斜拉桥

合集下载

为什么有些桥梁需要斜拉桥设计?

为什么有些桥梁需要斜拉桥设计?

为什么有些桥梁需要斜拉桥设计?一、斜拉桥结构简介斜拉桥是一种采用斜拉索支撑主梁的桥梁结构,其设计独特,具有一系列独特的优势。

斜拉桥通常由塔楼、拉索和主梁三部分组成。

塔楼作为桥梁的支撑点,将拉索与主梁连接起来。

拉索根据需要的张力,通过塔楼连接到主梁,使得主梁得以支撑。

二、延长主梁跨度的设计需求1. 跨越宽度需求:有些地区的桥梁需要跨越非常宽的河流或峡谷,传统的梁桥结构无法满足跨度的需求。

斜拉桥能够通过拉索的支撑,实现更大的跨度,解决了跨越宽度限制的问题。

2. 减少桥梁应力:梁桥结构在跨越较大距离时,会受到较大的应力。

而斜拉桥通过将主梁的荷载分散到斜拉索上,减少了主梁的受力情况,从而降低了主梁的应力,提高了桥梁的承载能力。

3. 美学设计需求:斜拉桥的设计不仅考虑到桥梁的功能,还注重桥梁的美学价值。

斜拉桥的斜拉索在桥梁上呈现出独特的形态,赋予了桥梁优雅、流线型的外观,成为了城市地标之一。

三、斜拉桥的优势与局限1. 结构稳定性:斜拉桥采用了三角支撑结构,使得整个桥梁结构更加稳定。

斜拉桥的主梁在受到荷载时,通过拉索将荷载传递到塔楼上,从而实现了力的平衡,增强了整个桥梁结构的稳定性。

2. 经济性:斜拉桥相比于其他桥梁结构,具有较低的建造成本和维护成本。

斜拉桥的斜拉索可以吸收桥梁的荷载,减少了主梁的材料使用量,降低了桥梁的建设成本。

同时,斜拉桥的维护也相对简单,更易于进行定期检查和维修。

3. 局限性:斜拉桥的设计需要考虑多方面的因素,如地震、风速等,以确保结构的稳定性。

斜拉桥对地基设施的要求也较高,需要保证塔楼的稳定性和承载能力,从而带来更多的施工和维护难度。

四、斜拉桥在世界各地的应用案例1. 若尔盖大桥(中国):作为世界上跨度最大的斜拉桥之一,若尔盖大桥成功跨越了若尔盖河谷,成为了中国西部地区的标志性建筑。

2. 米尔顿马德斯桥(加拿大):该桥位于加拿大多伦多市,是一座斜拉桥,不仅具有跨越能力,还有着独特的设计风格,成为多伦多的地标之一。

斜拉桥原理

斜拉桥原理

斜拉桥原理斜拉桥是一种利用斜拉索来支撑桥梁结构的特殊桥梁形式。

它的设计原理是通过斜拉索将桥面的荷载传递到桥墩上,从而实现桥梁的稳定和安全。

斜拉桥的设计和建造需要考虑许多因素,包括桥梁跨度、荷载、斜拉索的布置和张力等。

在本文中,我们将深入探讨斜拉桥的原理,以及它在桥梁工程中的应用。

首先,让我们来了解一下斜拉桥的结构特点。

斜拉桥通常由桥面、桥塔和斜拉索组成。

桥面承载车辆和行人的荷载,桥塔则起到支撑和稳定的作用,而斜拉索则连接桥面和桥塔,承担着荷载传递的重要任务。

斜拉索的布置和张力的调节对于桥梁的稳定性和安全性至关重要。

通过合理设计和施工,斜拉桥可以实现大跨度、大荷载的要求,成为现代桥梁工程中的重要形式之一。

斜拉桥的原理主要是利用斜拉索来传递桥面荷载到桥塔上。

斜拉索呈一定角度与桥面相交,通过张力将桥面的荷载传递到桥塔上,从而使桥梁保持稳定。

在设计斜拉桥时,工程师需要考虑斜拉索的数量、位置、张力等因素,以确保桥梁的安全性和稳定性。

此外,斜拉桥的桥塔也需要经过精密计算和设计,以承受来自斜拉索的复杂力学作用。

斜拉桥在桥梁工程中有着广泛的应用。

它可以实现大跨度、大荷载的要求,适用于河流、湖泊、海峡等跨越水体的场合。

与悬索桥相比,斜拉桥的主梁结构更为灵活,可以适应更多变化的场地条件。

因此,在现代桥梁工程中,斜拉桥成为了跨越水域的重要选择,例如著名的金门大桥、东京湾大桥等都采用了斜拉桥的结构形式。

总的来说,斜拉桥是一种利用斜拉索来支撑桥梁结构的特殊形式,它的设计原理是通过斜拉索将桥面的荷载传递到桥塔上,从而实现桥梁的稳定和安全。

斜拉桥在桥梁工程中有着广泛的应用,可以实现大跨度、大荷载的要求,适用于跨越水域的场合。

