15 不等式(组)的应用

合集下载

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一解15种典型例题的不等式,需要注意处理好有重根的情况。

例如,如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>(或f(x)<)可用“穿根法”求解。

对于偶次或奇次重根,可以转化为不含重根的不等式,也可直接用“穿根法”,但要注意“奇穿偶不穿”,其法如图。

下面分别解两个例题:例题一:解不等式2x-x²-15x>0;(x+4)(x+5)(2-x)<231)原不等式可化为x(2x+5)(x-3)>0.把方程x(2x+5)(x -3)=0的三个根5,-1,3顺次标上数轴。

然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分。

∴原不等式解集为{x|-5<x<0}∪{x|x>3}。

2)原不等式等价于(x+4)(x+5)(x-2)>23.用“穿根法”得到原不等式解集为{x|x<-5或-5<x<-4或x>2}。

典型例题二解分式不等式时,要注意它的等价变形。

当分式不等式化为f(x)/g(x)<(或≤)时,可以按如下方法解题。

1)解:原不等式等价于3(x+2)-x(x-2)-x²+5x+6/3x(x+2)<1-2x+2.化简后得到原不等式等价于(x-6)(x+1)(x-2)(x+2)≥0.用“穿根法”得到原不等式解集为{x|x<-2或-1≤x≤2或x≥6}。

2)解法一:原不等式等价于2x²-3x+1/2x²-9x+14>0.化简后得到原不等式等价于(x-1)(2x-1)(3x-7)<0.用“穿根法”得到原不等式解集为{x|x<1/2或7/3<x<1}。

解法二:原不等式等价于(2x-1)(x-1)<0.用“穿根法”得到原不等式解集为{x|x<1/2或x>1}。

例7解不等式2ax-a2>1-x(a>0)。

分析:将不等式移项整理得到2ax+x>a2+1,然后按照无理不等式的解法化为两个不等式组,再分类讨论求解。

解:原不等式等价于(1) 2ax-a2>1-x,或(2) 2ax-a2<1-x。

不等式(组)及分式方程综合应用

不等式(组)及分式方程综合应用
解应用题的基本步骤: (1)审(2)设(3)列(4)解(5)验(6)答
典例精解
考点: 分式方程,一元一次不等式(组)的应用
开明中学开学初在金利源商场购进A,B两种品牌的足球, 购买A品牌足球花费了2500元,购买B品牌足球花费了2000 元,且购买A品牌足球的数量是购买B品牌足球数量的2倍, 已知购买一个B品牌足球比购买一个A品牌足球多花30元. (1)求购买一个A品牌、一个B品牌的足球各需多少元;
专题突破
旧知回顾
1、某产品进价120元,共有15件,为了使利润不低 于1000元,那么这件产品的定价至少在多少元?
解:设定价为x元
(x-120) ×15≥1000
2.某人骑一辆电动自行车,如果行驶速度增加5km/h ,那么2h所行驶的路程不少于原来速度2.5h所行驶 的路程.他原来行驶的速度最大是多少?
(3)【延伸题】在(2)条件下,若购买B品牌的足球数 不少于A品牌足球数的1.5倍,求有多少种购买方案?
变式训练
考点: 分式方程,一元一次不等式(组)的应用
为配合“一带一路”国家倡议,某铁路货运集装箱物流 园区正式启动了2期扩建工程.一项地基基础加固处理 工程由A、B两个工程公司承担建设,已知A工程公司 单独建设完成此项工程需要180天.A工程公司单独施 工45天后,B工程公司参与合作,两工程公司又共同施 工54天后完成了此项工程. (1)求B工程公司单独建设完成此项工程需要多少天?
(2)设未知数注意和题目中各个量关系都密切 的量,注意根据问题情况灵活选择设法,如直接 法,间接法,设多元等 (3)求分式方程的解,验根应从两个方面出发: 方程本身和实际意义
(2)开明中学为响应习总书记“足球进校园”的号召,决 定再次购进A,B两种品牌足球共50个.恰逢金利源商场对两 种品牌足球的售价进行调整,A品牌足球的售价比第一次购 买时提高了8%,B品牌足球按第一次购买时售价的9折出售. 如果这所中学此次购买A,B两种品牌足球的总费用不超过 3260元,那么开明中学此次最多可购买多少个B品牌足球?

