1.1_认识无理数(第1课时)教学设计

合集下载

1.1认识无理数 一等奖创新教案

1.1认识无理数 一等奖创新教案

1.1认识无理数一等奖创新教案2.1认识无理数(一)一、教材解读《2.1认识无理数(一)》是北师大版八年级上第二章第一节第一课时,在此之前学生已经经历了数系从非负有理数到有理数的扩充,学习了勾股定理,本节课学生将经历数系的第二次扩充,既是对前面有理数的一个扩展,也是前一章勾股定理内容的一个重要应用,同时是后续深入学习实数的基础,是承前启后的一个重要知识节点。

二、学情分析学生已经有了数系扩充的经验,本次数学的扩充同样是有实际的背景和必要性,前面勾股定理的学习为本次无理数产生提供了很好的知识储备。

学生具备了操作经历产生无理数的知识基础和基本经验。

三、教学目标1、知识与技能:感受无理数的存在,初步把握无理数的特征。

能够说明一个数既不是整数,也不是分数,不是前面学习的有理数。

重点2、过程与方法:通过观察、计算、探索,经历无理数产生的实际背景和必要性。

通过方格纸画图进一步感受无理数的存在事实和可操作性。

学会用勾股定理这一工具构造长度为无理数的线段,进一步研究无理数。

经历由具体到抽象,由特殊到一般的概念形成过程。

难点3、情感态度价值观:让学生在构造无理数的过程中感受到数学学习的乐趣,让学生感受到数学来源于生活和实际,具有看得见,摸得着,可操作的特点,改变以往学生心目中数学枯燥,乏味的观念。

四、教学设计【回顾迎新】1.整数和___________统称为有理数.整数又可分为正整数,_________,________.2.下列不是分数的是()A.3.14 B.5% C. D.3.下列说法错误的是()A.两个整数的乘积一定是整数B.最简分数的平方一定是分数C.有限小数和无限循环小数不是分数D.一个数既不是整数又不是分数,则这个数不是有理数4. 如图,斜边所在的正方形面积=___________.我们知道,如果(m为正数),则,根据这个例子,我们可以判断。

八年级数学上册《无理数》教案、教学设计

八年级数学上册《无理数》教案、教学设计
4.利用问题驱动法,设计有针对性的问题,引导学生深入思考,提高解决问题的能力。
5.通过实际案例,让学生将所学知识应用到实际问题中,培养学生的实际操作能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发学生学习数学的热情。
2.培养学生勇于探索、善于思考的精神,增强学生面对困难的勇气。
3.培养学生的创新意识,使学生认识到数学知识的无限魅力。
1.学生对无理数定义的理解程度,注意引导他们从具体实例中抽象出无理数的概念。
2.学生在运用无理数进行计算和比较时可能会遇到困难,需要耐心指导,帮助他们掌握方法和技巧。
3.学生在探究无理数过程中可能存在恐惧心理,教师要鼓励学生大胆尝试,培养他们的自信心。
4.针对学生个体差异,教师应关注不同学生的学习需求,提供有针对性的指导,使他们在原有基础上得到提高。
-思考题1:比较π和√3的大小,并说明理由。
-思考题2:证明:如果一个数的平方是无理数,那么这个数也是无理数。
5.个性化作业:根据学生的学习情况,提供不同难度的作业,使每个学生都能在适合自己的层面上得到锻炼。
-挑战题:求证π是无理数。
-基础题:计算下列无理数的近似值:√2、√3、π。
2.无理数的表示:介绍无理数的表示方法,包括无限不循环小数和根号表示,如π、√2等。
3.无理数的性质:讲解无理数的性质,如不可约性、无限不循环性等,并通过实例加以说明。
4.无理数与有理数的区别:对比分析无理数与有理数的区别,强调无理数在数轴上的位置和性质。
(三)学生小组讨论
1.分组讨论:将学生分成小组,讨论无理数的定义、性质以及与有理数的区别。
9.教学评价:采用多元化的评价方式,包括课堂问答、小组表现、作业和测验,全面评估学生的学习效果。

北师大版数学八年级上册《认识无理数》教学课件

北师大版数学八年级上册《认识无理数》教学课件
. < < .
. < < .
. < < .
. < < .
. < < .
想一想:可以继续算下去吗?是有限小数吗?

