高二数学期末考试试题及其答案

合集下载

广西桂林市2024_2025学年高二数学下学期期末考试试题理含解析

广西桂林市2024_2025学年高二数学下学期期末考试试题理含解析

广西桂林市2024-2025学年高二数学下学期期末考试试题理(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.函数,则()A. 0B. 1C.D.2.设复数,则的实部为()A. -1B. 2C. -2D.3.用反证法证明“ 是无理数”时,正确的假设是()A. 不是无理数B. 是整数 C. 不是有理数 D. 是无理数4.5个人排成一排照相,其中的甲乙两人要相邻,则有不同的排法种数为()A. 24种B. 36种 C. 48种 D. 72种5.()A. B.C.D.6.在样本频率分布直方图中,各小长方形的高的比从左到右依次为,则第2组的频率是()A. 0.4B.0.3 C. 0 .2 D. 0.1 7.向量,向量,若,则实数()A. B.1 C. -2 D.8.从1,2,3,4,5中任取2个不同的数,记事务A为“取到的2个数之和为偶数”,记事务B为“取到的两个数均为偶数”,则()A. B. C.D.9.若随机变量X的分布列如下表所示,则a的值为()X 1 2 3P 0.2 a 3aA. 0.1B.0.2 C. 0 .3 D. 0.410.正方体中,与平面所成角的余弦值为()A. B.C.D.11.已知随机变量听从正态分布,且,则()A. 0.0799B. 0.1587C. 0.3D. 0.341312.若函数有两个不同的极值点,则实数的取值范围是()A. B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.某校有学生4500人,其中高三学生1500人,为了解学生的身体素养状况,采纳按年级分层抽样的方法,从该校学生中抽取一个300人的样本.则样本中高三学生的人数为________.14.已知为虚数单位,则 ________.15. ________.16.在中,,,,是斜边上一点,以为棱折成二面角,其大小为60°,则折后线段的最小值为________.三、解答题:本题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.在的绽开式中,求(1)含的项;(2)绽开式中的常数项.18.已知函数.(1)当时,求的图象在点处的切线方程;(2)设是的极值点,求的微小值.19.如图,长方体的底面是正方形,点在棱上,.(1)证明:平面;(2)若,,求二面角的余弦值.20.已知数列的前项和.(1)计算,,,,并猜想的通项公式;(2)用数学归纳法证明(1)中的猜想.21.在某校组织的一次篮球定点投篮竞赛中,两人一对一竞赛规则如下:若某人某次投篮命中,则由他接着投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮竞赛,甲和乙每次投篮命中的概率分别是,.两人共投篮3次,且第一次由甲起先投篮,假设每人每次投篮命中与否均互不影响.(1)求3次投篮的人依次是甲、甲、乙的概率;(2)若投篮命中一次得1分,否则得0分,用表示甲的总得分,求的分布列和数学期望.22.已知函数.(1)若在单调递增,求实数的取值范围;(2)若,且仅有一个极值点,求实数的取值范围,并证明:.答案解析部分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.函数,则()A. 0B. 1C.D.【答案】 B【考点】导数的运算【解析】【解答】解:由题意得f'(x)=e x,则f'(0)=e0=1.故答案为:B【分析】依据导数的运算求解即可.2.设复数,则的实部为()A. -1B. 2C. -2D.【答案】 B【考点】复数的基本概念【解析】【解答】解:依据复数的概念得z的实部为2.故答案为:B【分析】依据复数的概念干脆求解即可.3.用反证法证明“ 是无理数”时,正确的假设是()A. 不是无理数B. 是整数 C. 不是有理数 D. 是无理数【答案】 A【考点】反证法【解析】【解答】解:依据反证法,正确的假设是:不是无理数.故答案为:A【分析】依据反证法干脆求解即可.4.5个人排成一排照相,其中的甲乙两人要相邻,则有不同的排法种数为()A. 24种B. 36种 C. 48种 D. 72种【答案】 C【考点】排列、组合的实际应用,排列、组合及简洁计数问题【解析】【解答】解:依据捆绑法,先把甲乙开成一个元素,再与另外3人排列,则共有种.故答案为:C【分析】依据捆绑法干脆求解即可.5.()A. B.C.D.【答案】 A【考点】二项式定理的应用【解析】【解答】解:依据二项式定理得1+3x+3x2+x3=x3+3x2+3x+1=故答案为:A【分析】依据二项式定理干脆求解即可.6.在样本频率分布直方图中,各小长方形的高的比从左到右依次为,则第2组的频率是()A. 0.4B.0.3 C. 0 .2 D. 0.1 【答案】 A【考点】频率分布直方图【解析】【解答】解:由题意易知各小长方形的面积的比从左往右依次为2:4:3则可设s1:s2:s3s4=2s:4s:3s:s则2s+4s+3s+s=1解得则第2组的频率是4s=0.4故答案为:A【分析】依据频率分布直方图的性质求解即可.7.向量,向量,若,则实数()A. B.1 C. -2 D.【答案】 C【考点】向量的数量积推断向量的共线与垂直【解析】【解答】解:∵∴2×1+4×2+5t=0解得t=-2故答案为:C【分析】依据向量垂直的充要条件求解即可.8.从1,2,3,4,5中任取2个不同的数,记事务A为“取到的2个数之和为偶数”,记事务B为“取到的两个数均为偶数”,则()A. B . C.D.【答案】 B【考点】古典概型及其概率计算公式,条件概率与独立事务【解析】【解答】解:,∵∴∴故答案为:B【分析】依据古典概型,结合条件概率求解即可.9.若随机变量X的分布列如下表所示,则a的值为()X 1 2 3P 0.2 a 3aA. 0.1B.0.2 C. 0 .3 D. 0.4【答案】 B【考点】离散型随机变量及其分布列【解析】【解答】解:由题意得0.2+a+3a=1,解得a=0.2故答案为:B【分析】依据离散型随机变量的分布列的性质求解即可.10.正方体中,与平面所成角的余弦值为()A. B.C.D.【答案】 D【考点】直线与平面所成的角【解析】【解答】解:因为BB1// DD1,所以BB1与平面ACD1所成的角等于DD1与平面ACD1所成的角,在三棱锥D-ACD1中,由三条侧棱两两垂直得点D在平面ACD1的射影为等边三角形ACD1的垂心(即中心0) ,连结DO,D1O,则∠DD1O为DD1与平面ACD1所成的角,设正方体的棱长为a, 则故答案为:D【分析】依据直线与平面所成角的定义,利用几何法干脆求解即可.11.已知随机变量听从正态分布,且,则()A. 0.0799B. 0.1587C. 0.3D. 0.3413【答案】 B【考点】正态分布曲线的特点及曲线所表示的意义【解析】【解答】解:∵X 听从正态分布,且∴故答案为:B【分析】依据正态分布的性质求解即可.12.若函数有两个不同的极值点,则实数的取值范围是()A. B.C.D.【答案】 A【考点】利用导数探讨函数的单调性,利用导数探讨函数的极值,利用导数求闭区间上函数的最值【解析】【解答】解:由题意可得,f'(x)=e x-4ax=0有2个不同的实数根,即有2个不同的实数根,令,则令g'(x)>0,可得x>1;令g'(x)<0,可得x<1,所以g(x)在(-∞,1)上单调递减,在(1, +∞)上单调递增,所以g(x)的最小值为故故答案为:A【分析】依据化归思想,将函数有两个不同的极值点等价转化为方程有两个不同的实数根,运用数形结合思想,结合利用导数探讨函数的单调性与最值求解即可.二、填空题:本题共4小题,每小题5分,共20分.13.某校有学生4500人,其中高三学生1500人,为了解学生的身体素养状况,采纳按年级分层抽样的方法,从该校学生中抽取一个300人的样本.则样本中高三学生的人数为________.【答案】 100【考点】分层抽样方法【解析】【解答】解:依据分层抽样,易得样本中高三学生的人数为故答案为:100【分析】依据分层抽样干脆求解即可.14.已知为虚数单位,则 ________.【答案】【考点】复数代数形式的混合运算【解析】【解答】解:(2-3i)(i+1)=2i+2-3i2-3i=5-i故答案为:5-i【分析】依据复数的运算干脆求解即可.15. ________.【答案】 1【考点】定积分【解析】【解答】易知 .故 .【分析】由于,利用微积分基本定理,干脆求得定积分的值.16.在中,,,,是斜边上一点,以为棱折成二面角,其大小为60°,则折后线段的最小值为________.【答案】【考点】向量的线性运算性质及几何意义,与二面角有关的立体几何综合题,二面角的平面角及求法,同角三角函数基本关系的运用,运用诱导公式化简求值【解析】【解答】解:如图,过C,B作AD的垂线,垂足分别为E,F,故BF⊥EF,EC⊥EF,所以以AD为棱折叠后,则有故因为以D为棱折成60°的二面角C-AD-B所以与的夹角为120°令∠BAD=α,则∠CAE=90°-α,在Rt△ABF中,BF=ABsinα=6sinα,AF=6cosα,在Rt△ACE中,EC=ACsin(90°-α)=8cosα,AE=ACcos(90°-α)=8sinα,故EF=AE-AF=8sinα-6cosα,所以故当α=45°时,有最小值28故线段BC最小值为故答案为:【分析】依据向量的线性运算,结合二面角的定义以及同角三角函数的基本关系、诱导公式求解即可.三、解答题:本题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.在的绽开式中,求(1)含的项;(2)绽开式中的常数项.【答案】(1)由题意知,,1,2,3,4,5,6;令,得,所以含的项为.(2)由(1)知,得,所以常数项为.【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)(2)依据二项绽开式通项公式求解即可;18.已知函数.(1)当时,求的图象在点处的切线方程;(2)设是的极值点,求的微小值.【答案】(1)即,;则,,故所求切线方程为,即.(2),由题知,解得,则,,当时,当时所以当时取微小值.【考点】导数的几何意义,利用导数探讨函数的极值,利用导数探讨曲线上某点切线方程【解析】【分析】(1)利用导数的几何意义求解即可;(2)依据函数极值的性质,结合利用导数探讨函数的极值干脆求解即可.19.如图,长方体的底面是正方形,点在棱上,.(1)证明:平面;(2)若,,求二面角的余弦值.【答案】(1)由已知得,平面,平面,故又,所以平面(2)由(1)知.由题设知,所以,故,以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,则,,,,,,设平面的法向量为,则即所以可取设平面的法向量为,则,即可取于是所以,二面角的余弦值为.【考点】直线与平面垂直的判定,直线与平面垂直的性质,用空间向量求平面间的夹角【解析】【分析】(1)依据直线与平面垂直的判定定理与性质定理求证即可;(2)利用向量法干脆求解即可.20.已知数列的前项和.(1)计算,,,,并猜想的通项公式;(2)用数学归纳法证明(1)中的猜想.【答案】(1)当时,,∴ ;当时,,∴ ;当时,,∴ ;当时,,∴ .由此猜想.(2)证明:①当时,,猜想成立.②假设(且)时,猜想立,即,那么时,,∴ .∴当时,猜想成立.由①②知猜想成立.【考点】数列递推式,数学归纳法【解析】【分析】(1)依据a n与s n的关系干脆求解,(2)依据数学归纳法干脆证明即可.21.在某校组织的一次篮球定点投篮竞赛中,两人一对一竞赛规则如下:若某人某次投篮命中,则由他接着投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮竞赛,甲和乙每次投篮命中的概率分别是,.两人共投篮3次,且第一次由甲起先投篮,假设每人每次投篮命中与否均互不影响.(1)求3次投篮的人依次是甲、甲、乙的概率;(2)若投篮命中一次得1分,否则得0分,用表示甲的总得分,求的分布列和数学期望.【答案】(1)记“3次投篮的人依次是甲,甲,乙”为事务,依题意,得∴3次投篮的人依次是甲、甲、乙的概率是.(2)由题意可能取值为0,1,2,3,则,,,;所以,分布列为0 1 2 3所以的期望.【考点】相互独立事务的概率乘法公式,离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(1)依据独立事务的概率干脆求解即可;(2)依据独立事务,结合离散型随机变量的分布列与期望求解即可.22.已知函数.(1)若在单调递增,求实数的取值范围;(2)若,且仅有一个极值点,求实数的取值范围,并证明:.【答案】(1)在单调递增,∴ 在恒成立∴ 在恒成立,∴ .(2)设,,①当时,令得:,,,单调递增,,,单调递减,若,恒成立,无极值;若,,而,,此时有两个极值点;故不符合题意.②当时,,,单调递减,,,单调递增,所以有唯一微小值点,.③当时,恒成立,单调递增;取满意且时,,而,此时由零点存在定理知:有唯一的零点,只有一个极值点,且,由题知,又,∴ ,∴ ,设,,当,,单调递减,∴ ,∴ 成立综上,只有一个极值点时,的取值范围为,且.【考点】利用导数探讨函数的单调性,利用导数求闭区间上函数的最值,函数零点的判定定理【解析】【分析】(1)依据化归思想,将函数的单调性问题等价转化为不等式恒成立问题,再转化为求函数的最值问题即可;(2)构造函数g(x)=h'(x),利用导数g'(x)探讨函数g(x)的单调性与最值,再结合分类探讨思想与零点存在定理求解即可.。