2020年中考数学必考经典题(江苏版)专题05不等式(组)的解法与应用问题

2020年中考数学必考经典题(江苏版)专题05不等式(组)的解法与应用问题

2020年中考数学必考经典题(江苏版)专题05 不等式(组)的解法与应用问题【方法指导】1.不等式性质:不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.2. 用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.4. 一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.5.不等式(组)的整数解(1)利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.(2)已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.6.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.【题型剖析】【类型1】不等式的性质【例1】(2019•昆山市二模)若x y<,则下列结论正确的是()A.1133x y->-B.22x y>C.11x y->-D.22x y<【变式1-1】(2019•滨湖区一模)若m n>,则下列各式中一定成立的是()A.22m n->-B.55m n-<-C.22m n->-D.44m n<【变式1-2】(2019•无锡模拟)下列不等式变形正确的是()A.由a b>,得22a b-<-B.由a b>,得||||a b>C.由a b>,得22a b-<-D.由a b>,得22a b>【变式1-3】(2018•无锡模拟)已知实数a、b,若a b>,则下列结论正确的是() A.55a b-<-B.22a b+<+C.33a b->-D.33a b>【类型2】解一元一次不等式(组)【例2】(2019•建湖县二模)解不等式221123x x+-+,并把它的解集在数轴上表示出来:【变式2-1】(2019•扬州一模)解不等式:122123x x-+-.【变式2-2】(2019•姑苏区校级二模)解不等式组3811223x xx x-<⎧⎪++⎨⎪⎩【变式2-3】(2019•玄武区二模)如图,在数轴上点A、B、C分别表示1-、23x-+、1x+,且点A在点B的左侧,点C在点B的右侧.(1)求x的取值范围;(2)当2AB BC=时,x的值为.【类型3】:不等式(组)的整数解【例3】(2019•天宁区校级二模)已知关于x的不等式组521xx a--⎧⎨->⎩有3个整数解,则a的取值范围是.【变式3-1】(2019•建邺区校级二模)若关于x的不等式组21312xx m+⎧+>-⎪⎨⎪<⎩的所有整数解的和是7-,则m的取值范围是.【变式3-2】(2019•南召县二模)已知关于x的不等式组321x ax-⎧⎨--⎩的整数解共有5个,则a的取值范围是.【变式3-3】(2018•海门市模拟)关于x的不等式组10x mx-<⎧⎨+>⎩恰有3个整数解,则实数m的取值范围为【类型4】:不等式的应用【例4】(2019•姑苏区校级二模)某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品1件共需50元,购进甲商品1件和乙商品2件共需70元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,若要保证获利不低于1000元,则甲商品最多能购进多少件?【变式4-1】(2019•高邮市二模)某校举办园博会知识竞赛,打算购买A、B两种奖品.如果购买A奖品10件、B奖品5件,共需120元;如果购买A奖品5件、B奖品10件,共需90元.(1)A,B两种奖品每件各多少元?(2)若购买A、B奖品共100件,总费用不超过600元,则A奖品最多购买多少件?【变式4-2】(2019•镇江一模)某旗舰网店用8000元购进甲、乙两种口罩,全部销售完后一共获利2800元,进价和售价如下表:品名价格甲种口罩乙种口罩进价(元/袋)2025售价(元/袋)2635(1)该店购进甲、乙两种口罩各多少袋?(2)该店再次以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若这次购进的两种口罩均销售完毕,且本次销售一共获利不少于3680元,那么乙种口罩每袋最多让利多少元?【类型5】:不等式组的应用【例5】(2019•昆山市二模)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,用于此次购球的总资金不低于5400元,且不超过5500元,求本次购球方案.【变式5-1】(2019•常熟市二模)为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?【变式5-2】(2019•太仓市模拟)某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?【变式5-3】(2018•海州区一模)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:原进价(元/张)零售价(元/张)成套售价(元/套)餐桌a270500元a 70餐椅110已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值.(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?【达标检测】一.选择题(共8小题)1.(2019•镇江)下列各数轴上表示的x的取值范围可以是不等式组的解集的是()2.(2019•宿迁)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个3.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.74.(2018•无锡)若关于x的不等式3x+m≥0有且仅有两个负整数解,则m的取值范围是()A.6≤m≤9 B.6<m<9 C.6<m≤9 D.6≤m<95.(2018•宿迁)若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.D.a2<b26.(2019•恩施州)已知关于x的不等式组恰有3个整数解,则a的取值范围为()A.1<a≤2 B.1<a<2 C.1≤a<2 D.1≤a≤27.(2019•西藏)把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人8.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1 B.2 C.3 D.4二.填空题(共6小题)9.(2019•淮安)不等式组的解集是.10.(2019•泰州)不等式组的解集为.11.(2018•扬州)不等式组的解集为.12.(2019•丹东)关于x的不等式组的解集是2<x<4,则a的值为.13.(2019•莱芜区)定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是.(写出所有正确结论的序号)14.(2019•玉林)设01,则m,则m的取值范围是.三.解答题(共8小题)15.(2019•南通)解不等式x>1,并在数轴上表示解集.16.(2019•常州)解不等式组并把解集在数轴上表示出来.17.(2019•扬州)解不等式组,并写出它的所有负整数解.18.(2019•盐城)解不等式组:19.(2018•无锡)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场.商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?20.(2018•南通)小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次 2 1 55第二次 1 3 65 根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.21.(2019•抚顺)为响应“绿色生活,美丽家园”号召,某社区计划种植甲、乙两种花卉来美化小区环境.若种植甲种花卉2m2,乙种花卉3m2,共需430元;种植甲种花卉1m2,乙种花卉2m2,共需260元.(1)求:该社区种植甲种花卉1m2和种植乙种花卉1m2各需多少元?(2)该社区准备种植两种花卉共75m2且费用不超过6300元,那么社区最多能种植乙种花卉多少平方米?22.(2019•莱芜区)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?。

专题15:不等式与不等式组(简答题专练)(解析版)

专题15:不等式与不等式组(简答题专练)(解析版)