通过合理的设计和施工,斜拉桥成为了现代桥梁工程中的重要形式之一,为人们的出行和交通运输提供了便利。

世界十大斜拉桥

世界十大斜拉桥

世界十大斜拉桥1.苏通长江大桥1088米,中国,2008 双塔双索面钢箱梁苏通大桥位于江苏省东部的南通市和苏州(常熟)市之间,是交通部规划的黑龙江嘉荫至福建南平国家重点干线公路跨越长江的重要通道,也是江苏省公路主骨架网“纵一”——赣榆至吴江高速公路的重要组成部分,是我国建桥史上工程规模最大、综合建设条件最复杂的特大型桥梁工程。

建设苏通大桥对完善国家和江苏省干线公路网、促进区域均衡发展以及沿江整体开发,改善长江安全航运条件、缓解过江交通压力、保证航运安全等具有十分重要的意义。

大桥建设工程情况:苏通大桥工程起于通启高速公路的小海互通立交,终于苏嘉杭高速公路董浜互通立交。

路线全长32.4公里,主要由北岸接线工程、跨江大桥工程和南岸接线工程三部分组成。

l、跨江大桥工程:总长8206米,其中主桥采用100+100+300+1088+300+100+100=2088米的双塔双索面钢箱梁斜拉桥。

斜拉桥主孔跨度1088米,列世界第一;主塔高度306米,列世界第一;斜拉索的长度580米,列世界第一;群桩基础平面尺寸113.75米X 48.1米,列世界第一。

专用航道桥采用140+268+140=548米的T型刚构梁桥,为同类桥梁工程世界第二;南北引桥采用30、50、75米预应力混凝土连续梁桥;2、北岸接线工程:路线总长15.1公里,设互通立交两处,主线收费站、服务区各一处;3、南岸接线工程:路线总长9.1公里,设互通立交一处。

苏通大桥全线采用双向六车道高速公路标准,计算行车速度南、北两岸接线为120公里/小时,跨江大桥为100公里/小时,全线桥涵设计荷载采用汽车一超20级,挂车一120。

主桥通航净空高62米,宽891米,可满足5万吨级集装箱货轮和4.8万吨船队通航需要。

全线共需钢材约25万吨,混凝土140万方,填方320万方,占用土地一万多亩,拆迁建筑物26万平米。

工程总投资约64.5亿元,计划建设工期为六年。

四项世界之最:最大主跨:苏通大桥跨径为1088米,是当今世界跨径最大斜拉桥。

3.5.12.5.1斜拉桥概述

3.5.12.5.1斜拉桥概述

发展
稀索布置
2
第一阶段:稀索布置,主梁较高,主梁以受弯为主,拉索更换不方便。
中密索布置
2
第二阶段:中密索布置,主梁较矮,主梁承受较大轴力和弯矩。
密索布置
2
第三阶段:密索布置,主梁更矮,并广泛采用梁板式开口断面,主梁承受轴力为主,弯矩为辅。
受力
a图中给出了在荷载作用下三跨连续梁的弯矩分布图,
b图给出了在相同荷载作用下三跨斜拉桥的弯矩分布图, 我们不难看出,由于斜索的支承作用,使主梁恒载弯矩 显著减小。
在竖向荷载作用下, 主梁以受压为主, 索塔也是以受压为 主,斜索承受拉力。
美国P-K桥(L=299m, 1978年)
美国日照桥的防撞设施 (L=366m, 1987年)
挪威Skarnsundet桥(L=530m,1991 年) 于L1=0.66L2
两跨相等时,由于失去了边跨及端锚 索对主跨变形的约束作用,造成主跨 变形过大,因而这种形式较少采用。
多塔多跨式
(≥3塔)( ≥4跨)
(a) 三塔四跨式斜拉桥 的变形
(b) 双塔三跨式斜拉桥 的变形
做中间刚 性塔
增加主梁 梁高
1
拉索加劲 中间塔
斜拉桥又称斜张桥,是一种由主梁、索塔、和斜索组成的组合体系桥梁。 它的荷载传递路径是:受拉的斜索将主梁多点吊起,并将主梁的恒载和 车辆(准备小车)等其它荷载传至索塔,再通过索塔基础传至地基。
索塔
斜拉索
主梁
斜拉桥又称斜张桥,是一种由主梁、 索塔、和斜索组成的组合体系桥梁。
它的荷载传递路径是:受拉的斜索将主梁多点吊起,并将主梁的恒载和车辆 (准备小车)等其它荷载传至索塔,再通过索塔基础传至地基
2
3