高二数学期末考试题及答案

高二数学期末考试题及答案

高二数学期末考试题及答案Learn standards and apply them. June 22, 2023一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.1.若抛物线y 2=2px 的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 A .-2B .2C .-4D .42.理已知向量a =3,5,-1,b =2,2,3,c =4,-1,-3,则向量2a -3b +4c 的坐标为A .16,0,-23B .28,0,-23C .16,-4,-1D .0,0,9文曲线y =4x -x 2上两点A 4,0,B 2,4,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为A .1,3B .3,3C .6,-12D .2,43.过点0,1作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有A .1条B .2条C .3条D .4条4.已知双曲线222112x y a -=的离心率2,则该双曲线的实轴长为 A .2 B .4C .23D .435.在极坐标系下,已知圆C 的方程为=2cos θ,则下列各点中,在圆C 上的是A .1,-3πB .1,6πC .2,34πD 2,54π6.将曲线y =sin3x 变为y =2sin x 的伸缩变换是A .312x x y y '=⎧⎪⎨'=⎪⎩B .312x xy y '=⎧⎪⎨'=⎪⎩C .32x x y y '=⎧⎨'=⎩D .32x xy y'=⎧⎨'=⎩7.在方程sin cos 2x y θθ=⎧⎨=⎩为参数表示的曲线上的一个点的坐标是A .2,-7B .1,0C .12,12D .13,238.极坐标方程=2sin 和参数方程231x ty t =+⎧⎨=--⎩t 为参数所表示的图形分别为A .圆,圆B .圆,直线C .直线,直线D .直线,圆9.理若向量a =1,,2,b =2,-1,2,a 、b 夹角的余弦值为89,则=A .2B .-2C .-2或255D .2或-255文曲线y =e x +x 在点0,1处的切线方程为 A .y =2x +1 B .y =2x -1 C .y =x +1 D .y =-x +110.理已知点P 1的球坐标是P 14,2π,53π,P 2的柱坐标是P 22,6π,1,则|P 1P 2|=A .21B .29C .30D .42文已知点P 在曲线fx =x 4-x 上,曲线在点P 处的切线垂直于直线x +3y =0,则点P 的坐标为A .0,0B .1,1C .0,1D .1,011.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若点M 在以AB 为直径的圆的内部,则此双曲线的离心率e 的取值范围为A .32,+∞B .1,32C .2,+∞D .1,212.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为A .5B .10C .20D 15二、填空题:本大题共4小题,每小题4分,共16分.请将答案填在试卷的答题卡中.13.理已知空间四边形ABCD 中,G 是CD 的中点,则1()2AG AB AC -+=.文抛物线y =x 2+bx +c 在点1,2处的切线与其平行直线bx +y +c =0间的距离是 .14.在极坐标系中,设P 是直线l :cos θ+sin θ=4上任一点,Q 是圆C :2=4cos θ-3上任一点,则|PQ |的最小值是________.15.理与A -1,2,3,B 0,0,5两点距离相等的点Px ,y ,z 的坐标满足的条件为__________.文函数fx =ax 3-x 在R 上为减函数,则实数a 的取值范围是__________.16.如图,已知双曲线以长方形ABCD 的顶点A 、B 为左、右焦点,且双曲线过C 、D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为_____________________.三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分双曲线与椭圆2212736x y +=有相同焦点,且经过点15,4,求其方程.18.本题满分12分在直角坐标系xOy 中,直线l 的参数方程为:415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数,若以O为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为=2cos θ+4π,求直线l 被曲线C 所截的弦长.19.本题满分12分已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M-3,m到焦点的距离为5,求抛物线的方程和m的值.20.本题满分12分文已知函数fx=x2x-a.1若fx在2,3上单调,求实数a的取值范围;2若fx在2,3上不单调,求实数a的取值范围.理本题满分12分如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=219,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.1求EF的长;2证明:EF⊥PC.参考答案一、 选择题:本大题共12小题,每小题3分,共36分.内为文科答案二、填空题:本大题共4小题,每小题4分,共16分.13.理12BD 文32214.21-15.理2x -4y +4z =11 文a ≤0 16.x 2-23y =1 三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分解:椭圆2213627y x +=的焦点为0,3,c =3,………………………3分 设双曲线方程为222219y x a a-=-,…………………………………6分 ∵过点15,4,则22161519a a-=-,……………………………9分 得a 2=4或36,而a 2<9,∴a 2=4,………………………………11分双曲线方程为22145y x -=.………………………………………12分18.本题满分12分解:将方程415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数化为普通方程得,3x +4y +1=0,………3分将方程2θ+4π化为普通方程得,x 2+y 2-x +y =0, ……………6分 它表示圆心为12,-12,半径为22的圆, …………………………9分则圆心到直线的距离d =110, …………………………………………10分 弦长为2211721005r d -=-=. …………………………………12分20.文本题满分12分解:由fx =x 3-ax 2得f ′x =3x 2-2ax =3xx -23a.…………3分 1若fx 在2,3上单调,则23a ≤0,或0<23a≤2,解得:a ≤3.…………6分∴实数a 的取值范围是-∞,3.…………8分 2若fx 在4,6上不单调,则有4<23a<6,解得:6<a <9.…………11分 ∴实数a 的取值范围是6,9.…………12分20.理本题满分12分解:1以A 为原点,AB ,AD ,AP 分别为x ,y ,z 轴建立直角坐标系,…………2分由条件知:AF =2,…………3分∴F 0,2,0,P 0,0,219,C 8,6,0.…4分从而E 4,3,19,∴EF =222(40)(32)(190)-+-+-=6.…………6分 2证明:EF =-4,-1,-19,PC =8,6,-219,…………8分 ∵EF PC ⋅=-4×8+-1×6+-19×-219=0,…………10分 ∴EF ⊥PC .…………12分第一课件网系列资料 .。

浙江省宁波市慈溪市2023-2024学年高二上学期期末考试 数学(含答案)

浙江省宁波市慈溪市2023-2024学年高二上学期期末考试 数学(含答案)