专题15:不等式与不等式组(简答题专练)一、解答题1.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元;(3)在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,列二元一次方程组,解方程组即可得到答案;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台,利用超市准备用不多于7500元,列不等式160a +120(50﹣a )≤7500,解不等式可得答案;(3)由超市销售完这50台电风扇实现利润超过1850元,列不等式(200﹣160)a +(150﹣120)(50﹣a )>1850,结合(2)问,得到a 的范围,由a 为非负整数,从而可得答案. 【解答】解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元, 依题意得:341200561900x y x y +=⎧⎨+=⎩①②,①5⨯-②3⨯得:2300,y =150,y ∴=把150y =代入①得:200,x =解得:200150x y =⎧⎨=⎩,答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台. 依题意得:160a +120(50﹣a )≤7500,401500,a ∴≤解得:a ≤1372. 因为:a 为非负整数,所以:a 的最大整数值是37.答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元. (3)根据题意得:(200﹣160)a +(150﹣120)(50﹣a )>1850, 10a ∴>350, 解得:a >35, ∵a ≤1372, 35∴<a 1372≤,a 为非负整数,36a =或37.a =∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种: 当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台; 当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【点评】本题考查的是二元一次方程组的应用,一元一次不等式,一元一次不等式组的应用的方案问题,掌握以上知识是解题的关键.2.解不等式组1(1)1212x x ⎧-≤⎪⎨⎪-⎩<并写出该不等式组的所有整数解.【答案】解集是-1<x≤3;整数解是0,1,2,3【分析】分别解出每个不等式的解集,确定不等式组的解集,然后在解集中确定所有整数解即可. 【解答】解不等式1(1)12x -≤得:x≤3 解不等式12x -<得:x >-1 所以不等式组的解集是-1<x≤3.大于-1而小于或等于3的所有整数有0,1,2,3, ∴该不等式组的所有整数解为0,1,2,3.【点评】本题考查了解不等式组,解决本题的关键是先计算出每个不等式的解集,然后确定不等式组的解集.3.(1)解不等式413x x -> (2)解不等式组()()315121531123x x x x ⎧-+-⎪⎨-+-⎪⎩【答案】(1)1x >; (2)13x ≥. 【分析】(1)移项、合并同类项即可;(2)分别求出两个不等式的解集,再根据同大取大即可确定不等式组的解集. 【解答】解:(1)移项得:431x x ->合并同类项得:1x >(2)()()315121531123x x x x ⎧-+-⎪⎨-+-⎪⎩①②解不等式①得3x ≥-, 解不等式②得13x ≥, 不等式组的解集为: 13x ≥【点评】本题考查了解一元一次不等式(组),熟练掌握解不等式的基本步骤是解决此题的关键.在利用不等式的性质同乘或除时,不等式的两边都乘以(或除以)同一个负数时,不等号的方向改变.在确定不等式组的解集时需注意:同大取大;同小取小;大小小大中间找;大大小小找不到. 4.若关于x 的方程2x 3m 2m 4x 4-=-+的解不小于7183m--,求m 的最小值. 【答案】14-【分析】首先求解关于x的方程2x−3m=2m−4x+4,即可求得x的值,根据方程的解的解不小于7183m--,即可得到关于m的不等式,即可求得m的范围,从而求解.【解答】由54 232446546mx m m x x m x+ -=-+=+=,得,即.根据题意,得5471683m m+-≥-,解得14m,≥-所以m的最小值为1 4 -.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4.5>=5,<-1.5>=-1.解决下列问题.(1)[-4.5]=_____ ;<3.5>=________;(2)若[x]=2,则x的取值范围是________;若<y>=-1,则y的取值范围是_______ .(3)若[]21 3x x=-,则x为_________.(4)已知x、y满足方程组[][]32336x yx y⎧+=⎪⎨-=-⎪⎩<><>,求x、y的取值范围.【答案】(1)-5; 4,(2)2≤x<3;-2≤y<-1,;(3)x=-3(4)x,y的取值分别为-1≤x<0,2≤y<3. 【分析】(1)根据新定义与不等式的性质即可求解;(2)根据[a]表示不大于a的最大整数与<a>表示大于a的最小整数与不等式的性质求解;(3)根据[]21 3x x=-得到关于x的方程即可求解;(4)先求出[x]、<y>的值,再根据新定义即可求解. 【解答】(1)依题意得[-4.5]=-5;<3.5>=4,(2)∵[x]=2,则x的取值范围是2≤x<3;∵<y>=-1,则y的取值范围是-2≤y<-1,;(3)∵[x]≤x,[]21 3x x=-化为213x x=-,解得x=-3,符合题意,故x=-3(4)∵[][]323326x y x y ⎧+=⎪⎨-=-⎪⎩<><>,解得[]13x y ⎧=-⎨=⎩<> ∴x ,y 的取值分别为-1≤x <0,2≤y <3.【点评】此题主要考查不等式的应用,解题的关键是熟知不等式的性质. 6.求不等式()()2130x x -+>的解集。

初中数学讲义--第15讲 不等式组

初中数学讲义--第15讲 不等式组

全方位教学辅导教案1、一元一次不等式组把只含有一个相同未知数的几个一次不等式组成的不等式组,叫做一元一次不等组.2、一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做一元一次不等式组的解集. 求不等式组的解集的过程,叫做解不等式组.注意:如何利用数轴确定不等式组的解集呢?由两个一元一次不等式组成的不等式组其解集有四种情况. 如下表所示3、现实生活中,许多问题变化多端,仅利用方程的思想去解决现实生活中许多问题是远远不够的,往往经常需要考虑问题中的不等关系,运用不等式的思想来分析解决问题。

如经济建设中最佳决策,生产方案的设计、营销决策以及比赛结果的分析等等这些无不与不等式有着密切的关系.解决这类应用题有的需要列不等式或不等式组解决,有的则是列方程和列不等式的混合组解决。