简述斜拉桥的受力原理

简述斜拉桥的受力原理

简述斜拉桥的受力原理
斜拉桥是一种利用斜拉索(钢索或预应力混凝土束)将桥梁的自重和荷载传递到桥塔上的桥梁结构。

其受力原理如下:
1. 自重作用:斜拉桥梁本身的重量通过斜拉索传递到桥塔上。

斜拉索在桥塔之间形成一个斜角,使桥梁悬挑在桥塔之间。

桥梁的自重通过斜拉索分散到多个桥塔上,减小了各桥塔的承载力。

2. 荷载作用:斜拉桥梁上的车辆、行人以及其他运载物品的重力通过桥面传递到桥梁结构上。

斜拉索在桥塔上形成张力,并将荷载分担到多个桥塔上。

3. 桥塔作用:桥塔是斜拉桥的支承点,通过其稳定的基础将斜拉索受力传递到地面。

桥塔根据斜拉索的角度和长度,以及所受荷载的大小,承受拉力和压力。

4. 斜拉索作用:斜拉索是连接桥塔和桥面之间的重要组成部分。

斜拉索承受来自桥面的荷载,将荷载的力通过预应力传递到桥塔上,并向两侧分散。

总之,斜拉桥通过斜拉索将桥梁的自重和荷载传递给桥塔,将荷载分散到多个桥塔上,实现了桥梁结构的平衡和稳定。

同时,斜拉桥的受力特点降低了桥塔的承载压力,减小了桥梁结构的材料消耗。

斜拉桥

斜拉桥
跨度超大化
昂船洲大桥方案
第五名 螺旋形塔顶A塔斜拉桥
第四名 分叉索斜拉桥
4.迈向超大跨度的新时期 (1985-2010)
跨度超大化
第三名 无风撑双柱斜拉桥
昂船洲大桥方案
第二名 “天人合一”斜拉桥
4.迈向超大跨度的新时期 (1985-2010)
跨度超大化
昂船洲大桥方案
最终方案—— 圆形独柱分离流线形双箱斜拉桥
斜拉桥前进后退分析
6. 斜拉桥体系计算理论与技术发展
斜拉桥结构分析理论
斜拉桥前进后退分析
6. 斜拉桥体系计算理论与技术发展
斜拉桥结构分析理论
斜拉桥前进后退分析
6. 斜拉桥体系计算理论与技术发展
新材料及连接技术
6. 斜拉桥体系计算理论与技术发展
新材料及连接技术
6. 斜拉桥体系计算理论与技术发展
1. 概 述
1)新理论和分析方法 2)跨径不断突破 3)新施工方法和设备 4)新材料与连接技术 5)新构造和附属设备
1. 概 述
Rion 桥
法国米卢桥
福斯二桥
费曼恩海峡桥
1. 概 述
世界十大斜拉桥
创跨径记录的斜拉桥
在斜拉桥的发展中,哪些理论和技术推动了斜拉桥的发展? 在未来的发展中,我们要关注和解决哪些关键 的问题?
1. 概 述
用锻铁拉杆将梁吊到相当高的桥塔上 拉杆按扇形布臵,锚固于桥塔顶部 这一描述只给出结构外形和构件组成,缺少对其力学性能及合理受力的阐述
木制桥面、主梁由斜向锻铁拉杆支承 建成次年就在行人通过时倒塌
1. 概 述
拉索张拉;拉索采用高强钢丝 为现代斜拉桥的诞生和发展奠定了理论基础,被视为二十 世纪桥梁发展最伟大的创举之一!