慈溪市2023学年第一学期期末测试卷高二数学学科试卷(答案在最后)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卡上.第Ⅰ卷(选择题,共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系O-xyz 中,点()2,3,4P --关于平面yOz 对称的点的坐标为()A.()2,3,4--- B.()2,3,4- C.()2,3,4- D.()2,3,42.双曲线229436x y -=的一个焦点坐标为()A.)B.( C.)D.(3.已知曲线2by ax x=+在点()1,4处的切线方程为50x y +-=,则a b -=()A.1B.0C.1- D.2-4.已知等差数列{}n a 的前5项和5120S =,且()123454a a a a a ++=+,则公差d =()A.6- B.7- C.8- D.9-5.过点()0,2与圆22410x y x ++-=相切的两条直线的夹角为α,则cos α=()A.14B.4C.4-D.14-6.已知正四面体ABCD 的棱长为2,E 是BC 的中点,F 在AC 上,且2AF FC =,则AE DF ⋅=()A.53-B.23-C.0D.537.已知A ,B 是椭圆E :222125x y b+=(05b <<)的左右顶点,若椭圆E 上存在点M 满足49MA MB k k ⋅<-,则椭圆E 的离心率的取值范围为()A.0,9⎛⎫⎪ ⎪⎝⎭ B.0,3⎛⎫⎪ ⎪⎝⎭ C.,19⎛⎫⎪ ⎪⎝⎭ D.,13⎛⎫⎪ ⎪⎝⎭8.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 210f x f x ⎡'+⎤⎣⎦->,则()A.()20ef -> B.()40442023ef < C.()22ef < D.()40462024ef >二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线1l 的方程为210x ay +-=,直线2l 的方程为()3110a x ay ---=,()A.则直线1l 的斜率为12a-B.若12//l l ,则16a =C.若12l l ⊥,则1a =或12D.直线2l 过定点()1,3--10.下列函数的导数计算正确的是()A.若函数()()cos f x x =-,则()sin f x x '=B.若函数()xf x a-=(0a >且1a ≠),则()ln xf x aa-'=-C.若函数()lg f x x =,则()lg ef x x '=(e 是自然对数的底数)D.若函数()tan f x x =,则()21cos f x x='11.任取一个正数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数(*n ∈N ).若51a =,记数列{}n a 的前n 项和为n S ,则()A.2m =或16B.20241a = C.20244721S = D.312n a +=12.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,13AA =,M 是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点.Q 是线段1A N 上动点,R 是线段PQ 上动点,则()A.当Q 为线段1A N 中点时,PQ ∥平面1A CMB.当Q 为111A B C △重心时,R 到平面1A CM 的距离为定值C.当Q 在线段1A N 上运动时,直线PQ 与平面1A CM 所成角的最大角为π3D.过点P 平行于平面1A CM 的平面α截直三棱柱111ABC A B C -+第Ⅱ卷(非选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知圆C 的方程为222230x y ax a +--+=,则圆C 的半径为______.14.已知等比数列{}n a 的前n 项和为n S ,且510S =,1030S =,则20S =______.15.已知函数()(ln 2)f x x x ax =-有两个极值点,则实数a 的取值范围是_________.16.设F 为抛物线24y x =的焦点,直线l 与抛物线交于,A B 两点,且FA FB ⊥,则AFB △的面积最小值为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()ln f x a x x =-.(1)当1a =时,求函数()f x 的单调区间;(2)当0a >时,求函数()f x 的最大值.18.已知圆224x y +=内有一点,12M ⎛⎫- ⎪ ⎪⎝⎭,直线l 过点M ,与圆交于A ,B 两点.(1)若直线l 的倾斜角为120°,求AB ;(2)若圆上恰有三个点到直线l 的距离等于1,求直线l 的方程.19.如图,在直四棱柱ABCD A B C D -''''中,底面ABCD 是正方形,2AB =,'3AA =,,E F 分别是棱,AB BC 上的动点.(1)若,E F 分别为棱,AB BC 中点,求证:DE ⊥平面A AF ';(2)若()1AE BF t t ==>,且三棱锥A BEF '-的体积为38,求平面B EF '与平面A EF '的夹角的余弦值.20.已知数列{}n a 的首项123a =,且满足121n n na a a +=+(*n ∈N ).(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)若()()621nn b n =-+,令n n n c a b =,求数列{}n c 的前n 项和n S .21.已知函数()2e 1xx f x a =-+(0x >).(其中e 是自然对数的底数)(1)若对任意的210x x >>时,都有()()2121f x f x x x ->-,求实数a 的取值范围;(2)若6a ≤,求证:()0f x >.(参考数据:ln 20.693≈,ln 3 1.099≈)22.已知双曲线C 的渐近线方程为22y x =±,且点()2,1M -在C 上.(1)求C 的方程;(2)点,A B 在C 上,且,,MA MB MD AB D ⊥⊥为垂足.证明:存在点N ,使得DN 为定值.慈溪市2023学年第一学期期末测试卷高二数学学科试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卡上.第Ⅰ卷(选择题,共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系O-xyz 中,点()2,3,4P --关于平面yOz 对称的点的坐标为()A.()2,3,4--- B.()2,3,4- C.()2,3,4- D.()2,3,4【答案】B 【解析】【分析】根据对称即可求解.【详解】点()2,3,4P --关于平面yOz 对称的点的坐标为()2,3,4-,故选:B2.双曲线229436x y -=的一个焦点坐标为()A.)B.( C.)D.(【答案】A 【解析】【分析】根据标准方程即可求解.【详解】双曲线229436x y -=转化为标准方程为22149x y -=,故224,9,a b c ====,故焦点为)和(),故选:A3.已知曲线2by ax x=+在点()1,4处的切线方程为50x y +-=,则a b -=()A .1B.0C.1- D.2-【答案】D 【解析】【分析】求导,根据()()11,14f f '=-=即可求解1,3a b ==,进而可求解.【详解】()22bf x ax x '=-,则()121f a b '=-=-,又()14f a b =+=,所以1,3a b ==,故2a b -=-,故选:D4.已知等差数列{}n a 的前5项和5120S =,且()123454a a a a a ++=+,则公差d =()A.6-B.7- C.8- D.9-【答案】C 【解析】【分析】根据等差数列的性质即可求解.【详解】由()123454a a a a a ++=+可得()5123454545512024S a a a a a a a a a =++++=+=⇒+=,1232239632a a a a a ++==⇒=,故274578a a a a a +=+⇒=-,所以7258a a d =+=-,解得8d =-.故选:C5.过点()0,2与圆22410x y x ++-=相切的两条直线的夹角为α,则cos α=()A.14B.4C.4-D.14-【答案】A 【解析】【分析】设圆心为C ,点()0,2为点D ,切点为,A B ,先利用勾股定理求出切线长,再求出cos ,sin ADC ADC ∠∠,再根据二倍角的余弦公式即可得解.【详解】因为2202421110++⨯-=>,所以点()0,2在圆外,设圆心为C ,点()0,2为点D ,切点为,A B ,圆22410x y x ++-=化为标准方程得()2225x y ++=,则圆心()2,0C -,半径r =,在Rt ACD △中,CD AC ==AD ==,故cosADC ADC ∠=∠=由圆的切线的性质可得ADC BDC ∠=∠,所以351cos cos cos 2884ADB ADC α=∠=∠=-=.故选:A.6.已知正四面体ABCD 的棱长为2,E 是BC 的中点,F 在AC 上,且2AF FC = ,则AE DF ⋅=()A.53-B.23-C.0D.53【答案】C 【解析】【分析】先将,AE DF 分别用,,AB AC AD表示,再根据数量积得运算律即可得解.【详解】由正四面体ABCD ,得60BAC BAD CAD ∠=∠=∠=︒,则2,2,2AB AC AB AD AD AC ⋅=⋅=⋅=,由E 是BC 的中点,得()12AE AB AC =+,由2AF FC =,得23AF AC = ,则23DF AF AD AC AD =-=- ,所以()1223A A AB AC C AD E DF ⎛⎫+⋅- ⎪⎝⋅=⎭2122233AB AC AB AD AC AD AC ⎛⎫=⋅-⋅+-⋅ ⎪⎝⎭148220233⎛⎫=⨯-+-= ⎪⎝⎭.故选:C.7.已知A ,B 是椭圆E :222125x y b+=(05b <<)的左右顶点,若椭圆E 上存在点M 满足49MA MB k k ⋅<-,则椭圆E 的离心率的取值范围为()A.0,9⎛⎫⎪ ⎪⎝⎭B.0,3⎛⎫⎪ ⎪⎝⎭C.,19⎛⎫⎪ ⎪⎝⎭D.,13⎛⎫⎪ ⎪⎝⎭【答案】B 【解析】【分析】根据斜率公式,即可得21009b >,进而根据离心率公式即可求解.【详解】设(),M m n ,则222125m n b+=,()5,0,(5,0)A B -,故2222221255529524525MA MBk m b n n n b m k m m m ⎛⎫- ⎪⎝⎭=⋅==-+--=<⋅--,所以21009b >,故离心率为3c e a ===,又01e <<,故0,3e ⎛⎫∈ ⎪ ⎪⎝⎭,故选:B8.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 210f x f x ⎡'+⎤⎣⎦->,则()A.()20e f -> B.()40442023ef < C.()22ef < D.()40462024ef >【答案】D 【解析】【分析】由()()ln 210f x f x ⎡⎤-+>⎣⎦',可得()()20f x f x -'>,构造函数()()2e xf xg x =,利用导数判断出函数的单调性,再根据函数()g x 的单调性逐一判断即可.【详解】因为()()ln 210f x f x ⎡⎤-+>⎣⎦',所以()()211f x f x +'->,即()()20f x f x -'>,令()()2exf xg x =,则()()()220exf x f xg x '-'=>,所以函数()g x 是增函数,对于A ,由()()01g g <,得()2210e e f -<=,故A 错误;对于B ,由()()20231g g >,得()4046220231e ef >,所以()40442023ef >,故B 错误;对于C ,由()()21g g >,得()4221e ef >,所以()22e f >,故C 错误;对于D ,由()()20241g g >,得()4048220241e e f >,所以()40462024ef >,故D 正确.故选:D.【点睛】关键点点睛:构造函数()()2e xf xg x =,利用导数判断出函数的单调性是解决本题的关键.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线1l 的方程为210x ay +-=,直线2l 的方程为()3110a x ay ---=,()A.则直线1l 的斜率为12a-B.若12//l l ,则16a =C.若12l l ⊥,则1a =或12 D.直线2l 过定点()1,3--【答案】CD 【解析】【分析】根据0a =时,直线1l 的斜率不存在,即可判断A ;根据两直线平行的充要条件计算即可判断B ;根据两直线垂直的充要条件计算即可判断C ;令a 的系数等于零求出定点即可判断D .【详解】对于A ,当0a =时,直线1l 的斜率不存在,故A 错误;对于B ,若12//l l ,则()2310a a a ---=,解得0a =或16a =,经检验,两个都符合题意,所以0a =或16a =,故B 错误;对于C ,若12l l ⊥,则23120a a --=,解得1a =或12,故C 正确;对于D ,直线2l 的方程化为()310x y a x ---=,令3010x y x -=⎧⎨--=⎩,解得13x y =-⎧⎨=-⎩,所以直线2l 过定点()1,3--,故D 正确.故选:CD.10.下列函数的导数计算正确的是()A.若函数()()cos f x x =-,则()sin f x x '=B.若函数()xf x a-=(0a >且1a ≠),则()ln xf x a a-'=-C.若函数()lg f x x =,则()lg ef x x '=(e 是自然对数的底数)D.若函数()tan f x x =,则()21cos f x x='【答案】BCD 【解析】【分析】根据复合函数的求导法则,结合基本初等函数求导公式以及求导法则即可逐一求解.【详解】对于A ,()()cos cos f x x x =-=,所以()sin f x x =-',A 错误,对于B ,()()'ln ln x x f x a a x a a --=⨯-=-',故B 正确,对于C ,()1ln e lg eln10ln10f x x x x=='=,C 正确,对于D ,()()()222cos sin sin sin 1tan cos cos cos x x x x f x x x x x ''--⎛⎫='=== ⎪⎝⎭,D 正确,故选:BCD11.任取一个正数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数(*n ∈N ).若51a =,记数列{}n a 的前n 项和为n S ,则()A.2m =或16B.20241a = C.20244721S = D.312n a +=【答案】ABD 【解析】【分析】先根据2a 的奇偶性求出2a ,再根据1a 的奇偶性即可求出m ,即可判断A ;分类讨论m ,求出数列的周期,进而可判断BCD.【详解】因为51a =,由“冰雹猜想”可得432,4a a ==,①若2a 为偶数,则2342a a ==,所以28a =,当1a 为偶数时,则1282aa ==,所以116a =,即16m =,当1a 为奇数时,则21318a a =+=,解得173a =(舍去),②若2a 为奇数,则32314a a =+=,解得21a =,当1a 为偶数时,则1212a a ==,所以12a =,即2m =,当1a 为奇数时,则21311a a =+=,解得10a =(舍去),综上所述,2m =或16,故A 正确;当2m =时,由1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,得234561,4,2,1,4a a a a a =====,所以数列{}n a 从第三项起是以3为周期的周期数列,因为202423674-=⨯,所以520241a a ==,()2024216744214721S =++⨯++=,当16m =时,由1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,23456788,4,2,1,4,2,1a a a a a a a =======,所以数列{}n a 从第三项起是以3为周期的周期数列,因为202423674-=⨯,所以520241a a ==,()20241686744214742S =++⨯++=,综上所述,20241a =,20244721S =或4742,故B 正确,C 错误;对于D ,数列{}n a 从第三项起是以3为周期的周期数列,所以3142n a a +==,故D 正确.故选:ABD.12.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,13AA =,M 是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点.Q 是线段1A N 上动点,R 是线段PQ 上动点,则()A.当Q 为线段1A N 中点时,PQ ∥平面1A CMB.当Q 为111A B C △重心时,R 到平面1A CM 的距离为定值C.当Q 在线段1A N 上运动时,直线PQ 与平面1A CM 所成角的最大角为π3D.过点P 平行于平面1A CM 的平面α截直三棱柱111ABC A B C -+【答案】BD 【解析】【分析】建立直角坐标系,利用法向量与方向向量的关系即可求解A ,根据线面角的向量法,结合不等式的性质即可判定C ,根据线面平行即可求解B,根据面面平行即可求解长度判断D.【详解】以A 为原点,以AC ,AB ,1AA 所在直线为坐标轴建立空间直角坐标系A xyz -,设12,3AB AC AA ===,则1(0A ,0,3),(2C ,0,0),(0B ,2,0),(0M ,1,0),(1N ,1,3),(1P ,1,3)2,所以1113(1,1,0),(1,1,(2,1,0),(2,0,3)2A N A P CM CA ==-=-=-,设平面1A CM 的法向量为(,,)n x y z =,则123020n CA x z n CM x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令3x =,可得(3,6,2)n = ,设11(,,0),(01)AQ mA N m m m ==≤≤ ,则113(1,1,)2PQ AQ A P m m =-=-- ,当Q 为线段1A N 中点时,12m =,则113(,,)222PQ =-- 3333022PQ n ⋅=--+=-≠ ,故此时PQ 不平行平面l A CM ,A 错误,当Q 为111A B C △重心时,则所以320m -=,即23m =,113(,,332PQ =-- ,此时1230PQ n ⋅=--+=,此时PQ ∥平面1A CM ,由于R 是线段PQ 上的点,故P 到平面1A CM 的距离即为R 到平面1A CM 的距离,故为定值,B 正确,由于3(1,1,)2PQ m m =-- ,设直线PQ 与平面1A CM 所成角为θ,则sin cos ,PQ n PQ n PQ n θ⋅===由于01,m ≤≤所以()()()2223232416999921444m m m --≤≤=-+,所以43sin ,72θ=≤=<ππ0,,23θθ⎡⎤∈∴<⎢⎥⎣⎦,故C 错误对于D ,取11A B 的中点H ,连接1,HB HC ,由于,H M 均为中点,所以11//,//HB A M C H CM ,而1A M ⊂平面1A CM ,CM ⊂平面1A CM ,而HB ⊄平面1A CM ,1C H ⊄平面1A CM ,故//HB 平面1A CM ,1//C H 平面1A CM ,11,,C H HB H C H HB ⋂=⊂平面1C HB ,故平面1//C HB 平面1A CM ,故过点P 平行于平面1A CM 的平面α即为平面1CHB ,故截面为三角形1C HB,由于111BH A M C H CM BC ======,D 正确,故选:BD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.