经常使用逐一尝试的方法,去假存真,筛选需要的结果. 二、重难点知识概述不等式组的解法及实际应用问题 三、典型例题剖析例题1.(福州)不等式组12x x ≥-⎧⎨<⎩解集在数轴上表示正确的是( )A .B .C .D .变式练习.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+>-+x t x x x 235352恰有5个整数解,则t 的取值范围是( )A . ﹣6<t <211-B ﹣6≤t <211-C . ﹣6<t ≤211-D . ﹣6≤t ≤211-例题2.不等式组⎩⎨⎧->>-42301x x x 的非负整数解是 .变式练习.若关于x 的不等式组⎩⎨⎧>-≤-052a x x 无解,则a 的取值范围是 .例题3.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.变式练习:某商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台? .例题4.已知,关于x,y的方程组的解满足.(1)求a的取值范围;(2)化简.变式练习.已知方程组,当m为何值时,x>y.例题5:市为了更好地治理南湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A,B 两种型号的设备,其中每台的价格,同处理污水量如下表:A型B型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A型号设备比购买一台B型号设备多2万元,购买2台A型设备比购买3台B型号设备少6万元.(1)求a ,b的值.(2)经预算:使治污公司购买污水处理设备的资金不超过105万元,若每月要求处理南湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.变式练习.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x个,则当两种方案费用一样时,4x=2.4x+16 000,解得x=10 000;当方案一费用低时,4x<2.4x+16 000,解得x<10 000;当方案二费用低时,4x>2.4x+16 000,解得x>10 000.答:当需要纸箱的个数为10 000时,两种方案都可以;当需要纸箱的个数小于10 000时,方案一便宜;当需要纸箱的个数大于10 000时,方案二便宜.课堂检测1.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x千米,出租车费为21.5元,那么x的最大值是()A.11 B.8 C.7 D.52.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块3.甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是()A.a>b B.a=b C.a<b D.与a、b大小无关4.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x-100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元5.(2014·威海)已知点p(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是( )6.如果不等式组()2131,x xx m->-<⎧⎨⎩的解集是x<2,那么m的取值范围是( )A.m=2B.m>2C.m<2D.m≥27.不等式组324313x xxx<++-≤-⎧⎪⎨⎪⎩的解集在数轴上表示为( )8.(2014·株洲)一元一次不等式组21050xx+>-≤⎧⎨⎩的解集中,整数解的个数是( )A.4B.5C.6D.79.若不等式组210210x ax a+->--<⎧⎨⎩的解集为0<x<1,则a的值为( )A.1B.2C.3D.410.(2013·荆门)若关于x的一元一次不等式组20,2x mx m-<+>⎧⎨⎩有解,则m的取值范围为( )A.m>-23B.m≤23C.m>23D.m≤-2311.(2013·烟台)不等式组10,420xx-≥-<⎧⎨⎩的最小整数解是__________.12.(菏泽)若不等式组3xx m>>⎧⎨⎩,的解集是x>3,则m的取值范围是__________.13.(2013·曲靖)同时满足不等式123x+>x-1与x+3(x-1)<1的x的取值范围是__________.14.(2013·鄂州)若不等式组20,x bx a-≥+≤⎧⎨⎩的解集为3≤x≤4,则不等式ax+b<0的解集为__________.15.(2013·遂宁)解下列不等式组,并把它的解集在数轴上表示出来.(1)()328,143x x x x +>+-≥⎧⎪⎨⎪⎩①;② (2)233,311.362x x x x ++--⎪⎪⎩≥⎧⎨>①②16.若不等式组1,21x m x m <+>-⎧⎨⎩无解,求m 的取值范围.17(毕节)解不等式组()2532,1321,2x x xx +≤+⎧⎩+-⎪<⎪⎨①②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.挑战自我18.(南通)若关于x 的不等式组()10,23354413x x x a x a ++>++⎧>+⎪⎩+⎪⎨①②恰有三个整数解,求实数a 的取值范围.(1)若该社团计划再采购这两种材质的象棋各5盒,则需要多少元?(2)若该社团准备购买这两种材质的象棋共50盒,且要求塑料象棋的数量不多于玻璃象棋数量的3倍,请设计出最省钱的购买方案,并说明理由.20.在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?21.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?课后作业1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69.在平面直角坐标系内,点P(x-2,x+1)在第二象限,则x的取值范围是__________10.解不等式组2≤3x﹣4<8的解集为.11.已知x>﹣4,则x可取的负整数的和是.12.的整数解为13.如果关于x的不等式组无解,则a的取值范围是__________14.若不等式组的解集为-1<x<1,那么(a-3)(b+3)的值等于.三解答题:15.解不等式或不等式组:(1)(2)16、若不等式组的解集为,求的值.17、当实数为何取范围值时?不等式组恰有两个整数解。