教学过程——新知探究
第二章
北师大版 ∙ 八年级上册
教学课件
第二章

1. 认识无理数

教学内容
第二章
1.1
认识无理数


教学目标——重点难点
第二章
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.能用“夹逼法”确定无理数的近似值(难点)


教学目标——温故知新

活动探究3
认识无理数
有理数与无理数区别:
因为整数都可以看着小数部分为0的小数,而分数都可以化为有限小数或无限循
环小数,所以有理数总可以用有限小数或无限循环小数表示;反过来,任何有限
小数或无限循环小数也都是有理数. 但无理数是无限不循环小数,所以有理数和
无理数的根本区别就在于无理数不能化为有限小数或无限循环小数.
第二章
知识储备
1.什么是有理数?
整数和分数统称为有理数.
2.有理数有哪些分类方法?
正整数
整数

负整数
分数
正分数
负分数
正整数
正数
正分数

负整数
负数
负分数


教学过程——新课引入
第二章
议一议
有两个正方形,一个正方形的面积为4,一个正方形的面积为

认识无理数教学设计

认识无理数教学设计

认识无理数教学设计一、教学目标1.了解无理数的概念和特点。

2.能够区分有理数和无理数。

3.能够正确运用无理数进行简单的计算。

二、教学重难点1.无理数的概念和特点。

2.有理数和无理数的区分方法。

3.无理数的运算规律。

三、教学准备1.教学工具:黑板、白板、投影仪等。

2.教学材料:有理数和无理数的定义、例题、练习题等。

四、教学过程Step 1 引入新知1.教师将黑板上划分为两个区域,一个区域写有理数,一个区域写无理数。

2.教师向学生提问:“你们知道什么是有理数吗?有理数有哪些特点?”学生回答。

3.教师引导学生复习有理数的定义和特点,然后进一步提问:“你们知道什么是无理数吗?无理数有哪些特点?”学生回答。

Step 2 学习无理数的定义和特点1.教师向学生介绍无理数的定义和特点,可以使用PPT或投影仪展示相关内容。

2.教师向学生阐述无理数的定义:“无理数是指不能表示为两个整数的比值(或两个有理数的差)的实数,它们也没有无限循环小数表示。

”3.教师向学生解释无理数的特点:“无理数的小数表示是无限不循环的,它们不能用分数表示,例如π和根号2、”Step 3 区分有理数和无理数1.教师向学生提问:“如何区分有理数和无理数?”学生回答。

2.教师向学生解释区分方法:“有理数和无理数之间不存在其中一种简单的关系,只能通过判断其小数表示是否有循环来确定。

”3.教师通过例题和练习题让学生进行练习,巩固区分有理数和无理数的方法。

Step 4 无理数的运算规律1.教师向学生介绍无理数的运算规律,可以使用PPT或投影仪展示相关内容。

2.教师向学生解释无理数的运算规律:“无理数的加减乘除运算与有理数的运算规律相同。

”3.教师通过例题和练习题让学生进行练习,巩固无理数的运算规律。

Step 5 拓展应用1.教师向学生提问:“无理数在生活中有哪些应用?”学生回答。

2.教师通过举例向学生介绍无理数的应用领域,例如建筑设计、物理学和金融等。

八年级数学上册《认识无理数》教案、教学设计

八年级数学上册《认识无理数》教案、教学设计
3.提高拓展题:完成课本第57页第4、5题,这两题涉及无理数的运算规则和估算方法,旨在提高学生的运算能力和逻辑思维能力。
4.思活中的应用有哪些?请举例说明。”让学生在课后继续思考,培养他们的观察力和创新意识。
5.自主学习任务:要求学生利用网络资源或图书馆资料,了解一位数学家在无理数领域的研究成果,并撰写一篇200字左右的简短报告,以提高学生的数学素养和自主学习能力。
4.利用信息技术手段,如几何画板、数学软件等,帮助学生直观地认识无理数,提高学习效果。
(三)情感态度与价值观
1.培养学生勇于探索、敢于质疑的精神,使他们认识到数学知识的无穷魅力;
2.增强学生对数学美的感知,激发他们对数学学科的兴趣和热爱;
3.培养学生严谨、细致的学习态度,提高他们分析问题和解决问题的能力;
2.教学内容:介绍勾股定理和无理数的定义。
过程设计:让学生回顾勾股定理,然后教师解释:“在勾股定理中,当一个直角三角形的两条直角边长度分别为1时,根据定理,对角线的长度为根号2。然而,根号2并不能精确表示为两个整数的比,这样的数就是无理数。”接着,正式引入无理数的定义。
(二)讲授新知
1.教学内容:讲解无理数的性质、分类及其表示方法。
2.探究活动:组织学生进行小组合作,探索无理数的性质和运算规则。通过讨论、验证和归纳,让学生在自主探究中发现问题、解决问题。
-设想一:利用数学游戏或竞赛,增加学习的趣味性,如“谁找到了最多的无理数?”
-设想二:设计思维导图,帮助学生梳理无理数的相关知识点,形成知识网络。
3.实践应用:将无理数知识应用于解决实际问题,如测量物体的长度、计算面积等,让学生在实际操作中深化对无理数的理解。
2.学生在四则运算中处理无理数的能力,引导他们运用已有知识解决新问题;