第Ⅱ卷(非选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知圆C 的方程为22222330x y ax ay a +--+=,则圆C 的半径为______.【答案】a 【解析】【分析】将一般式转化为标准式即可求解半径.【详解】由22222330x y ax ay a +--+=可得()()2223x a y a a -+=,所以半径为a ,故答案为:a14.已知等比数列{}n a 的前n 项和为n S ,且510S =,1030S =,则20S =______.【答案】150【解析】【分析】根据等比数列前n 项和的性质计算即可.【详解】由题意可得510515102015,,,S S S S S S S ---成等比数列,由510S =,1030S =,得10552S S S -=,得()1510105240S S S S -=-=,所以1570S =,则()20151510280S S S S -=-=,所以20150S =.故答案为:150.15.已知函数()(ln 2)f x x x ax =-有两个极值点,则实数a 的取值范围是_________.【答案】10,4⎛⎫ ⎪⎝⎭【解析】【分析】直接求导得()ln 14f x x ax '=+-,再设新函数()ln 14g x x ax =+-,首先讨论0a ≤的情况,当0a >时,求出导函数的极值点,则由题转化为11ln044g a a ⎛⎫=> ⎪⎝⎭,解出即可.【详解】2()ln 2(0)f x x x ax x =->,()ln 14f x x ax '=+-,令()ln 14g x x ax =+-,函数()()ln 2f x x x ax =-有两个极值点,则()0g x =在区间(0,)+∞上有两个实数根.114()4axg x a x x'-=-=,当0a ≤时,()0g x '>,则函数()g x 在区间(0,)+∞单调递增,因此()0g x =在区间(0,)+∞上不可能有两个实数根,应舍去.当0a >时,令()0g x '=,解得14x a=.令()0g x '>,解得104x a<<,此时函数()g x 单调递增;令()0g x '<,解得14x a>,此时函数()g x 单调递减.∴当14x a=时,函数()g x 取得极大值.当x 趋近于0与x 趋近于+∞时,()g x →-∞,要使()0g x =在区间(0,)+∞上有两个实数根,只需11ln 044g a a ⎛⎫=>⎪⎝⎭,解得10a 4<<.故答案为:10,4⎛⎫ ⎪⎝⎭.16.设F 为抛物线24y x =的焦点,直线l 与抛物线交于,A B 两点,且FA FB ⊥,则AFB △的面积最小值为______.【答案】12-【解析】【分析】设直线l 的方程为()()1122,,,,x my t A x y B x y =+,联立方程,利用韦达定理求出1212,y y y y +,由FA FB ⊥,得0FA FB ⋅=,求出,m t 的关系,进而可求出t 的范围,再根据1211122AFB S t y y t =--=- 计算即可.【详解】由已知()1,0F ,设直线l 的方程为()()1122,,,,x my t A x y B x y =+,联立24x my ty x =+⎧⎨=⎩,消x 得2440y my t --=,216160m t ∆=+>,则12124,4y y m y y t +==-,由FA FB ⊥,得0FA FB ⋅=,即()()()()112212121,1,110x y x y x x y y -⋅-=--+=,所以()()1212110my t my t y y +-+-+=,化简得()()()()2212121110m y y m t y y t ++-++-=,所以()()()222414110t m mt t -++-+-=,化简得224610m t t =-+≥,解得3t ≥+3t ≤-则()()222Δ161646116410m t t t t t =+=-++=->,则1t >或1t <,所以3t ≥+3t ≤-1211122AFB S t y y t =--=-()211122t t t =-=-=-,所以当3t =-()(2min 212AFB S =-=- ,所以AFB △的面积最小值为12-故答案为:12-【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()ln f x a x x =-.(1)当1a =时,求函数()f x 的单调区间;(2)当0a >时,求函数()f x 的最大值.【答案】(1)()f x 在(0,1)上为增函数;()f x 在(1,)+∞上为减函数;(2)(ln 1)a a -【解析】【分析】(1)直接利用函数的导数确定函数的单调区间.(2)求导根据函数的单调性即可求解最值.【小问1详解】()f x 的定义域为(0,)+∞,当1a =时,()ln f x x x =-,()111x f x x x-=-=',当()10xf x x -'=>,解得:01x <<,当()10xf x x-'=<,解得:1x >.()f x ∴在(0,1)上为增函数;()f x 在(1,)+∞上为减函数;【小问2详解】()f x 的定义域为(0,)+∞,()1a a xf x x x-=-=',当0a >时,令()0f x '>,得0x a <<,令()0f x '<时,得x a >,()f x ∴的递增区间为()0,a ,递减区间为(),a +∞.max ()ln (ln 1)f x a a a a a =-=-.18.已知圆224x y +=内有一点,12M ⎛⎫- ⎪⎪⎝⎭,直线l 过点M ,与圆交于A ,B 两点.(1)若直线l 的倾斜角为120°,求AB ;(2)若圆上恰有三个点到直线l 的距离等于1,求直线l 的方程.【答案】(1)372(2)10y -=或70y -+=.【解析】【分析】(1)由已知条件可得直线l 的方程,再结合点到直线的距离公式即可求出弦AB 的长;(2)由已知条件可求出圆心到直线l 的距离12d r =,再分类讨论,结合点到直线的距离公式可求出k 值,则直线l 的方程可求.【小问1详解】直线l 过点,12M ⎛⎫- ⎪ ⎪⎝⎭,且斜率为tan120k ==∴直线l的方程为1y x -=+,即210y ++=, 圆心(0,0)到直线的距离为14d =,||2AB ∴==;【小问2详解】圆上恰有三点到直线l 的距离等于1,∴圆心(0,0)到直线l 的距离为12rd ==,当直线l 垂直于x轴时,直线方程为2x =-,不合题意;当直线l 不垂直于x 轴时,设直线l的方程为1(2y k x -=+,即10kx y -++=,由1d ==,可得20k -=,解得0k =或k =,故直线l 的方程为10y -=或70y -+=.19.如图,在直四棱柱ABCD A B C D -''''中,底面ABCD 是正方形,2AB =,'3AA =,,E F 分别是棱,AB BC上的动点.(1)若,E F 分别为棱,AB BC 中点,求证:DE ⊥平面A AF ';(2)若()1AE BF t t ==>,且三棱锥A BEF '-的体积为38,求平面B EF '与平面A EF '的夹角的余弦值.【答案】(1)证明见解析(2)287【解析】【分析】(1)以点D 为原点建立空间直角坐标系,利用向量法求证即可;(2)先根据三棱锥的体积求出t ,再利用向量法求解即可.【小问1详解】如图,以点D 为原点建立空间直角坐标系,则()()()()()()()2,0,0,2,0,3,2,2,0,2,2,3,0,2,0,2,1,0,1,2,0A A B B C E F '',故()()()2,1,0,0,0,3,1,2,0DE AA AF '===- ,因为0,0DE AA DE AF '⋅=⋅= ,所以,DE AA DE AF '⊥⊥,又,,AA AF A AA AF ''⋂=⊂平面A AF ',所以DE ⊥平面A AF ';【小问2详解】因为()1113232328A BEF V S BEF AA t t '-'=⋅=⨯⨯⨯-⨯= ,解得12t =或32t =,又因为1t >,所以32t =,故312,,0,,2,022E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以33110,,3,,,0,0,,32222A E EF B E ⎛⎫⎛⎫⎛⎫''=-=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设平面A EF '的法向量为(),,n x y z = ,则有330231022n A E y z n EF x y ⎧⋅=-=⎪⎪⎨⎪⋅=-+=⎪⎩' ,可取()2,6,3n = ,设平面B EF '的法向量为(),,m a b c = ,则有130231022m B E b c m EF a b ⎧⋅=--=⎪⎪⎨⎪⋅=-+=⎪⎩' ,可取()2,6,1m =-- ,所以cos,287m nm nm n⋅===,所以平面B EF'与平面A EF'的夹角的余弦值为287.20.已知数列{}n a的首项123a=,且满足121nnnaaa+=+(*n∈N).(1)求证:数列11na⎧⎫-⎨⎬⎩⎭为等比数列;(2)若()()621nnb n=-+,令n n nc a b=,求数列{}n c的前n项和n S.【答案】(1)证明见解析(2)()()117214,672242,7nn nn nSn n++⎧--≤⎪=⎨-+≥⎪⎩【解析】【分析】(1)根据递推公式证明11111nnaa+--为定值即可;(2)先利用错位相减法求出数列{}n a的前n项和,再分6n≤和7n≥两种情况讨论即可.【小问1详解】由121nnnaaa+=+,得1112121111221111121n n n n n n n n n n n n n n na a a a a a a a a a a a a a a +-+---+====----,所以数列11n a ⎧⎫-⎨⎬⎩⎭是以11112a -=为首项,12为公比的等比数列;【小问2详解】由(1)得1112n n a -=,所以221n n n a =+,所以()62nn n n c a b n ==-,设数列{}n a 的前n 项和为n T ,则()2352423262nn T n =⨯+⨯+⨯++- ,()()234125242327262n n n T n n +=⨯+⨯+⨯++-+- ,两式相减得()2311022262n n n T n +-=------ ()()()21112121062721412n n n n n -++-=-+-=-+-,所以()17214n n T n +=--,令()620n n c n =-≥,则6n ≤,令()620n n c n =-<,则6n >,故当6n ≤时,n n c c =,当7n ≥时,n n c c =-,所以当6n ≤时,()1127214n n n n S c c c S n +=+++==-- ,当7n ≥时,()()1267862n n nS c c c c c c S S =+++-+++=- ()()11228721472242n n n n ++⎡⎤=---=-+⎣⎦,综上所述,()()117214,672242,7n n n n n S n n ++⎧--≤⎪=⎨-+≥⎪⎩.21.已知函数()2e 1xx f x a =-+(0x >).(其中e 是自然对数的底数)(1)若对任意的210x x >>时,都有()()2121f x f x x x ->-,求实数a 的取值范围;(2)若6a ≤,求证:()0f x >.(参考数据:ln 20.693≈,ln 3 1.099≈)【答案】(1)(],1-∞(2)证明见解析【解析】【分析】(1)令()()x f x x ϕ=-,由题意可得函数()x ϕ在()0,∞+上单调递增,()0x ϕ'≥在()0,∞+上恒成立,分离参数,进而可得出答案;(2)要证()()00f x x >>,即证2e 1x a x +<,令()()2e 10x g x x x+=>,利用导数求出()min 6g x >即可得证.【小问1详解】对任意的210x x >>时,都有()()2121f x f x x x ->-,即对任意的210x x >>时,都有()()2211f x x f x x ->-,令()()x f x x ϕ=-,则函数()x ϕ在()0,∞+上单调递增,则()()12e 10xx f x a ϕ''=-=--≥在()0,∞+上恒成立,即2e 1x a ≤-在()0,∞+上恒成立,因为当0x >时,2e 11x ->,所以1a ≤,经检验符合题意,所以实数a 的取值范围为(],1-∞;【小问2详解】要证()()00f x x >>,即证2e 1x a x+<,令()()2e 10x g x x x +=>,则()22e 2e 1x x x g x x--'=,令()()2e 2e 10x x h x x x =-->,则()()2e 00xh x x x '=>>,所以函数()h x 在()0,∞+上单调递增,又()7671110,e 163h h ⎛⎫=-<=- ⎪⎝⎭,因为6ln 36 1.099 6.5947≈⨯=<,所以7ln 36>,所以76e 3>,所以7671e 1063h ⎛⎫=-> ⎪⎝⎭,故存在071,6x ⎛⎫∈ ⎪⎝⎭,使得()00002e 2e 10x x h x x =--=,即()00g x '=,当00x x <<时,()0g x '<,当0x x >时,()0g x '>,所以函数()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()00min 02e 1x g x g x x +==,因为0002e 2e 10x x x --=,所以0012e 1x x =-,所以()00min 0001112e 111x x g x x x x +-+===-,因为071,6x ⎛⎫∈ ⎪⎝⎭,所以0161x >-,即()min 6g x >,又因为6a ≤,所以2e 1x a x+<,所以若6a ≤,()0f x >.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.已知双曲线C的渐近线方程为2y x =±,且点()2,1M -在C 上.(1)求C 的方程;(2)点,A B 在C 上,且,,MA MB MD AB D ⊥⊥为垂足.证明:存在点N ,使得DN 为定值.【答案】(1)2212x y -=(2)证明见解析【解析】【分析】(1)设双曲线的方程为()2202x y λλ-=≠,利用待定系数法求出λ即可得解;(2)分直线AB 的斜率是否为零两种情况讨论,根据MA MB ⊥,可得121211122y y x x ++⋅=---,双曲线方程可变形为()()22222222211x y x y =-=-+-+-,再由直线AB 的方程x my t =+可得()12112x m y t m ⎡⎤--+=⎣⎦--,代入变形后的双曲线方程,再利用韦达定理即可得出,t m 间的关系,进而可求出直线AB 所过的定点,即可得出结论.【小问1详解】设双曲线的方程为()2202x y λλ-=≠,因为点()2,1M -在C 上,所以412λ-=,解得1λ=,所以C 的方程为2212x y -=;【小问2详解】设()()1122,,,A x y B x y ,当直线AB 的斜率为0时,则()11,B x y -,因为点,A B 在C 上,所以221112x y -=,则221122x y =+,由MA MB ⊥,得0MA MB ⋅=,即()()()221111112,12,14410x y x y x y -+⋅--+=-+++=,()()2211422410y y -++++=,解得13y =或11y =-(舍去),故直线AB 的方程为3y =,当直线AB 的斜率不等于0时,设直线AB 的方程为x my t =+,当MA 的斜率不存在时,则MB 的斜率为0,此时直线MA 的方程2x =,直线MB 的方程为1y =-,联立22212x x y =⎧⎪⎨-=⎪⎩,解得1y =(1y =-舍去),联立22112y x y =-⎧⎪⎨-=⎪⎩,解得2x =-(2x =舍去),所以()()2,1,2,1A B --,则12AB k =,所以直线AB 的方程为()1122y x -=-,令3y =,则6x =,故直线AB 过点()6,3,同理可得当MB 的斜率不存在时,则MB 的斜率为0,此时直线AB 的方程为()1122y x -=-,直线AB 过点()6,3,当直线,MA MB 的斜率都存在且都不等于零时,因为MA MB ⊥,所以121211122y y x x ++⋅=---,由2212x y -=,得()()22222222211x y x y =-=-+-+-()()()()22242421412x x y y =-+-+-+++-,所以()()()()2224221410x x y y -+--+++=,由x my t =+,得()221x m y m t -+=+-+,则()212x m y m t --+=-+-,所以()12112x m y t m ⎡⎤--+=⎣⎦--,所以()()()()22124221212x x x m y y t m ⎡⎤-+---+-+⎣⎦--()()1412102y x m y t m ⎡⎤++--+=⎣⎦--,整理得()()()()2224424222110222t m m t m x x y y t m t m t m +---+-+-+-+=------即224214412022222t m y m y t m t m x t m x t m-++-++-⎛⎫-+⋅+= ⎪--------⎝⎭,所以()1212211221242222422t m y y t m t m t m x x t m t m+-+++---⋅===--+----+---所以63t m =-,所以直线AB 得方程为()6336x my m y m =+-=-+,所以直线AB 过定点()6,3,综上所述,直线AB 过定点()6,3Q ,因为MD AB ⊥,所以存在MQ 的中点()4,1N,使得12DN MQ ==.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.。