斜拉桥施工技术

斜拉桥施工技术

斜拉桥施工技术第一节认识斜拉桥斜拉桥是由主梁、拉索和索塔三种构件组成的,见图8.1.1。

图8.1.1 斜拉桥的组成斜拉桥是一种桥面体系以主梁承受轴向力(密索体系)或承受弯矩(稀索体系)为主,支撑体系以拉索受拉和索塔受压为主的桥梁。

拉索的作用相当于在主梁跨内增加了若干弹性支承,使主梁跨径显著减小,从而大大减少了梁内弯矩、梁体尺寸和梁体重力,使桥梁的跨越能力显著增大。

与悬索桥相比,斜拉桥不需要笨重的锚固装置,抗风性能又优于悬索桥。

通过调整拉索的预拉力可以调整主梁的内力,使主梁的内力分布更均匀合理。

一、总体布置斜拉桥的总体布置主要解决塔索布置、跨径布置、拉索及主梁的关系、塔高与跨径关系。

1. 孔跨布置现代斜拉桥最典型的跨径布置(图8.1.2)有两种:双塔三跨式和单塔双跨式。

特殊情况下也可以布置成独塔单跨式、双塔单跨式及多塔多跨式。

双塔三跨式是斜拉桥最常见的一种布置方式。

主跨跨径根据通航要求、水文、地形、地质和施工条件确定。

考虑简化设计、方便施工,边跨常设计成相等的对称布置,也可采用不对称布置,边跨和中跨经济跨径之比通常为0.4。

另外,应考虑全桥的刚度、拉索的疲劳度、锚固墩承载能力多种因素。

如:主跨有荷载会增加端锚索的应力,而边跨上有活载时,端锚索应力会减少。

拉索的疲劳强度是边跨与主跨跨径允许比值的判断标准。

当跨径比为0.5 时,可对称悬臂施工到跨中进行合龙;小于0.5 时,一段悬臂是在后锚的情况下施工的。

独塔双跨式是另一种常见的斜拉桥孔跨布置方式之一,通常可采用两跨对称布置或两跨不对称布置。

两跨对称布置,由于一般没有端锚索,不能有效约束塔顶位移,故在受力和变形方面不能充分发挥斜拉桥的优势,而如果用增大桥塔的刚度来减少塔顶变位则不经济。

采用两跨不对称布置则可设置端锚索控制桥塔顶的位移,受力比较合理,采用不对称布置时,要注意悬臂端部的压重和锚固。

图8.1.2 斜拉桥的跨径布置当斜拉桥的边孔设在岸上或浅滩上,边孔高度不大或不影响通航时,在边孔设置辅助墩,可以改善结构的受力状态。

结构设计知识:结构设计中的斜拉桥原理

结构设计知识:结构设计中的斜拉桥原理

结构设计知识:结构设计中的斜拉桥原理斜拉桥是一种采用钢索拉拔承载荷载的桥梁结构,是桥梁工程中一种非常常见的结构形式。

其大跨度、美观、安全、经济的特点,使得斜拉桥成为了现代化城市中最具有标志意义的建筑之一。

1.斜拉桥的定义斜拉桥是一种悬臂式桥梁结构,其主跨在一侧支撑,另一侧通过斜拉索将荷载传递到支撑侧。

斜拉索与主梁之间以倾角拉伸,使得主梁受力形成压弯、斜拉索受力形成拉伸,从而达到桥梁结构整体的稳定。

2.斜拉桥的原理(1)力学原理:斜拉桥的传力方式为张索承载,传递的力主要集中在索的上沿,支点处受力的剪力、正弯矩、剪力与正剪力的作用远小于横梁的。

同时,也避免了对斜拉索产生任何的损伤。

(2)优点:斜拉桥主跨悬空,岸塔占用地面较小,有利于提高航道和涉水公路的通行条件。

(3)视觉效果:斜拉桥在结构性上和造型美观上都表现良好,有时候设计师的创意在构造中受较小影响,以达到更好的视觉效果。

3.斜拉桥的结构形式(1)桥面梁:一般采用钢结构桁架梁、钢箱梁桥、钢混合结构。

斜拉桥采用桁架梁结构时,高强度钢材的使用量越来越大,优点是自重可控,安装高效、需要空间小等。

(2)索:斜拉桥使用的索材料一般是钢材,经过拉伸后可以达到较大的抗弯能力。

