常常会遇到与三角形性质与判定相关的大题。

在这一题型中,常见的题目包括用三角形的边长、角度或者特殊性质来判断三角形的形状、大小或者其他性质。

二、直线与线段的相交问题直线和线段是解析几何题目中常见的图形。

学生在高考中常常会遇到关于直线和线段相交问题的大题。

在这一题型中,学生需要根据已知条件求解未知的角度、线段长度或者其他相关问题。

三、圆的性质与判定圆是解析几何题目中一个重要的图形。

学生在高考中经常会遇到与圆的性质与判定相关的大题。

在这一题型中,学生需要利用已知条件来判断圆的位置,或者通过已知条件求解未知物品与圆的关系。

四、平行线与垂直线的判定平行线与垂线也是高考解析几何题目中常见的考点。

在这一题型中,学生需要利用已知条件来判定两条线是否平行或者垂直,或者根据已知条件求解未知的线段长度或者角度。

五、多边形的性质与判定在解析几何题中,多边形也是一个重要的图形。

学生在高考中常常会遇到与多边形的性质与判定相关的大题。

在这一题型中,学生需要利用已知条件来判断多边形的形状、大小或者其他性质,或者求解未知的角度或者线段长度。

六、空间几何问题空间几何问题在高考中也是一个重要的考点。

在这一题型中,学生需要利用已知条件来求解空间中的角度、线段长度或者其他相关问题。

这类题目常常需要学生运用立体几何知识和空间想像力来进行推理和求解。

七、向量的应用在解析几何题目中,向量是一个重要的工具。

学生在高考中常常会遇到与向量的应用相关的大题。

在这一题型中,学生需要利用向量的性质来求解角度、线段长度或者其他相关问题。

总结:解析几何题目涉及到的题型很多,常见的包括三角形的性质与判定、直线与线段相交问题、圆的性质与判定、平行线与垂直线的判定、多边形的性质与判定、空间几何问题以及向量的应用等。

针对这些题型,学生在备考中应该重点复习相关知识,并且多进行一些练习题,以加深对题型的理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修二复习基本概念公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。

记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)多面体棱柱棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形棱锥 棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1) 侧棱交于一点。

侧面都是三角形(2) 平行于底面的截面与底面是相似的多边形。

且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3) 多个特殊的直角三角形esp :a 、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b 、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。

且顶点在底面的射影为底面三角形的垂心。

直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 当[)90,0∈α时,0≥k ;当() 180,90∈α时,0<k ; 当90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因 l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数);平行于y 轴的直线:a x =(a 为常数);(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)垂直直线系垂直于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=+-C y A x B (C 为常数)(三)过定点的直线系① 斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;② 过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

(5)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(6)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。

方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合(7)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则||AB(8)点到直线距离公式:一点()00,y x P 到直线0:1=++C By Ax l 的距离2200BA C By Ax d +++=(9)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。

圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;(2)一般方程022=++++F Ey Dx y x 当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+= 当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。

(3)求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

直线与圆的位置关系直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2圆与圆的位置关系通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

相关文档
最新文档