河北省保定市2022-2023学年高二上学期期末调研考试数学试题(含答案)

河北省保定市2022-2023学年高二上学期期末调研考试数学试题(含答案)

2022-2023学年度第一学期期末调研考试高二数学试题注意事项:1.本试卷由选择题和非选择题两部分构成,其中选择题60分,非选择题90分,总分150分,考试时间120分钟。

2.每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.考试过程中考生答题必须使用0.5毫米黑色签字笔作答,答案必须写在答题卡指定区域,在其他区域作答无效。

一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

130y --=的倾斜角为( )A .3πB .6πC .4πD .23π2.若数列{}n a 为等差数列,且134a a +=,则2a 等于( )A .5B .4C .3D .23.直线:10l x y -+=与圆22:230O x y x +--=交于A ,B 两点,则AOB △的面积为()A B .2C .D 4.从2,3,5,7,11这5个素数中,随机选取两个不同的数,其积为偶数的概率为( )A .25B .35C .12D .155.记n S 为等比数列{}n a 的前n 项和,若5312a a -=,6424a a -=,则n S =( )A .121n +-B .21n-C .121n -+D .21n+6.阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积,当我们垂直地缩小一个圆时,得到一个椭圆,椭圆的面积等于圆周率与椭圆的长半轴长与短半轴长的乘积.已知椭圆()2222:10x y C a b a b+=>>的面积为6π,两个焦点分别为1F ,2F ,直线y kx =与椭圆C 交于A ,B 两点,若四边形12AF BF 的周长为12,则椭圆C 的短半轴长为( )A .4B .3C .2D .67.从甲袋中随机摸出1个球是红球的概率是13,从乙袋中随机摸出1个球是红球的概率是12,从两袋中有放回的各摸两次球且每次摸出一个球,则16是( )A .4个球不都是红球的概率B .4个球都是红球的概率C .4个球中恰有3个红球的概率D .4个球中恰有1个红球的概率8.如图,边长为2的正方形ABCD 沿对角线AC 折叠,使1AD BC ⋅=,则三棱锥D ABC -的体积为( )A B C D .4二、选择题:本题共4小题,每小题5分,共20分。