《认识无理数(1)》教学设计

《认识无理数(1)》教学设计

《认识无理数(1)》教学设计《认识无理数》是北师大版义务教育教科书八年级(上)第二章《实数》的第一节,本节内容共2个课时完成.第1课时从实际背景中发现“非有理数”,从形数两方面感受这样的数的广泛性;第2课时由前一课时的定性分析转向定量分析,继续研究这些数的小数表示,在与有理数小数表示的对比中,体会不可表示成整数比的数与无限不循环小数的等价性,明确无理数的定义,并会判断一个数是有理数还是无理数.本课第1课时主要内容是:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性,会判断一个数是不是有理数.二、学情分析通过“有理数”和“勾股定理”的学习,学生已建立了有理数的概念,明白了什么是勾股数,也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.三、教法学法教法:本节课采用问题情境导入法引入新课,用探究分析法展开数学活动,使学生经历观察、思考、交流、归纳等理性思维的基本过程,注重培养学生动手能力、思维能力和探索精神.学法:本节课采用学生自主探究、合作交流为主的学习方式,启发学生进行观察思考、分析归纳,让学生动手动脑,积极参与,解决问题,最大程度地发挥了学生的主观能动性.四、教学用具:电子白板,多媒体课件.五、教学目标1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.从形数两方面让学生感受“非有理数”广泛存在,会判断一个数是不是有理数.3.在探究过程中培养学生的动手能力和探索精神,提高学生的思维能力,积累学生的数学学习经验.4.通过了解数学史话,让学生感悟追求真理的人生价值观.六、教学重点难点重点: 感受“非有理数”广泛存在,会判断一个数不是有理数.难点:判断一个数不是有理数的过程.七、教学过程(一)情境导入1.从数学发展史切入,复习有理数的概念;2.再从数学史话的故事,提出问题,引入本章学习,学生朗读学习目标;3.导入本节的学习,板书课题.导语:在数学发展史上,产生过第一次数的危机,正整数、正分数和零不够用了,从而引入了负数,数系扩充到有理数.现在请同学们回忆,有理数包含哪些数?(学生回答,教师板书有理数的分类).随着历史的发展,又产生了第二次数的危机,有理数又不够用了.这是怎么回事呢?老师给同学们讲一段故事:古希腊数学家、哲学家毕达哥拉斯有一个观点:“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可以用有理数去描述.公元前5世纪,毕达哥拉斯的一个弟子希伯索斯发现,边长为1的正方形的对角线的长不能用整数或整数之比来表示,他把这个发现告诉了他的老师,毕达哥拉斯因为这个发现动摇了自己的权威观点而恐慌,非常恼怒,不仅封锁消息,而且还残害希伯索斯,最终将他投入大海,希伯索斯为发现真理献出了宝贵的生命.但真理是不可战胜的.后来,古希腊人终于证明了希伯索斯的发现是正确的.那么这个边长为1的正方形对角线的长究竟是什么数呢?带着这个问题,我们开始第二章“实数”的学习(展示章前页的图片),请同学们朗读章前页的学习目标,请同学们胸怀学习目标进入本节课的学习“认识无理数”(板书课题).(二)合作探究环节1:拼一拼如图是两个边长为1的小正方形,剪一剪,拼一拼,能得到一个大正方形吗?学生分小组活动拼图,并与同伴交流.各小组完成后,由代表到讲台用电子白板展示,三种拼法如下:。