不等式组应用题类型及解答包含各种题型

不等式组应用题类型及解答包含各种题型

一元一次不等式组应用题类型及解答1.分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人;3、把若干颗花生分给若干只猴子;如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗;问猴子有多少只,有多少颗4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本;问这些书有多少本学生有多少人5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数;6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只;问有笼多少个有鸡多少只7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空;请问:有多少辆汽车8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满;1如果有x间宿舍,那么可以列出关于x的不等式组:2可能有多少间宿舍、多少名学生你得到几个解它符合题意吗二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游;甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠按全票价的60%收费,且全票价为1200元①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费写出表达式②当学生数是多少时,两家旅行社的收费一样③就学生数x讨论哪家旅行社更优惠;③就学生数x讨论哪家旅行社更优惠;2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款;3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费;假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社三、行程问题1、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到2、爆破施工时,导火索燃烧的速度是s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长3、王凯家到学校千米,现在需要在18分钟内走完这段路;已知王凯步行速度为90米/分,跑步速度为210米/分,问王凯至少需要跑几分钟四、车费问题1、出租汽车起价是10元即行驶路程在5km以内需付10元车费,达到或超过5km后,每增加1km加价元不足1km部分按1km计,现在某人乘这种出租,汽车从甲地到乙地支付车费元,从甲地到乙地的路程超过多少km2、某种出租车的收费标准是:起步价7元即行驶距离不超过3km都需要7元车费,超过3km,每增加1km,加收元不足1km按1km计;某人乘这种出租车从A地到B地共支付车费19元;设此人从A地到B地经过的路程最多是多少km五、积分问题1、某次数学测验共20道题满分100分;评分办法是:答对1道给5分,答错1道扣2分,不答不给分;某学生有1道未答;那么他至少答对几道题才能及格2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目3、一次知识竞赛共有15道题;竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分;结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题4、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个六、销售问题1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%;1试求该商品的进价和第一次的售价;2为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元2.水果店进了某中水果1t,进价是7元/kg;售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售;如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本4、某电影院暑假向学生优惠开放,每张票2元;另外,每场次还可以售出每张5元的普通票300张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张5、某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元包括空白光盘费;若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元包括空白光盘费;问刻录这批电脑光盘,该校如何选择,才能使费用较少6.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少7.学校图书馆准备购买定价分别为8元和14元的杂志和小说共80本,计划用钱在750元到850元之间包括750元和850元,那么14元一本的小说最少可以买多少本七、数学问题1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于10且小于30,求这个两位数;八、方案设计题1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,1设需用x千克甲种原料,写出x应满足的不等式组;2按上述的条件购买甲种原料应在什么范围之内2、红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资最少此时每月工资为多少元3、某工厂接受一项生产任务,需要用10米长的铁条作原料;现在需要截取3米长的铁条81根,4米长的铁条32根,请你帮助设计一下怎样安排截料方案,才能使用掉的10米长的铁条最少最少需几根4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的%作保管费,问:1当该批产品投入资金是多少元时,方案一和方案二的获利是一样的2按所需投入资金的多少讨论方案一和方案二哪个获利多;5.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买年票”的方法;年票分为A、B、C三种:A年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票;1如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;2求一年中进入该园林至少多少时,购买A类年票才比较合算;6.