湖北省2024年春季高二年级期末考试-数学试题参考答案

湖北省2024年春季高二年级期末考试-数学试题参考答案

高二数学试卷参考答案与评分细则一、选择题:本题共8小题,每小题5分,共40分.1.D2.C3.A4.C5.C6.B7.D8.B1【解析】]4,1[-=A ,]2,0[=B ,所以]2,0[=B A ,故选D.2【解析】由极大值点的定义结合导函数图像可知个数为2个,故选C.3【解析】若0)()(<⋅b f a f ,由零点存在性定理知)(x f 在()b a ,上有零点,充分性满足;取1)(2-=x x f ,]2,2[-∈x ,必要性不满足,故选A.4【解析】由等比数列的性质可知512959==a T ,所以25=a ,所以425252573=≥+=+a q a qa a a ,故选C.5【解析】由投影向量的定义和公式可知a 在b 的投影向量为21,21,0()1,1,0(212==⋅b bb a ,故选C.6【解析】易知D 在椭圆内部,所以||||4||||21PD PF PD PF +-=+,由几何关系可知]1,1[||||2-∈-PD PF ,所以最小值为3,故选B.7【解析】当首位大于2时有48234=A 种;当首位为2,第二位非0时有18323=A 种;当首位为2,第二位为0时有4212=A 种;综上,总共有48+18+4=70种,故选D.8【解析】对于b a 、,同时12次方可得43与35,易知3453<,所以b a <;对于c b 、,同时e 4次方可得e5与4e ,由题干可知85255e e >>,所以45e e >,即c b >;对于c a 、,同时取对数可得33ln 与e 1,易知e133ln <,所以c a <,综上可得b c a <<,故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.ACD10.ACD11.ABC说明:多选题有错选得0分,第9、10、11题选对一个答案给2分,选对两个答案给4分,选对3个答案给6分.9【解析】对于选项A ,由方差的运算性质可知203231109)(9)13(=⨯⨯⨯==-X D X D ,故A 正确;对于选项B ,由正态密度函数222)(21)(σμπσ--=x e x f 可知,当μ不变时,σ越小,函数值越大,该正态分布对应的正态密度曲线越瘦高;由决定系数和卡方独立性检验的定义和规则易知选项CD 正确.故选ACD.10【解析】对于选项A :因为)2(+x f 是偶函数,所以)2()2(+=+-x f x f ,即)(x f 的图象关于直线2=x 对称,所以选项A 正确;对于选项B :由3)2()(=++x f x f 得3)4()2(=+++x f x f ,所以)4()(+=x f x f ,即4是函数)(x f 的一个周期,若6也为函数)(x f 的一个周期,则2为函数)(x f 的一个周期,那么)(23)2()(x f x f x f ==++,即23)(=x f 为常数函数,不合题意,所以选项B 错误;对于选项C :由A 可知)3()1(f f =,对于3)2()(=++x f x f 可令1=x 得3)3()1(=+f f ,所以23)1(=f ,所以选项C 正确;对于选项D :由A 可得)2()2(+=+-x f x f ,求导可得0)2()2(''=-++x f x f 即0)4()(''=-+x f x f ,对于3)2()(=++x f x f 求导可得0)2()(''=++x f x f ,所以)2()4(''+=-x f x f ,即函数)('x f 的图像关于直线3=x 对称,所以选项D 正确;故选ACD.11【解析】对于选项A ,将x 等量替换为x 1,则111ln -≤x x ,所以xx 11ln -≥,所以A 正确;对于选项B ,6066516606)611(666+=+++C C C ,因为n n 1)11ln(<+,所以e nn<+11(,所以B 正确;对于选项C ,因为nn 1)11ln(<+,所以∑∑===+>20241202412025ln 1ln(1n n n n n ,所以C 正确;对于选项D ,由A 令n n x 1+=得1111)1ln(+=+->+n n n n n ,即∑∑===+<+20241202412025ln 1ln 11n n n n n ,所以D 错误;故选ABC.三、填空题:本题共3小题,每小题5分,共15分.12.1254413.),3[21,(+∞-∞ 14.}0{),4(2+∞e 12【解析】12544525352)52(122=⋅⋅+=C p .13【解析】]23,21[∈∀x ,当0≤a 时,ax x x f -=2)(在]23,21[上单调递增;),0[+∞∈∀x ,当0>a 时,⎪⎩⎪⎨⎧>-≤≤+-=ax ax x ax ax x x f ,0,)(22,利用二次函数对称性可得223a ≤或21≤a 即3≥a 或210≤<a .综上所述,a 的取值范围是),3[]21,(+∞-∞ .14【解析】设直线与曲线x e x y =的切点为),(11y x ,则切线方程为)(111111x x ex e x y x x --=-,则过),0(t 的切线需满足:121x e x t =.令x e x x f 2)(=,则xe x x xf )2()('-=,所以)(x f 在)0,(-∞和),2(+∞单调递减,在)2,0(单调递增,且当-∞→x 时,+∞→)(x f ,当+∞→x 时,0)(→x f ,而0)0(=f ,所以}0{),4(2+∞∈e t .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.15.解:(1)展开式所有项的二项式系数和为5122=n,所以9=n ,·······································3分令9)21()(x x f -=,则所有项系数和为1)21()1(91010-=-==+++f a a a ;······················6分(2)由题意得nnn C a )2(9-⋅=,不妨令nn n n C a b 2||9⋅==,则⎩⎨⎧≥≥+-11k k k k b b b b ,即⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--119911992222k k k k k k k k C C C C ,化简可得⎪⎪⎩⎪⎪⎨⎧⋅+-≥≥⋅-21911210k k kk解得320317≤≤k ,因为N k ∈,所以6=k ········································10分所以展开式中系数绝对值最大的项是第七项:66695376)2(x x C =-⋅.································13分【备注】若最终式子均正确且结果算错,扣1分.16.解:(1)因为8.11=μ,2.3=σ,15=+σμ,所以旅游费用支出不低于1500元的概率为15865.02)(1)(=+<<--=+≥σμσμσμx P x P ,········4分所以325.7915865.0500=⨯,估计2023年有79.325万的游客在本市的年旅游费用支出不低于1500元.······························7分(2)假设:0H “客户星级”与“客户来源”独立,没有关联····················10分635.6937.7700300600400400100300200100022>≈⨯⨯⨯⨯-⨯=)(χ,···········································13分根据小概率值0.01α=的独立性检验,0H 不成立,即“客户星级”与“客户来源”有关联,此推断犯错误的概率不大于0.01.···························15分【备注】根据评分细则酌情扣分.17.解:(1)2222')]1()[1(111)(x a x x x a ax x x a x a x f ---=-+-=--+=,11=x ,12-=a x ,·················2分①当01≤-a 即1≤a 时,易知)(x f 在)1,0(单调递减,在),1(+∞单调递增;······················3分②当11=-a 即2=a 时,0)('≥x f ,则)(x f 在),0(+∞单调递增;·····························4分③当110<-<a 即21<<a 时,易知)(x f 在)1,0(-a 和),1(+∞单调递增,在)1,1(-a 单调递减;···5分④当11>-a 即2>a 时,易知)(x f 在)1,0(和),1(+∞-a 单调递增,在)1,1(-a 单调递减;·········6分综上所述:游客来源客户星级合计三星客户一星客户当地游客200400600外地游客100300400合计3007001000当1≤a 时,)(x f 在)1,0(单调递减,在),1(+∞单调递增;当2=a 时,)(x f 在),0(+∞单调递增;当21<<a 时,)(x f 在)1,0(-a 和),1(+∞单调递增,在)1,1(-a 单调递减;当2>a 时,)(x f 在)1,0(和),1(+∞-a 单调递增,在)1,1(-a 单调递减;·························8分(2)由(1)可知,只有当21<<a 和2>a 时,)(x f 才有极大值,①当2>a 时,32)1(-=-==a f f 极大值,解得5=a ;······································10分②当21<<a 时,)1ln(2)1(---=-=a a a a f f 极大值,令)1ln(2)(---=a a a a g ,则11)1ln(1)1ln(1)('----=----=a a a a a a g ,0)1(2)1(111)(22''>--=-+--=a a a a a g ,所以)('a g 在)2,1(单调递增,所以01)2()(''<-=<g a g ,所以)(a g 在)2,1(单调递减,即0)2()(=>g a g ,所以3)(-=a g 在)2,1(无解,故不存在符合题意的a ;······················14分综上所述:5=a ·········································································15分【备注】没有“综上所述”扣1分,过程不规范酌情扣分.18.解:记事件i A :学生通过第i 轮,事件i B :学生通过第i 轮就选择奖品离开,事件i C :学生通过第i 轮且继续答题,(3,2,1=i ).由题意得21)(1=A P ,31)|(11=AB P ,32)|(11=AC P ,21)|(12=C A P ,21)|(22=A B P ,21)|(22=A C P ,21)|(23=C A P .(1)记事件B :学生获得奖品.则321B B B B ++=,613121)|()()()(111111=⨯===A B P A P B A P B P ···················································1分12121213221)|()|()|()()(22121112=⨯⨯⨯==C B P C A P A C P A P B P ··································2分2412121213221)|()|()|()|()()(2322221113=⨯⨯⨯⨯==C A P A C P C A P A C P A P B P ·····················4分24724112161)()()()(321=++=++=B P B P B P B P ···············································6分(2)73247241121)()()()()()()|)((323232=+=+=+=+B P B P B P B P B B P B B P B B B P ;························9分(3)X 可取3,2,1,0,21)()0(1===A P X P ················································10分312132213121)|()|()()|()()()(()1(1211111121112111=⨯⨯+⨯=+=+=+==C A P A C P A P A B P A P A C P B A P A C B A P X P ··········································12分2412121213221)|()|()|()|()()3(232212111=⨯⨯⨯⨯===C A P A C P C A P A C P A P X P ·······································13分8124131211)3()1()0(1)2(=---==-=-=-==X P X P X P X P ······························15分所以X 的分布列为:24173241281131021)(=⨯+⨯+⨯+⨯=X E .······················································17分【备注】解答没有用字母表示,只用数字计算,若结果正确不扣分,过程酌情扣分.19.解:(1)证明:因为)(x f 在]1,1[-单调递增,]1,1[-∈∀j i x x ,且j i x x <,则)()(|)()(|i j i j x f x f x f x f -=-,所以)1()1()()()]()([|)()(|01111--=-=-=-∑∑=-=-f f x f x f x f x f xf x f n ni i i ni i i,取)1()1(--=f f M ,即可得∑=-≤-ni i iM xf x f 11|)()(|,所以)(x f 是]1,1[-上的有界变差函数·········4分(2)]1,1[-∈∀j i x x 、,且j i x x <,则)(2||2|))((||)()(|i j i j i j i j i j x x x x x x x x x f x f -=-≤+-=-,所以4)]1(1[2)(2|)()(|1111=--=-≤-∑∑=-=-n i i i ni i i x x xf x f ,取4=M ,即可得∑=-≤-ni i i M x f x f 11|)()(|,所以2)(x x f =是定义在]1,1[-上的有界变差函数··················································9分(3)取11+-=i n x i ,n i ,,1 =,其中00=x ,则11)1()1cos(11)(1+--=+-+-=+-i n i n i n x f i n i π,所以当2≥i 时,2111|21)1(11)1(||)()(|211+-++-=+---+--=-+-+--i n i n i n i n x f x f i n i n i i ,∑∑∑∑====--=+-+=+-++-+-=-n i ni n i ni i i i i i n i n i n f x f x f x f 122111112)111(12111(|)0()(||)()(|·········13分下证∑=-ni i1112无界:令1ln )(--=x x x h ,xx x h 1)('-=,)(x h 在)1,0(单调递减,在),1(+∞单调递增,所以0)1()(=≥h x h ,X 0123P213181241即x x ln 1≥-,取n n x 1+=,即可得n n n 11ln ≤+,所以∑∑==+=+≥n i n i n i i i 11)1ln(21ln212,那么1)1ln(21121-+≥-∑=n i ni ,易知当+∞→n 时,+∞→-+1)1ln(2n ,所以∑=-ni i1112无界·········16分所以不存在常数0>M 使得∑=-≤-ni i iM xf x f 11|)()(|,因此)(x f 在]1,0[不是有界变差函数.···········17分【备注】解答过程根据评分细则酌情扣分.。