认识无理数优秀教案

2.1认识无理数(第一课时)一、教学目标叙写1.学生通过预习教材21页,并思考情景引入中的问题1.2.学生通过合作探究部分,初步感知数不够用了,让学生充分感受“新数”(无理数)的存在.3.学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.4.学生能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解.二、教学重难点1.重点:让学生经历无理数的发现过程.2.难点:会判断一个数是否为无理数.三、教学过程(一)、情景引入[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.1、思考:⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?2、已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?(二)、自主探究1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面再请大家共同思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢?[生甲]a 是正方形的边长,所以a 肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.[生丙]由a 2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.活动内容:【议一议】→【释一释】→【忆一忆】→【找一找】将两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.设这个大的正方形的边长为a,a 满足什么条件?【议一议】: 已知22a =,请问:①a 可能是整数吗?②a 可能是分数吗?【释一释】:释1.满足22a =的a 为什么不是整数?释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础(四)、整理反思1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?2.1认识无理数(第二课时) 一、教学目标叙写1、学生通过预习教材22-23页,初步感知无理数的估算过程.2、学生通过合作探究“活动1”部分,让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想,通过学生的活动2并探究得出无理数的概念.3、学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.4、学生通过完成“五、当堂评价”,能正确地对给出的数进行分类,加深对有理数和无理数的理解.二、教学重难点1.重点:了解无理数与有理数的区别并能正确判断.2.难点:无理数概念的建立及估算,会判断一个数是无理数还是有理数.三、教学过程(一)、复习引入1. 有理数是如何分类的?整数(如1-,0,2,3,…)有理数分数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.(二)、自主探究1.探索无理数的小数表示请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.(归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它们是无限不循环小数).[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如 1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.[生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为 1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.探索有理数的小数表示,明确无理数的概念思考:分数化成小数,最终此小数的形式有哪几种情况?——分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.3,112,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0,54=0.8,95=•5.0, •=71.0458,••=818.1112 [生]3,54是有限小数,112,458,95是无限循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a ,b 外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.(三)、合学应用例1:填空:0.351, 4.96••-,0.4583,•7.3,-π,-71,18. 3.14159, 6, -5.2323332…,1234567891011…(由相继的正整数组成).例2 :判断下列说法是否正确:(1)有限小数是有理数; ( )(2)无限小数都是无理数; ( )(3)无理数都是无限小数; ( )(4)有理数是有限数. ( )(四)、整理反思1.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?易错点: .(五)、当堂评价1、以下各正方形的边长是无理数的是( )(A)面积为25的正方形;(B)面积为254 的正方形; (C)面积为8的正方形; (D)面积为1.44的正方形.2.已知:在下数中254 ,5,1.42••-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…, (1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.(六)、变练拓展1. 设面积为5π的圆的半径为a .(1)a 是有理数吗?说说你的理由.(2)估计a 的值(精确到十分位,并利用计算器验证你的估计).(3)如果精确到百分位呢?解:∵πa 2=5π∴a 2=5(1)a 不是有理数,因为a 既不是整数,也不是分数,而是无限不循环小数.(2)估计a ≈2.2.(3)a ≈2.24.。

《认识无理数》 教学设计

《认识无理数》教学设计一、教学目标1、知识与技能目标(1)学生能够理解无理数的概念,区分有理数和无理数。

(2)学生能够识别常见的无理数,并掌握无理数的表示方法。

2、过程与方法目标(1)通过实际问题的探究,培养学生的观察、分析和归纳能力。

(2)在数的扩充过程中,让学生体会从特殊到一般、从有限到无限的数学思维方法。

3、情感态度与价值观目标(1)让学生感受数学的奇妙与魅力,激发学生对数学的兴趣。

(2)培养学生勇于探索、敢于创新的精神。

二、教学重难点1、教学重点(1)无理数的概念。

(2)无理数与有理数的区别。

2、教学难点(1)无理数概念的形成。

(2)对无理数的准确判断。

三、教学方法讲授法、讨论法、探究法相结合四、教学过程1、导入新课通过讲述一个关于正方形边长的问题引入:一个正方形的面积是2,那么它的边长是多少?学生可能会想到边长是\(\sqrt{2}\),但对\(\sqrt{2}\)的认识可能比较模糊。