索一般分成主索和斜拉索两种,其中主索是跨越主桥墩的长索,通过桥墩支撑节点和钢支座进行传力;斜拉索则是连接主索和桥面梁,起到将荷载转移至主梁的作用。

(3)塔:斜拉桥中的塔起到支撑主索、斜拉索的作用,是斜拉桥中非常重要的组成部分。

塔的数量以两个为基本单位,每个塔都有稳固的支撑基础,可以承受相应的荷载。

(4)锚固:索以特制的锚固方式固定在主梁和塔上,固定具有可拆卸性和可调节性,方便调整索的张拉度和锚固位置。

4.斜拉桥的设计原则(1)主跨采用大跨度,力度平衡的设计原则,塔和索的高度要使斜拉力的夹角较大,达到均衡受力。

(2)合理分配斜拉索的长短,使得受拉索、主索、撑杆处于最佳受力状态。

(3)锚固点的布置应使得索材料受力均匀,防止应力集中而产生的材料劣化和疲劳断裂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

截面形式
实体梁式和板式主梁:适用于双索面斜拉桥, 结构简单,施工方便,空气动力性能合理。 箱形截面:抗弯和抗扭刚度大,能适应稀索、 密索、单索面或双索面等不同斜索布置。

主梁据材料组合有如下方式:
预应力混凝土梁,称混凝土斜拉桥 钢-混凝土组合梁,称组合梁斜拉桥 钢主梁,称钢斜拉桥 主跨为钢主梁或钢-混凝土组合梁,边跨为混 凝土梁,称为混合式斜拉桥。平位移, 一般在塔柱与主梁之间设置侧向限位支座。

优点:
(1)主跨满载时,塔柱处的主梁截面无负弯矩峰值; (2)温度、收缩和徐变次内力均较小;
(3)可以吸震消能。

缺点:当采用悬臂施工时,塔柱处主梁需临时固结, 成桥后解除临时固结时,主梁会发生较大纵向摆动。
半漂浮体系
特点:塔墩固结,主梁在塔墩上设置竖向支 承。接近于在跨度内具有弹性支承的三跨连 续梁。 缺点:主梁内力在塔墩支点处产生急剧变化, 出现了负弯矩尖峰,通常须加强支承区段的 主梁截面。 在墩顶设置弹簧支撑或零号索,可与漂浮体系 媲美,且在经济与减小纵向漂移方面有一定 好处。

塔梁固结体系
特点:塔梁固结并支承在墩上。一般只在一 个塔柱处设置固定支座,其余均为纵向可以 活动的支座。 优点:主梁受力比较均匀,整体升降温引起 的温度应力比较小。 缺点:上部结构重量与活载反力都需支座传 给桥墩,这就需要设置很大吨位的支座,这 样给日后的养护、更换均带来较大的困难。

(二)索塔

组成:塔柱、横梁以及其他联结构件。 横梁一般分为承重横梁与非承重横梁。前者 为设置主梁支座的受弯横梁,以及塔柱转折 处的压杆横梁或拉杆横梁;后者为塔顶横梁 和塔柱无转折的中间横梁。
索塔截面
实心体索塔一般适用于中小跨度,对于小跨 度可以采用等截面,对于中等跨度用空心截 面。 矩形截面宜将四角做成倒角或圆角。 种空心截面包括H形截面,一般均在每一层拉 索锚头处增设水平隔板。

阻尼减振法:作用机理是通过安装阻尼装置, 提高拉索的阻尼比从而抑制拉索的振动。可 分为安放在套筒内的内置式阻尼器与附着于 拉索之上的外置式阻尼器。

改变拉索动力特性法:采用辅助索将若干索 相互联结起来,将长索转换成相对较短的索, 使拉索的振动基频提高,从而抑制索的振动。
斜拉桥的施工

前面所介绍的梁式桥与拱桥的施工方法大体 可归纳为有支架施工法、悬臂施工法、顶推 施工法、转体施工法。虽然这几种方法同样 可以用在斜拉桥的建造上,但是最适宜的方 法是悬臂施工法,其余三种方法一般只能用 在河水较浅或修建在旱地上的中、小跨径斜 拉桥。