辽宁省实验中学等校2024年高二下学期7月期末考试数学试题+答案

辽宁省实验中学等校2024年高二下学期7月期末考试数学试题+答案

2023—2024学年度下学期期末考试高二年级数学科试卷命题学校:辽宁省实验中学 命题人:马祥 樊本强 校对人:张鑫一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数()2f x x =+()()11lim2x f x f x∆→+∆−=⋅∆( )A .32B .34C .52D .542.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为( ) A .0.75B .0.6C .0.52D .0.483.已知n S 为等差数列{}n a 的前n 项和,2818220a a a ++=,则17S =( ) A .852B .85C .170D .3404.已知命题p :π0,2x ∀∈,2sin πx x x <<,则命题p 的真假以及否定分别为( ) A .真,p ¬:π0,2x ∃∈,2sin πx x x ≥≥ B .真,p ¬:π0,2x ∃∈,2sin πx x 或sin x x ≥ C .假,p ¬:π0,2x ∃∈,2sin πx x x ≥≥ D .假,p ¬:π0,2x ∃∈,2sin πx x ≥或sin x x ≥ 5.已知随机变量ξ,η,1~9,3B ξ,()2~,N ηµσ,且()()E D ξη=,若()21P a η≤++()21P a η≤−=,则实数a =( )A .0B .-1C .1D .26.集合{}e 1e xx x ∈+≤+Z 的子集个数为( )(其中e 为自然对数的底数) A .2B .4C .8D .167.设数列{}n a 满足11a =,()1ln 1n n a a m +=−+,*n ∈N ,若对一切*n ∈N ,2n a ≤,则实数m 的取值范围是( ) A .2m ≥B .12m ≤≤C .3m ≥D .23m ≤≤8.已知定义在R 上的单调递增的函数()f x 满足:任意x ∈R ,有()()112f x f x −++=,()()224f x f x ++−=,则下列结论错误..的是( ) A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x −=− C .存在非零实数T ,使得任意x ∈R ,()()f x T f x +=D .存在非零实数k ,使得任意x ∈R ,()1f x kx −≤二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.等比数列{}n a 的公比为q ,则下列说法正确的是( ) A .{}ln n a 为等差数列B .若21a a >且54a a >,则{}n a 递增C .{}12n n a a ++为等比数列D .22n n n a a a ++为等比数列 10.甲乙两人进行投篮比赛,两人各投一次为一轮比赛,约定如下规则:如果在一轮比赛中一人投进,另一人没投进,则投进者得1分,没进者得-1分,如果一轮比赛中两人都投进或都没投进,则都得0分,当两人各自累计总分相差40.5,乙投进的概率为0.6,每次投球都是相互独立的,若规定两人起始分都为2分,记()0,1,2,3,4i P i =为“甲累计总分为i 时,甲最终获胜”的概率,则( ) A .一轮比赛中,甲得1分的概率为0.5 B .()00P =,()41P =C .110.20.30.5i i i i P P P P +−=++D .{}()10,1,2,3i i P P i +−=为等差数列 11.已知函数()()2e xf x x a =−,a ∈R ,则下列说法正确的是( )A .若0a =,则()f x x ≥B .a ∃∈R ,使得()f x 在(),−∞+∞上单调递增C .若1x =为()f x 的极值点,则e a =D .a ∀∈R ,坐标平面上存在点P ,使得有三条过点P 的直线与()f x 的图象相切三、填空题:本题共3小题,每小题5分,共15分.12.从含有6件正品和4件次品的产品中任取3件,记X 为所抽取的次品,则()E X =______. 13.已知实数x ,y 满足210x xy +−=,则22x y +的最小值为______.14.设高斯函数[]x 表示不超过x 的最大整数(如[]2.12=,[]33=,[]1.72−=−),已知3107nn a=×,11b a =,()*110,2n n n b a a n n −=−∈≥N ,则4a =______;2024b =______.四、解答题,本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)甲、乙两人对局比赛,甲赢得每局比赛的概率为()01p p <<,每局比赛没有平局. (1)若赛制为3局2胜,23p =,求最终甲获胜的概率; (2)若赛制为5局3胜,记()f p 为“恰好进行4局比赛且甲获得最终胜利”的概率,求()f p 的最大值及此时p 的值.16.(15分)已知数列{}n a 满足11n n n a a a +=+,112a =,数列{}n a 的前n 项和为n S ,且1233n n S +=−.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列1n n a b的前n 项和为n T . 18.(15分)目前AI 技术蓬勃发展,某市投放了一批AI 无人驾驶出租车为了了解不同年龄的人对无人驾驶出租车的使用体验,随机选取了100名使用无人驾驶出租车的体验者,让他们根据体验效果进行评分. (1)现将100名消费者的年龄划分为“青年”和“中老年”,评分划分为“好评”和“差评”,整理得到如下数据,请将2×2列联表补充完整,并判断是否有99.9%的把握认为对无人驾驶出租车的评价与年龄有关.好评 差评 合计 青年 20 中老年 10 合计40100(2)设消费者的年龄为x ,对无人驾驶出租车的体验评分为y .若根据统计数据,用最小二乘法得到y 关于x 的线性回归方程为ˆ 1.515yx =+,且年龄x 的方差为29x s =,评分y 的方差为225y s =.求y 与x 的相关系数r ,并据此判断对无人驾驶出租车使用体验的评分与年龄的相关性强弱(当0.75r ≥时,认为相关性强,否则认为相关性弱).附:()()()121ˆniii nii x x y y bx x ==−−=−∑∑,r =独立性检验中的()()()()()22n ad bc K a b c d a c b d −=++++,其中n a b c d =+++.临界值表:()20P K k ≥0.050 0.010 0.001 0k3.8416.63510.82818.(17分)已知函数()()()2ln 1ln a x f x x x+=+,0a >. (1)求证:0x >时,2e x x >; (2)讨论()f x 的单调性;(3)求证:0a ∀>,()f x 恰有一个零点.19.(17分)已知函数()f x ,定义:对给定的常数a ,数列{}n a 满足q a >,()()()1n n n f a f a f a a a+−′=−,则称数列{}n a 为函数()f x 的“()L a —数列”.(()f x ′为()f x 的导函数) (1)若函数()2f x x =,数列{}n a 为函数()f x 的“()1L −—数列”,且11a =,求{}n a 的通项公式; (2)若函数()ln g x x =,数列{}n a 为函数()g x 的“()1L —数列”,求证:11n n a a +<<; (3)若函数()36sin h x x x =+,正项数列{}n b 为函数()h x 的“()L b —数列”,已知()1,n n b b b +∈,*n ∈N .记数列{}n b 的前n 项和为n S .求证:当0b ≥时,()112n n S b n b b +≥−+.2023—2024学年度下学期期末考试高二年级数学科试卷四、解答题:15.【解】(1)设前两局比赛甲赢为事件A ,∴()22439P A ==设前两局比赛甲赢一局且最后甲胜为事件B ,∴()122128C 33327P B =⋅⋅=甲胜的概率为()()2027P A P B +=(2)恰进行4局比赛且甲最后胜,则前三局比赛甲赢两局,第四局甲赢()()22343C 133f p p p p p p =−=−∴()()232912334f p p p p p ′=−=−,∴()304f p p ′=⇒= 当30,4p ∈ ,()0f p ′>,∴()f p 在30,4上为增函数 当3,14p ∈,()0f p ′<,∴()f p 在3,14上为减函数 ∴()max3814256f p f ==,此时34p =. 16.【解】(1)∵11n n n a a a +=+,∴1111n n a a +=+,∴1n a是以112a =为首项,以1为公差的等差数列∴()1111211n n d n n a a =+−=+−=+,∴11n a n =+ ∵1233n n S +=−,∴()12332nn S n −=−≥ ∴)11333,22n nn n n n b S S n +−−=−==≥当1n =,2113332b S −===,符合上式.∴3n n b =,*n ∈N (2)由(1)得113n n nn a b += ∴()23111112131133333nn n n n T −−+++++=+++⋅⋅⋅++ ∴()2311111121133333nn n n n T +−++++=++⋅⋅⋅++ 作差:12311111221111219313333333313n n n n n n n T −++ − ++ =+++⋅⋅⋅+−=+− −∴151114346n n n T −+=−+17.【解】(1)根据题意可得2×2列联表如下:好评 差评 合计 青年 20 30 50 中老年 40 10 50 合计6040100因为()221002010304016.66710.82850506040K ×−×=≈>×××,所以有99.9%的把握认为对无人驾驶出租车的评价与年龄有关.(2)因为()10022119100xi i s x x ==−=∑,所以()10021900ii x x =−=∑, 因为()100221125100yii s y y ==−=∑,所以()100212500i i y y =−=∑, 因为()()()100110021ˆ 1.5iii i i x x y y bx x ==−−=−∑∑,所以()()()1001002111.5 1.59001350i i i i i x x y y x x =−−=×−=×=∑∑, 所以相关系数13500.93050r=×, 因为0.9>0.75,所以判断对无人驾驶出租车使用体验的评分与年龄的相关很强.18.【解】(1)设()2e xg x x −=,0x >,则()()2e xg x x x −′=−,0x >易知()g x 在(]0,2上递增,在[)2,+∞上递减, 所以()()2421eg x g ≤=<,即22e 1e x x x x −<⇒>. (2)()f x 定义域为()0,+∞,()()222ln 2ln ln x a xa x f x x xx x −−′=+=,0x >,0a > ①2a =时,可知恒有()0f x ′≥,此时()f x 在()0,+∞上递增; ②02a <<时,可知()0,1,2a x∈+∞ 时,()0f x ′>;,12a x ∈时,()0f x ′<,所以此时()f x 在0,2a 和()1,+∞上递增,在,12a上递减; ③2a >时,同理可得()f x 在()0,1和,2a +∞ 上递增,在1,2a上递减. (3)由(2):①2a =时,()f x 在()0,+∞上递增,因为()120f =>,()22e 42e 0f −=−<,所以此时()f x 恰有一个零点;②02a <<时,因为()f x 的极小值为()10f a =>,又由(1)知211111e 1e 0a af a −−+ =+−<,结合()f x 的单调性,可知此时()f x 也恰有一个零点;③2a >时,()f x 的极小值为22ln 2ln 1ln 1102222a a a a f=++=++>, 又()22e 42e 0f −=−<,结合()f x 的单调性,同样()f x 也恰有一个零点. 综上,0a ∀>,()f x 恰有一个零点. 【说明】用极限代替找点,过程合理,扣2分.19.【解】(1)()()22f x x f x x ′=⇒=,由题意,有211211n n n n a a a a +−==−+, 则()11112n n a a ++=+,又112a +=,所以{}1n a +是以2为首项、以12为公比的等比数列, 所以2112n n a −+=,从而2112n n a −=−.(2)由题可得1ln 11n n n a a a +=−, ①设()ln 1x x x ϕ=−+,()11x xϕ′=−, 可知当1x >时,()0x ϕ′<,()x ϕ递减,()()10x ϕϕ<=; 当01x <<时,()0x ϕ′>,()x ϕ递增,()()10x ϕϕ<=即01x <≠时,有ln 1x x <−. 因为11a >,所以1111ln 10111a a a a −<<=−−,即221011a a <<⇒>,以此类推,可得1n a >; ②由01x <≠时:111ln 1ln1ln 1x x x x x x<−⇒<−⇔>−从而111ln 1111n n n n n n a a a a a a +−=>=−−,即1111n n n na a a a ++>⇒<.综上:11n n a a +<<.(3)先证1n b +的唯一性.令()()()()()0n n h b h b H x h x x x b b−=−≥−,则()()n H b H b =∵()()()1n n n h b h b h b b b+−′=−,∴()10n H b +′=.∵()()()61cos 0H x h x x ′′′′′′==−≥,∴[)0,x ∈+∞时,()()()6sin H x h x x x ′′′′==−递增,()0H x ′′≥()H x ′⇒递增,所以这样的1n b +是唯一的,且当[)10,n x b +∈时,()0H x ′<,()H x 递减;()1,n x b +∈+∞时,()0H x ′>,()H x 递增. 下证:12n n b b b ++<.令()()()12n x H x H b x ϕ+=−−,[)10,n x b +∈, 则()()()12n x H x H b x ϕ+′′′=+−,()()()12n x H x H b x ϕ+′′′′′′=−−, ∵[)10,n x b +∈,∴12n b x x +−>,∴()0x ϕ′′<,()x ϕ′递减,()()()10n x b x ϕϕϕ+′′>=⇒递增 ∴()()10x bn ϕϕ<+=即()()12n H x H b x +<−. 取[)10,n x b b +=∈,得()()()()111222n n n n n H b H b b H b H b b b b b +++<−⇒<−⇒<−,即12n n b b b ++<. 累加可得()112n n S b n b b +≥−+.。