从而引出本节课的主题——认识无理数。

2、探索新知(1)有理数的回顾先回顾有理数的概念,包括整数和分数。

让学生列举一些有理数,并总结有理数的特点,即可以表示为两个整数的比值。

(2)无理数的产生通过计算边长为 1 的正方形的对角线长度,引导学生发现\(\sqrt{2}\)不能表示为两个整数的比值,从而引出无理数的概念。

(3)无理数的概念讲解无理数的定义:无限不循环小数叫做无理数。

(4)常见的无理数介绍一些常见的无理数,如\(\pi\)、\(\sqrt{3}\)、\(\sqrt{5}\)等,让学生对无理数有更直观的认识。

3、巩固练习(1)判断下列数哪些是有理数,哪些是无理数:314,\(\frac{22}{7}\),\(\sqrt{9}\),\(\sqrt{2}\),***********…(相邻两个 1 之间依次多一个 0)(2)在数轴上表示出\(\sqrt{2}\)和\(\pi\)。

4、小组讨论组织学生分组讨论以下问题:(1)无理数与有理数有什么区别和联系?(2)如何判断一个数是无理数还是有理数?5、课堂总结(1)回顾无理数的概念、常见的无理数。

认识无理数教案

认识无理数教案一、教学目标:1. 了解无理数的定义和性质;2. 熟练掌握无理数的表示方法;3. 能够在实际问题中灵活运用无理数的概念。

二、教学内容:1. 无理数的定义和性质;2. 无理数的表示方法;3. 无理数的应用。

三、教学过程:1. 导入新知识:教师通过展示一个平方根为无限不循环小数的例子,引导学生思考这个数是有理数还是无理数,以及无理数的定义。

2. 理解无理数的定义和性质:通过对无理数的定义和性质进行讲解,强调无理数不能表示为两个整数的比例,并且无理数可以无限不循环地表示为小数。

3. 无理数的表示方法:教师通过示范,引导学生掌握无理数的表示方法。

包括简化根号形式、小数形式和无限不循环小数形式。

4. 练习无理数的表示方法:让学生通过练习题熟练掌握无理数的表示方法,巩固所学知识。

5. 讨论无理数的应用:教师通过实际生活中的问题,引导学生发现无理数在实际问题中的应用。

比如房地产面积计算、建筑设计等。

6. 拓展应用:教师通过一些拓展题,让学生进一步运用无理数的概念解决问题。

7. 归纳总结:教师引导学生归纳总结所学内容,梳理无理数的定义、性质和表示方法。

8. 练习与巩固:让学生通过一些练习题,巩固所学内容。

9. 小结与反思:教师对本课的重点内容进行小结,并引导学生反思学习过程。

四、教学资源:1. 幻灯片;2. 教材;3. 练习题。

五、教学评价:1. 学生参与度:通过教师的引导,学生能够积极参与课堂讨论;2. 学生掌握程度:通过练习题的完成情况和课堂表现,评估学生对无理数的掌握程度;3. 教学效果:根据学生的学习表现和教学反思,评估本节课的教学效果。

六、教后反思:针对学生在学习过程中存在的问题和不足,进行教学反思。

并针对教学目标和内容进行调整和优化。

《认识无理数(一)》教学设计

《认识无理数(一)》教学设计发表时间:2019-04-23T09:58:06.973Z 来源:《现代中小学教育》2019第3期作者:黄嫚[导读] 《认识无理数》是北师大版八年级数学(上)第二章《实数》的第一节内容,共两个课时完成.本节课是第1课时,主要是从实际背景中发现“非有理数”,从形、数两方面感受这样的数的广泛性,为引入无理数的概念奠定基础。