辅助墩与边引跨:活载往往在边跨梁端附近
区域产生很大的正弯矩,并导致梁体转动,
伸缩缝易受损,一般设置辅助墩加以解决。
设辅助墩也可减小拉索应力变幅,提高主跨 刚度,缓和端支点负反力。
索塔布置

索塔:索力传至基础的关键构件。恒载作用 下,索塔应尽可能处于轴心受压状态。
横桥向布置
索面布置
单索面:在横桥方向只有单个支撑点,抗扭 刚度低,不利于承受偏心活载,抗风性能以 及施工稳定性差,主梁一般采用箱型截面。 适用:具有中央分隔带的桥梁,利用分隔带 布置索面。 优点:桥面有效宽度大,桥墩布置灵活,视 野宽阔。
部分地锚体系

主跨很大,边跨很小时采用。
矮塔部分斜拉桥体系

塔高降低能提高塔身刚度,但拉索的水平倾 角也将减小,故矮塔部分斜拉桥拉索不能提 供足够的支承刚度,要求主梁的刚度较大。 受力性能介于梁式桥和斜拉桥之间。
特点:

塔矮。常规斜拉桥塔高与跨度比为1/4~1/5,而部分 斜拉桥为1/8~1/12。 梁无索区较长,没有端锚索。 边跨与主跨比值大,一般大于0.5。 梁高较大,甚至做成变高梁。 受力以梁为主,索为辅。 由于梁的刚度大,活载作用下斜拉索的应力变幅较 小。

竖琴形:斜拉索平行排列,索少时显得比较 简洁,并可简化斜拉索与索塔的连接构造, 塔上锚固点分散,对索塔受力有利。 缺点:?


扇形:斜拉索不相互平行,兼有辐射形与竖 琴形的优点,故获得广泛应用。
索距的布置
索距的的布置分为“稀索”与“密索”。在早期的 斜拉桥中都为“稀索”,现代斜拉桥多为“密索”。 密索优点: (1)索距小,主梁弯矩小; (2)索力小,锚固点构造简单; (3)锚固点附近应力流变化小,补强范围小; (4)利于悬臂架设与换索。

(三)拉索

整体安装拉索:平行钢丝索配冷铸锚。 分散安装拉索:平行钢绞线索配夹片锚。 拉索的锚固:拉索与混凝土梁的锚固、拉索
在索塔上的锚固。
索与梁的锚固形式

顶板锚固块:以箱梁顶板为基础,向上下两 个方向延伸加厚。拉索水平分力传至梁截面, 垂直分力由加劲肋斜杆平衡。适用:箱内具 有加劲斜杆的单索面斜拉桥。
斜拉桥的主要构造
(一)主梁 作用: 将恒、活载分散传递给拉索。梁的刚度越小,则承 担的弯矩越小。 与拉索及索塔一起成为整个桥梁的一部分,主梁承 受的力主要是拉索的水平分力所形成的轴压力,因 而需有足够的刚度防止压屈。 抵抗横向风载与地震荷载,并将力传给下部结构。
主梁设计需考虑:
拉索间距较大时,采用弯矩控制设计; 单索面斜拉桥,采用扭转控制设计; 双索面密索体系,主要考虑轴压力和整个桥 的纵向弯曲; 需考虑一定的安全储备。 高跨比:对于双索面1/100~1/150;单索面 1/50~1/100,且高宽比不宜小于1/10。

主要结构体系



按塔、梁、墩相互结合方式,可划分为漂浮体系、 半漂浮体系、塔梁固结体系和刚构体系; 按主梁的连续方式,有连续体系与T构体系; 按斜拉索的锚固方式,有自锚体系、部分地锚体系 和地锚体系; 按塔的高度不同,有常规斜拉桥与矮塔部分斜拉桥 体系。
漂浮体系