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495员;如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨九、浓度问题1、在1千克含有40克食盐的海水中,再加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐十、增减问题1、某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,几个小时以后,蜡烛的长度不足10㎝部分答案一、分配问题1、解:小朋友的人数至少有x人,依题意可得1≤3x+4-4x-1≤3解得:5≤x≤7∵X取最小整数;∴x=5答:小朋友的人数至少有5人3、解:设猴子有X只,则花生有3x+8人,依题意可得1≤3x+8-5x-1<5解得:4<X≤6∵X取整数;∴x=5或6答:当x=5,猴子有5只;花生有3x+8=23颗当x=6,猴子有6只;花生有3x+8=26颗, 4、设学生有x人,这些书本有3x+8本,依题意可得1≤3x+8-5x-1<3解得:5≤x<6 ∵X取整数;∴x=6答“学生有6人,这些书本有3x+8=26本5、方法一:解:设有x间宿舍,则住宿男生有4x+20人依题意,得8x>4x+208x-1<4x+20解这个不等式组得解集为:5<x<7因为宿舍间数为整数,所以x=6,4x+20=44答:宿舍间数有6间,住宿男生有44人.方法二:设宿舍有x间,则人数为4x+20人1≤4x+20-8﹙x-1﹚<8解得:5<x≤∵X取整数;∴x=66、方法一解:设笼有x个.4x+1>5x-24x+1<5x-2+3解得:8<x<11x=9时,4×9+1=37x=10时,4×10+1=41舍去.故笼有9个,鸡有37只.方法二:6、设有笼x个,则有鸡﹙4x+1﹚只4x+1<40……①1≤4x+1-5﹙x-2﹚<3……②解①②得:8<x<∵X取整数;∴x=9故笼有9个,鸡有37只7、解:设有x辆车,则有4x+20吨货物.由题意,得0<4x+20-8x-1<8,解得5<x<7.∵x为正整数,∴x=6.∴4x+20=44.答:有6辆车,44吨货物8、解:设有x间宿舍.0<4x+19-6x-1<6,<x<∴x可取10、11或12,∴学生数为59或63或67人.答:有10间宿舍59名学生或11间宿舍,63名学生或12间宿舍,67名学生.二、比较问题优惠问题1、解:1学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费写出表达式y甲=1200+1200×50%×x=1200+600xy乙=x+1×1200×60%=720x+1=720x+72021200+600x=720x+720120x=480x=4答:当学生数为4人时,两家旅行社的收费一样3当学生人数少于4人时,乙旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠;当学生人数多于4人时,甲旅行社更优惠2、解:设x个月李明的存款超过王刚的存款600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=53、解:甲旅行社收费y=5002+50070%x=1000+350x乙旅行社收费y'=50080%2+x=800+400xy=y'1000+350x=800+400x解得x=4所以x<4时,乙旅行社便宜;x=4,甲乙旅行社一样便宜;x>4,甲旅行社便宜三、行程问题1、解:设后半小时的速度至少为x千米/小时50+1-1/2x≥12050+1/2x≥1201/2x≥70解得x≥140答:后半小时的速度至少是140千米/小时2、解:设至少XcmX/>100/5 X>16所以至少16CM3、解:设王凯至少要跑X分;可列不等式:9018-X+210X≥21001620-90X+210X≥2100120X≥2100-1620 120X≥480解得X≥4所以王凯至少要跑4分如果改为等号就是求那个时间点,也就是跑4分钟剩下用走,正好用18分钟;如果跑的大于四分钟,也就可以不用18分钟,更快的到达学校;所以等号表示正好到达的时间点,大于等于表达了题意至少的意思四、车费问题1、解:设甲地到乙地的路程大约是xkm,据题意,得解之,得10<x≤11即从甲地到乙地路程大于10km,小于或等于11km因为不足1km部分按1km计,元对应的最大路程是11千米,那么最小路程就要大于10千米,实质是减去了一个1千米的价钱2、解:方法一、3km后收费:19-7=12超过3km后的行驶距离:12/=5km从甲地到乙地所经过的路程最多是3+5=8km方法二、设从甲地到乙地所经过的路程最多是x,由题意,得x-3+7=19解得x=8五、积分问题1、解:设答对x题,则答错20-1-x=19-x题;5x-19-x1>=80解得x>=因为题数是整数,所以x=17答:至少要答对17题;2、解:设至少需要做对x道题x为自然数;4x-2×25-x≥604x-50+2x≥606x≥110解得X≥19答:至少需要做对19道题3、解:设神箭队答对x题;则答错15-2-x,即13-x题8x-413-x>90解得x>71/6所以至少答对12道题设飞艇队答对x题;则答错15-x题8x-415-x>90解得x>25/2所以至少答对13道题4、解:设命中X次,脱靶10-X次5x-10-x>=356x>=45因为X为整数,所以X=85、设红球x个,白球y个,由题意,得y<x<2y 2y+3x=60 x=60-2y/3则y<60-2y/3<2y解得<y<12又因为x为整数,则y应为3的倍数;y=9x=14所以,白球9个,红球14个;六、销售问题1、解:1设进价是x元一件商品1-10%×x+30=x+18解得:x=90第一次的售价x+30=90+30=120答:该商品的进价和第一次的售价分别是90元和120元2设剩余商品售价应不低于y元,90+30×m×65%+90+18×m×25%+y×m×1-65%-25%≥90×1+25%×m解得:y≥75答:剩余商品的售价应不低于75元2、解:方法一:设按原价的x折出售,所以:1000×1/2×10+1000×1/2×10×x/10>=7×1000+20005000+500x>=9000解得:5x>=40即x>=8所以至多打8折方法二:货款:1000=元已销售产生的利润:500-500=元剩余商品需要产生的利润:=元产生利润需要的单价:+500/500=8元需要在10元基础上打折:8/10=,也就是八折3、解:设这批苹果有a千克,商家把售价至少定为每千克x元则a1-6%×x≥a×解得:x≥4、解:设这批电脑光盘有x张,根据题意:到电脑公司刻录的费用为8x,学校自刻的费用为:120+4x1若8x=4x+120,解这个方程得x=30,当您刻录的光盘数等于30张光盘时花钱是一样的;2若8x>4x+120解得x>30;当您刻录的光盘数多于30张时,学校自刻合算38x<4x+120解得x<30;当您刻录的光盘数少于30张,到电脑公司刻录合算4、解:设平均每场次至少要出售学生优惠票x张列出不等式2x+5×300≥2000解得x≥250答:平均每场次至少应出售学生优惠票250张;6、解,根据题意,设甲种工人有x人,则乙种工种的人数为:150-x,由乙种工种的人数不少于甲种工种人数的2倍,可得关系式150-x≥2x,即x≤50x的取值范围是:0≤x≤50设每月所付的工资最少为y元y=600x+150-x1000=150000-400x因为此函数是随着x的增大而减小,所以当x=50时,y取最小值,最小值为y=150000-40050=130000元7、解:设14元一本的小说可以买x本,则8元一本的小说可以买80-x本;根据题意,有:750≤14x+880-x≤850解得:≤x≤21,取整数x=19、20、21则可得知:14元一本的小说最少可以买19本,最多可以买21本;七、数学问题解:设个位数为x,则十位数字为x-2,由题意,得这个两位数为10x-2+x10<10x-2+x<30解得:30/11<x<60/11因为x取整数,所以x=3或x=4当x=3时10x3-2+3=13当x=4时10x4-2+3=23答:这个两位数为13或23。