西北工业大学附中分校黄嫚一、教材分析1.教材的地位与作用《认识无理数》是北师大版八年级数学(上)第二章《实数》的第一节内容,共两个课时完成.本节课是第1课时,主要是从实际背景中发现“非有理数”,从形、数两方面感受这样的数的广泛性,为引入无理数的概念奠定基础;在知识的联系上,本节课再一次让学生感受“数怎么又不够用了”,进而引入“无理数”,把数的范围扩大到实数.本节课通过丰富多彩的数学活动,让学生感受无理数产生的实际背景和引入的必要性,以及无理数存在的合理性.本节课既是有理数和勾股定理的知识及应用的进一步深化,又是实数概念及运算的开始,起着承前启后的作用. 在能力的培养上,本节课在数学活动中提升了学生的动手能力和思维能力;在思想方法和情感态度上,本节课既培养了学生数形结合的数学思想方法,又培养了学生探索真理的精神和实事求是的科学态度.2.学情分析学生通过“有理数”的学习,经历了一次数系的扩充,建立了有理数的概念;又通过“勾股定理”的学习,明白了直角三角形的三边关系,建立了勾股数的概念,积累了一些数学活动经验,这为引入无理数奠定了基础.但无理数不象有理数那样直观易懂,学生理解起来会有些困难.因此,在教学中要通过丰富多彩的数学活动逐步渗透和加强概念,以达到教学目标.3.教学目标根据《数学课程标准》的要求,以及教材分析和学情分析,确定本节课的教学目标如下:(1)通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性. (2)从形数两方面让学生再感受“非有理数”广泛存在,并会判断一个数不是有理数.(3)在探究活动中提高学生的动手能力和思维能力,渗透数形结合的数学思想方法,培养学生的探索精神,积累学生的数学学习经验. (4)通过了解数学史话,让学生感悟勇于追求真理的人生价值观,树立实事求是的科学态度.4.教学重点难点重点: 感受“非有理数”广泛存在,会判断一个数不是有理数. 难点:判断一个数不是有理数的过程.关键:掌握重点、突破难点的关键是利用电子白板交互技术,进行拼图活动的直观教学,给学生动手、思维、交流和展示的时间和空间,让学生感受无理数产生的实际背景和引入的必要性;再通过进一步的探究活动,从形数两方面让学生再感受“非有理数”广泛存在,进而学会判断一个数不是有理数.二、教法学法教法:根据以上教材分析和学情分析,本节课采用问题情境导入法引入新课,用探究分析法展开教学,把电子白板交互技术有效地融入教学环节之中.教师最大程度地发挥了学生的主观能动性,在思维的最近发展区,引导学生观察思考、动手动脑,分析归纳,解决问题,从而提高学生发现问题和解决问题的能力.学法:本节课采用学生自主探究、合作交流为主的学习方式,学生通过拼一拼、议一议、做一做、画一画、算一算的数学活动,经历观察、动手、思考、交流、归纳等思维过程,同时经历无理数的发现和生成过程,从中培养学生的动手能力、思维能力和探索精神,积累学生的数学学习经验.三、技术应用本节课是在交互一体机的平台上使用电子白板进行教学的.从以往的教学来看,这节课让学生在黑板上拼、贴、画图,效果不理想还浪费时间,而利用电子白板教学,有效地发挥电子白板的拖拉、克隆、旋转、锁定、删除、随机画图、屏幕遮盖等功能,学生动态剪拼图形,画出图形,操作方便,直观形象,优化了教学,既节省了课堂时间,又提高了课堂效率,还培养了学生的学习兴趣,达到了很好的教学效果.教学实践证明,电子白板交互技术的有效应用是提高教学效益的有力技术支撑.四、教学过程(一)情境导入1.从数学发展史切入,复习有理数的概念;2.再从数学史话的故事,提出问题,引入本章学习,学生朗读学习目标;3.导入本节的学习,板书课题.设计意图:第一节课从章前页引入,一是设疑激趣,唤起学生的求知欲;二是明确目标,学生胸有成竹地进入新的一章的学习.这样导课从数学知识的连续性与数学发展史两方面入手,亲切自然,一气呵成. (二)合作探究环节1:拼一拼设计意图:教学的切入点是从动手剪拼正方形开始,然后解决三个问题,这是这节课的重点部分.让学生分组活动,动手操作剪拼图形,利用电子白板展示交流,发散思维多种拼法,使学生感受无理数产生的实际背景和引入的必要性,在原有的基础上提高了认知水平和思维能力.环节2:议一议(合情说理部分,判断a值是否为有理数)设计意图:此问题串是让学生感受“非有理数”的存在,教学从形数两方面让学生来判断数不是有理数,突破这节课的重难点.解决难点问题(3)的方案是:先提出一个问题做铺垫,即“一个最简分数的平方一定是分数吗”?再引导学生从原命题的逆否命题来说明理由,这样既严谨易懂,又渗透了原命题与逆否命题等价的逻辑关系,为今后学习反证法奠定了基础. 环节3:做一做设计意图:让学生类比“议一议”中三个问题的解决方法,运用所学的知识,从数形两方面自主完成“做一做”,再次感受“非有理数”的存在,提高学生发现问题和解决问题的能力. 环节4:画一画环节5:算一算由学生判断出OA 3的长是有理数,OA1,OA2,OA4,OA5,OA6的长都不是有理数,并用计算器求出非有理数的近似值(计算器显示为有限位小数).教师因势利导:这些非有理数在计算器上显示出的有限位小数与我们学过的有理数的有限小数的表示一样吗?