河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)

河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)

石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。

高二数学期末考试题及答案

高二数学期末考试题及答案

高二数学期末考试题及答案一、选择题1. 设集合$A=\{x \mid x\text{是正整数},1\leqslant x\leqslant 10\}$,若集合$B$表示$A$中能除以5但不能除以4,且单位数为偶数的数所构成的集合,则集合$B$的元素个数是()。

A. 1B. 2C. 3D. 42. 已知实数$x$满足$x+\frac{1}{x}=3$,则$x^n+\frac{1}{x^n}$的值为()。

A. $n$B. $3n$C. $3^n$D. $2^n$3. 已知函数$f(x)=\log_2(x-a)+\log_2(x-b)$,其中$a>b$,则函数的定义域为()。

A. $[a,+\infty)$B. $[b,a]$C. $[a,+\infty)\backslash [b,+\infty)$D. $(-\infty,a)\backslash [b,a]$4. 摩天轮在运行过程中,以正比例的方式将载客量从40人逐渐增加到80人,然后又逐渐减少到40人。

从摩天轮开始运行到载客量减半,共用去了旋转的$\frac{1}{4}$的时间。

假设摩天轮的一次旋转用时不变,那么完成一个旋转用时是()。

A. 8分钟B. 10分钟C. 12分钟D. 16分钟5. 已知数列$\{a_n\}$满足$a_1=1$,$a_n=\frac{a_{n-1}}{n}+\frac{1}{n(n+1)}$,则数列$\{a_n\}$的极限值为()。

A. 0B. 1C. $\frac{1}{2}$D. $\frac{2}{3}$二、填空题6. 若直线$2x+y-3=0$与圆$x^2+y^2-4x-2y+4=0$相切,则切点坐标为()。

7. 已知函数$f(x)=(x^2-2x)e^{-mx}+c$,若曲线$y=f(x)$过点$(0,1)$且切线斜率为1,则$m$的值为()。

8. 设$A$,$B$是两个$n$阶矩阵,且$AB=BA$,则$|AB-BA|$的值为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷一、选择题:本大题共12个小题,每小题5分,共60分.1.(5分)已知集合M ={1,2,3},N ={2,3,4},则下列式子正确的是( ) A .M ⊆N B .N ⊆M C .M ∩N ={2,3} D .M ∪N ={1,4} 2.已知向量,则2等于( )A .(4,﹣5)B .(﹣4,5)C .(0,﹣1)D .(0,1)3.在区间(1,7)上任取一个数,这个数在区间(5,8)上的概率为( ) A .B .C .D .4.要得到函数y =sin (4x ﹣)的图象,只需将函数y =sin4x 的图象( ) A .向左平移单位 B .向右平移单位 C .向左平移单位D .向右平移单位5.已知两条直线m ,n ,两个平面α,β,给出下面四个命题: ①m ∥n ,m ⊥α⇒n ⊥α ②α∥β,m ⊂α,n ⊂β⇒m ∥n ③m ∥n ,m ∥α⇒n ∥α ④α∥β,m ∥n ,m ⊥α⇒n ⊥β 其中正确命题的序号是( ) A .①③ B .②④ C .①④ D .②③6.执行如图所以的程序框图,如果输入a =5,那么输出n =( ) A .2B .3C .4D .57.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,若求出关于的线性回归方程为,那么表中的值为 A . B . C . D . 8.已知f (x )=(x ﹣m )(x ﹣n )+2,并且α、β是方程f (x )=0的两根,则实数m ,n ,α,β的大小关系可能是( )A x y yx ˆ0.70.35yx =+t 3 3.15 3.5 4.5x 3456y 2.5t 4 4.5A.α<m<n<βB.m<α<β<n C.m<α<n<βD.α<m<β<n9.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为()A.2cm3B.4cm3C.6cm3D.8cm310.在等腰△ABC中,∠BAC=90°,AB=AC=2,,,则的值为()A.B.C.D.11.已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是()A.1﹣B.1﹣C.1﹣D.1﹣12.已知函数f(x)=,x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()A.(0,π)B.(﹣π,π)C.(lg π,1)D.(π,10)二、填空题(每题5分,满分20分)13.若直线2x+(m+1)y+4=0与直线mx+3y+4=0平行,则m=.14.已知=﹣1,则tanα=.15.若变量x、y满足约束条件,则z=x﹣2y的最大值为.16.已知函数()3,01,02+≥⎧⎪=⎨⎛⎫<⎪⎪⎝⎭⎩kkx xf xx ,若方程()()20f f x-=恰有三个实数根,则实数k的取值范围是三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,a,b,c分别为内角A,B,C的对边,2b sin B=(2a+c)sin A+(2c+a)sin C.(Ⅰ)求B的大小;(Ⅱ)若b=,A=,求△ABC的面积.18.已知:、、是同一平面上的三个向量,其中=(1,2).① 若||=2,且∥,求的坐标. ② 若||=,且+2与2-垂直,求与的夹角.19.设S n 是等差数列{a n}的前n 项和,已知S 3=6,a 4=4. (1)求数列{a n }的通项公式; (2)若b n =3﹣3,求证:++…+<.20为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表.(1)分别求出的值;a b c a c 5c a c b 25a b a b a b n y x b a ,,,(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.21.在三棱柱ABC﹣A1B1C1中,△ABC是边长为2的正三角形,侧面BB1C1C是矩形,D、E 分别是线段BB1、AC1的中点.(1)求证:DE∥平面A1B1C1;(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱锥A﹣DCE的体积.22.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积最大.禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷参考答案一.选择题(每小题5分,共12分)二、填空题(每小题5分,共12分) 13. -3 14.15. 3 16. 11,3⎛⎤-- ⎥⎝⎦17(Ⅰ)解:∵2b sin B =(2a +c )sin A +(2c +a )sin C , 由正弦定理得,2b 2=(2a +c )a +(2c +a )c , 化简得,a 2+c 2﹣b 2+ac =0. ∴.∵0<B <π, ∴B =.(Ⅱ)解:∵A =,∴C =.∴sin C =sin ==.由正弦定理得,,∵,B =,∴.∴△ABC 的面积=.18. 解:①设 ∵∥且||=2∴∴∴=(2,4)或=(-2,-4) .),(y x c =→c a c 5⎩⎨⎧=+=-200222y x y x 2±=x c c②∵(+2)⊥(2-)∴(+2)·(2-)=0, ∴22+3·-22=0∴2||2+3||·||-2||2=0 ∴2×5+3××-2×=0,∴= -1 ∴θ=,∵θ∈[0,π],∴θ=π.19.解:(1)设公差为d ,则,解得,∴a n =n .(2)证明:∵b n =3﹣3=3n +1﹣3n =2•3n ,∴=,∴{}是等比数列.∵=,q =,∴++…+==(1﹣)<.20解:(1)由频率表中第4组数据可知,第4组总人数为, …(1分) 再结合频率分布直方图可知,a b a b a b a b a a b b a a b θcos b 525θcos 45θcos π2πk +2536.09==n 10010025.025=⨯∴1000.01100.55a =⨯⨯⨯=,…(4) (2)因为第2,3,4组回答正确的人数共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为: 第2组:人; 第3组:人; 第4组:人 …(8分) (3)设第2组2人为:A 1,A 2;第3组3人为:B 1,B 2,B 3;第4组1人为:C 1. 则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2, B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1)共15个基本事件,其中恰好没有第3组人共3个基本事件, …(10分) ∴所抽取的人中恰好没有第3组人的概率是:. …(12分) 21.(1)证明:取棱A 1C 1的中点F ,连接EF 、B 1F 则由EF 是△AA 1C 1的中位线得EF ∥AA 1,EF =AA 1 又DB 1∥AA 1,DB 1=AA 1 所以EF ∥DB 1,EF =DB 1故四边形DEFB 1是平行四边形,从而DE ∥B 1F 所以DE ∥平面A 1B 1C 1(Ⅱ)解:因为E 是AC 1的中点,所以V A ﹣DCE =V D ﹣ACE =过A 作AH ⊥BC 于H因为平面平面ABC ⊥平面BB 1C 1C ,所以AH ⊥平面BB 1C 1C , 所以==所以V A ﹣DCE =V D ﹣ACE ==279.01003.0100=⨯⨯⨯=b 2.0153,9.02018====y x 265418=⨯365427=⨯16549=⨯51153==P22.解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.。

相关文档
最新文档