方程组、不等式组实际应用

方程组、不等式组实际应用

分式方程、方程组、不等式组实际应用1.(2015•XX)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?2.(2015•XX)XX火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?3.(2015•XX)华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?4.(2014•XX)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?5.(2015•XX)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.6.(2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?7.(2014•XX)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.8.(2014•XX)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件)38 36 34 32 30 28 26t(件) 4 8 12 16 20 24 28假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)9.(2015春•X家港市期末)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?10.(2014•XX)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格200011.(2014•XX)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.(2014•XX)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?13.(2014•XX)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值X 围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.14.(2014•XX)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)薰衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,薰衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?15.(2014•资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.16.(2014•XX)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.17.(2015•XX)XX市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包.(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式.(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?18.(2015•XX)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?19.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?20.(2015•资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.21.(2015•XX)南海地质勘探队在南沙群岛的一小岛发现很有价值的A,B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总费用为y元,若使用甲货船x艘,请写出y和x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.22.(2015•德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.23.(2015•XX)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.24.(2015•XX)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?25.(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?26.(2011•XX)海峡两岸林业博览会连续六届在XX市成功举办,XX市的林产品在国内外的知名度得到了进一步提升.现有一位外商计划来我市购买一批某品牌的木地板,甲、乙两经销商都经营标价为每平方米220元的该品牌木地板.经过协商,甲经销商表示可按标价的9.5折优惠;乙经销商表示不超过500平方米的部分按标价购买,超过500平方米的部分按标价的9折优惠.(1)设购买木地板x平方米,选择甲经销商时,所需费用为y1元,选择乙经销商时,所需费用为y2元,请分别写出y1,y2与x之间的函数关系式;(2)请问该外商选择哪一经销商购买更合算?27.(2010春•海安县期末)为迎接2010年海安经贸洽谈会,园林部门决定利用现有3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧.已知搭配一个A种造型所需甲种花卉盆数是乙种花卉盆数的2倍,且搭配一个A种造型所需甲种花卉是搭配一个B种造型所需甲种花卉盆数的1.6倍;搭配一个B种造型乙种花卉的盆数是搭配一个A种造型乙种花卉盆数的2倍多10盆,搭配一个B种造型共需甲、乙两种花卉140盆.(1)求搭配一个A种造型、一个B种造型各需甲乙两种花卉多少盆?(2)某校七年级(1)班艺术兴趣小组承接了这个园艺造型搭配方案的设计,那么符合题意的搭配方案有几种?请你帮助设计出来.(3)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(2)中哪种方案成本最低?最低成本是多少元?28.(2011•XX)我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)- - -29.(2011•XX)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?30.(2013春•沙坪坝区校级期中)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,商场有哪几种进货方案?(3)商场决定甲种玩具的售价为20元,乙种玩具售价为35元,试问该商场在(2)的条件下如何进货利润最大?最大利润是多少?- .可修编.。