特点:塔墩固结、塔梁分离。主梁除两端有 支承外,其余部分全用拉索悬吊,属于一种 在纵向可稍作浮动的多跨弹性支承连续梁。


双索面:结构抗扭刚度大,动力抗风性能好。 因此对主梁的抗扭刚度要求小,但是为了结
构抗风要求以及悬臂施工中的安全考虑,主
梁截面的扭转刚度也不宜设置太小。
索面形状
辐射形:沿主梁均匀分布,而在索塔上集中 于塔顶一点。 优点:由于斜拉索与水平面的的平均交角较 大,故拉索的垂直分力对主梁的支承效果也 大。 缺点:?
主梁在斜拉索的各点支承下,像多跨弹性支 承的连续梁。 同跨数的斜拉桥与连续梁桥相比,弯矩值大 大降低。 斜拉桥主梁尺寸大大降低,梁高一般为跨度 的1/50~1/200,甚至更小,从而自重显著减 轻,既节省了材料,又能大幅度地增大桥梁 的跨越能力。

主跨排前十的斜拉桥
孔跨布局

双塔三跨:主跨跨径较大,适用于跨越较宽 的河流及海面。边主跨之比应考虑全桥的刚 度、拉索的疲劳强度等因素。对于公路桥梁,
斜拉桥
组成:主梁、索塔和斜拉索。 主梁:一般采用混凝土结构、钢-混凝土组合 结构或钢结构。 索塔:大都采用混凝土结构。 斜拉索:采用高强材料(高强钢丝或钢绞线) 荷载传递路径:斜拉索的两端分别锚固在主 梁和索塔上,将主梁的恒载与车辆荷载传递 至索塔,再通过索塔传至地基。

与连续梁的比较
拉索的减振



气动控制法:将拉索的光滑表面做成带有螺旋凸 纹、条形凸纹、V形凹纹或圆形凸点的非光滑表面。 优点:提高拉索表面的粗糙度,使气流经过拉索 时在表面边界层形成湍流,从而避免涡激共振的 产生;拉索表面的凹凸纹能阻碍下雨时拉索上、 下缘迎风面雨水线的形成,从而防止雨振的产生。 缺点:对塔、梁在外界激励下导致索两端的支座 激振没有减振作用;会增大拉索对风的阻力。

采用钢锚固梁锚固。将钢锚固梁搁置在混凝 土塔柱内侧的牛腿上,斜索通过埋设在塔壁 中的钢管锚固在钢锚固梁两端的锚块上。

利用钢锚箱锚固。整个钢锚箱是由各层的 钢锚箱进行上下焊接而成,然后将锚箱用 焊钉使之与混凝土塔身连结,用环形预应 力筋将锚箱夹在混凝土的塔柱内,以增加 对拉索水平荷载的抵抗力。
合理的边主跨之比为 0.4~0.45 ,铁路桥梁宜
为0.2~0.25.

独塔双跨:主孔跨径一般比双塔三跨式的小, 特别适用于跨越中小河流、谷地及作为跨线 桥。边主跨之比为( 0.5 ~ 0.8 ),但大多数 为0.66。

三塔四跨式和多塔多跨式:很少采用。因为 中间塔没有端锚索来有效限制它的变位。采 用增加主梁刚度和索塔刚度增加了工程量。 如必须采用多塔多跨,可将中间塔做成刚性 索塔,或用长拉索将中间塔顶分别锚固在两 个边塔的塔顶或塔底,还有一种方法是加粗 尾索并在锚固尾索的梁段上压重。
施工顺序

基础——下塔柱——中塔柱——上塔柱—— 主梁、拉索
混凝土索塔施工
塔座施工

塔座的砼浇筑在承台浇筑后立即进行(一般 在承台结束后5天完成),塔座的混凝土体积 小、标号高,砼收缩大,受承台的约束影响, 易产生收缩裂缝。

梁底两侧设锚固块:
设在风嘴实体之下或边腹板之下。 适用于双索面斜拉桥。

梁两侧设锚固块
锚块设在梁底。 适用于双主梁或板式截面斜拉桥。

拉索在索塔上的锚固

在实体塔上交错锚固。在塔柱中埋置钢管, 再将斜拉索穿入和用锚头锚固在钢管上端的 锚垫板上。

在空心塔上作非交错锚固。在箱形桥塔的壁 内配置环向预应力筋,以抵抗拉索在箱壁内 产生的拉力。

刚构体系
特点:塔、梁、墩相互固结,行成跨内具有 多点弹性支承的刚构。为消除温度应力,需 要墩具有一定的柔性,常用高墩。 优点:既免除了大型支座又能满足悬臂施工 的稳定要求。结构的整体刚度比较好,主梁 挠度小。 缺点:主梁固结处负弯矩大,使固结处附近 截面需要加大。
相关文档
最新文档