不等式(组)的应用——方案问题

不等式(组)的应用——方案问题

不等式(组)的应用——方案问题一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台) 12 10月污水处理能力(吨/月) 200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.4.(2014•南宁)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?5.(2014•福州)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?6.(2014•齐齐哈尔)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)7.(2014•黄石)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和蓑衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)蓑衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,蓑衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和蓑衣草,根据市场调查,要求玫瑰花的种植面积大于蓑衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?8.(2014•开封二模)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.9.(2014•道里区三模)我市为创建全国卫生城市,有关部门计划购买甲、乙两种名贵树苗,栽种在入城大道的两侧,已知买甲种树苗、乙种树苗各1棵共需220元;买甲种树苗3棵,乙种树苗1棵共需420元,资料提示:甲、乙两种树苗的成活率分别为90%和95%.(1)购买两种树苗每棵各需多少元;(2)市相关部门研究决定:购买甲、乙两种树苗共800棵,购买树苗的钱数不得超过86500元,且这批树苗的成活率不低于92%,共有多少种购买方案?(3)直接写出最省钱的购买方案及此时买树苗的费用.10.(2014•昌宁县二模)某商店欲购进甲、乙两种商品,已知购进的甲商品的单价是乙商品的一半,进3件甲商品和1件乙商品恰好用200元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求购进的这两种商品的单价.(2)该商店有哪几种进货方案?11.(2014•牡丹江一模)为响应“大课间”活动,某学校准备购买棒球和篮球共200个,已知棒球每个55元,篮球每个95元,学校计划至少投入资金18200元,但不多于18300元.(1)学校有多少种购买方案;(2)哪种购买方案使学校投入资金最少?(3)当学校按(2)的方案买回200个球在“大课间”投入使用后,学校领导根据实际情况发现还应同时购买足球和大绳若干,来补充“大课间”活动,所以又投入资金2880元,若每个足球80元,每条大绳30元,则在钱全部用尽的情况下有多少种购买方法,请直接写出购买方法的种数.12.(2014•濮阳一模)某中学计划购买A,B两种型号的课桌凳,已知一套A型课桌凳比一套B型课桌凳少40元,且购买5套A型和1套B型共需1000元.(1)购买一套A型课桌凳和一套B型课桌凳各需要多少元?(2)学校根据实际情况计划购买A,B两种型号的共100套,且购买课桌凳的总费用不超过18480元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?不等式(组)的应用—-方案问题参考答案与试题解析一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.考点:一元一次不等式组的应用.分析:设该公司的工作人员为x人.则每盒巧克力的颗数是,根据不等关系:每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗),列不等式组.解答:解:设该公司的工作人员为x人.则,解得16<x≤19.因为x是整数,所以x=17,18,19.答:所有可能的工作人员人数是17人、18人、19人.点评:本题考查了一元一次不等式组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.考点:一元一次不等式组的应用.专题:应用题.分析:(1)设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.解答:解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,解这个不等式组,得:2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15 不等式(组)的应用
许多数学问题和实际问题所求的未知量往往受到一些条件的限制,可以通过数量关系和分析,列出不等式(组),运用不等式的有关知识予以求解,不等式(组)的应用主要体现在: 1.作差或作商比较有理数的大小; 2.求代数式的取值范围;
3.求代数式的最大值或最小值; 4.列不等式(组)解应用题.
列不等式(组)解应用题与列方程(组)解应用题的步骤相仿,关键是在理解题意的基础上,将一些词语转化为不等式.如“不大于”、“不小于”、“正数”、“负数”、“非正数”、“非负数”等对应不等号:“≤”、“≥”、“>O”、“<O"、“≤0”、“≥0”.
例1如果关于的方程012=-+x x m 只有负根,那么m的取值范围是_______.
(辽宁省大连市“育英杯”竞赛题)
解题思路 由x<0建立关于m的不等式. 例2 已知A =-
2001200019991998⨯⨯,B=-2001199920001998⨯⨯,C=-2000
19992001
1998⨯⨯,则有( ).
(A)A>B>C (B)C>B>A
(C)B>A>C (D)B>C)A
(浙江省绍兴市竞赛题)
解题思路 当作差比较困难时,不妨考虑作商比较.
例3 给出四个自然数a 、b 、c 、d ,其中每三个数之和分别是180、197、208、222,求a 、b 、c 、中最大的数的值.
(第十届“希望杯”邀请赛试题)
解题思路 一般的解法是解关于a 、b 、c 、d 的四元一次方程组.由题意知a 、b 、c 、d 互不相等,不妨设a>b>c>d ,思维定向,可大大优化解题过程.
. 例4 某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本.如果前面每人送5本,则最后一人得到的课外读物不足3本.求该校获奖的人数及所买课外读物的本数.
(2002年常州市中考题)
解题思路 解本例的关键是如何把“不足3本”转化为恰当的不等式组.
例5某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等.根据经验,各类商品每1万元营业额所需售货员人数如表(1),每l 万元营业额所得利润情况如表(2). 商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x(万元)、y(万元)和z(万元)(x 、y 、z 都是整数). . (1)请用含x 的代数式分别表示y 和z ;
(2)若商场预计每日的总利润为C(万元),且C 满足19≤C≤19.7,问这个商场应怎样
分配日营业额给三个经营部?各部应分别安排多少名售货员?
(山东省日照市中考题)
表(1)
商品 每1万元营业额所需人数
百货类 5 服装类 4 家电类
2
表(2)
商品 每l 万元营业额所得利润 百货类 0.3万元 服装类 0.5万元 家电类
0.2万元
解题思路:在分析文字、图表所给的数量关系的基础上,列出含等式、不等式的混合组,综合运用方程(组)、不等式(组)知识求解·
A 级
A 级
1.若方程249x+
a a
8
-1=0的解小于零,则以的取值范围是_______. . 2.若方程组⎩⎨
⎧=++=+3
31
3y x k y x 的解为x,y 且2<y<4,则x -y 的取值范围是_______.
(2001年山东省聊城市中考题)
3.若A =
67890123455678901234,B=6789012347
5678901235
,则A 与B 的大小关系是_______.
4.将一筐橘子分给若干儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6
个橘子,则最后一个儿童分得的橘子数少于3个,由上可推知共有_______个儿童分_______个橘子.
5.如果关于x 的方程5
432b
x a x +=
+的解不是负值,那么a与b的关系是( ). (A)a >
5
3b
(B)b ≥35a (C)5a=3b (D)5a≥5b
6.已知x ,y 同时满足三个条件:①3x-2y =4-p,②4x-3y =2+p,③x>y,那么
P 的取值范围是( )
(A)p>一1 (B)p<l (C)p<一1 (D)p>l
(2002年江苏省徐州市中考题)
7.设P =121219901989++,Q =1
21
219911990++,则P 、Q 的关小关系是( ).
(A)P>Q (B)P<Q (C)P =Q (D)不能确定
8.一种灭虫药粉30千克,含药率是15%,现在要用含药率较高的同种灭虫药粉50千克和它混合,使混合后的含药率大于20%而小于35%,则所用药粉的含药率x 的范围是( ).
(A)15%<x<23% (B)15%<x<35% (C)23%<x<47% (D)23%<x<50%
9.中国第三届京剧艺术节在南京举行,某场京剧演出的票价由2元到100元多种,某团体需购买票价6元和10元的票共140张,其中l 票价为10元的票数不少于票价为6元的票数的2倍.问这两种票各购买多少张所需的钱最少?最少需要多少钱?
(第十六届江苏省竞赛题)
10.某港受潮汐的影响,近日每天24小时港内的水深变化大体如图所示:
一般货轮于上午7时在该港码头开始卸货,计划当天卸完货后离港.已知这艘货轮卸完货后吃水深度为2.5m(吃水深度即船底离开水面的距离).该港13规定:为保证航行安全,只有当船底与港内水底问的距离不少于3.5m 时,才能进出该港. 根据题目中所给的条件,回答下列问题: (1)要使该船能在当天卸完货并完全出港,则出港时水深不能少于_______m,卸货最多只能用_______小时;
(2)已知该船装有1200吨货,先由甲装卸队单独卸,每小时卸180吨,工作了一段时间后,交由乙队接着单独卸,每小时卸120吨.如果要保证该船能在当天卸完货并安全出港,则甲队至少应工作几小时,才能交给乙队接着卸?
(2002年苏州市中考题)
B 级
1.设a,b,c,d 都是整数,且a<3b ,b<5c ,c<7d ,d<30,那么a 的最大可能值为_______
. (“新世纪杯”数学竞赛题)
2.某宾馆底楼客房数比二楼少5问,某旅游团有48人,若全安排住底楼,每间住4人,房间不够;每间住5人,有房间没有住满5人.又若全安排在二楼,每间住3人,房间不够;每间住4人,有房间没有住满4人,该宾馆底楼有客房_______间. 3.已知a<0,且x a ≤a ,则22---x b x 的最小值是_______.1
(第十二届“希望杯”邀请赛试题)
4.已知a<0,x 满足不等式1-ax >ax-1,那么x 的取值范围是_______. 5.已知方程23-=-kx k x 无负数解.那么k 的取值范围是_______.
6.设x 1,x 2,…,x 7为自然数,且x 1< x 2<…<x 6<x 7,又x 1+x 2+…+x 7=159,则x 1+x 2+x3的最大值是_______.
(安徽省竞赛题)
7.今有浓度为5%、8%、9%的甲、乙、丙三种盐水分别为60克、60克、47克,现要配制浓度为7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?
(北京市竞赛题)
8.为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则与奖励方案如下表:
当比赛进行到第12轮结束(每队均需比赛12场)时,A 队共积19分 (1)请通过计算,判断A 队胜、平、负各几场;
(2)若每赛一场,每名参赛队员均得出场费500元.设A 队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.
(2002年黑龙江省中考题) 9.已知a 、b 、c 满足不等式a ≥c b +,b ≥a c +,c ≥b a +, 求a +b +c 的值.
(上海市理科实验班招生试题)。

相关文档
最新文档