它们是什么数呢?下节课我们继续探究学习.设计意图:“画一画,算一算”两个教学环节环环相扣,承前启后.让学生在“画一画”,“算一算”中会判断一个数是不是有理数,进而感受“非有理数”的广泛存在,也为下节课的学习无理数的概念埋下伏笔.培养了学生的动手能力和思维能力,积累了数学学习经验. (三)课堂小结1. 通过一系列数学活动,我们感受到实际背景中广泛存在着不是整数或分数的非有理数,并会判断一个数不是有理数.2. 在探究过程中培养了动手能力、思维能力和探索精神,体会到了数形结合思想的妙用,积累了数学学习经验. (四)布置作业必做题:1.P22习题2.1第1题; 2.阅读P22读一读《无理数的发现》.选做题:如图是5个单位正方形组成的纸片,请你把它剪成3块,拼成大正方形,并判断正方形的边长是有理数吗?(五)寄语:(六)板书设计五、教学反思本节课是一节典型的数学活动探究课.具体来讲本节课主要有以下几个特点:1. 渗透数学文化,激发学习兴趣本节课从数学知识的连续性与数学发展史两方面导入新课,通过五个教学环节的的设置引发学生学习的欲望,从多个层次训练了学生的思维能力,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的非有理数广泛存在,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.2. 化抽象为具体,落实多维度的教学评价《认识无理数》第一课时课本的正文只有一页,虽然简单内容少,但课堂以动手剪拼正方形为切入点,通过环环相扣的过程设计,充分展示了知识发生、发展的过程,体会了类比和数形结合思想的妙用,同时培养了学生的动手能力,思维能力,和探索精神,积累了数学学习经验,感悟到追求真理的人生价值观.3.电子白板的有效应用提高了教学效益本节课从技术手段上讲,有效的使用了交互一体机.有效地发挥电子白板的功能,节省了课堂时间,优化了教学过程,提高了课堂效率.通过学生动态剪拼图形,积极参与,达到了很好的教学效果.教学实践证明,电子白板的有效应用是提高教学效益的有力技术支撑.4.不足之处及今后努力方向当然,本节课也有不足之处,比如教学过程中,应该再多一点给学生提问的机会,增强学生的问题意识,从而培养他们的创新意识.这些在今后的教学中要进一步加强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章实数
1. 认识无理数(第1课时)
一、教学目标
①通过拼图活动,让学生感受客观世界中无理数的存在;
②能判断三角形的某边长是否为无理数;
③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;
④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;
二、教学过程设计
本节课设计了6个教学环节:
第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.
第一环节:质疑
内容:【想一想】
⑴一个整数的平方一定是整数吗?
⑵一个分数的平方一定是分数吗?
目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用
第二环节:课题引入
内容:1.【算一算】
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?
2.【剪剪拼拼】
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?
目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.
第三环节:获取新知
内容:【议一议】→【释一释】→【忆一忆】→【找一找】
【议一议】: 已知22a =,请问:①a 可能是整数吗?②a 可能是分数吗?
【释一释】:释1.满足22a =的a 为什么不是整数?
释2.满足22a =的a 为什么不是分数?
【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,
那么a 一定不是有理数,这表明:有理数不够用了,为“新
数”(无理数)的学习奠定了基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出
长度不是有理数的线段
第四环节:应用与巩固
内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】
【画一画1】:在右1的正方形网格中,画出两条线段:
1.长度是有理数的线段 2.长度不是有理数的线段
【画一画2】:在右2的正方形网格中画出四个三角形 (右1)
2.三边长都是有理数 2.只有两边长是有理数
3.只有一边长是有理数 4.三边长都不是有理数
【仿一仿】:例:在数轴上表示满足()220x x =>的x
解: (右2)
仿:在数轴上表示满足()250x x =>的x
【赛一赛】:右3是由五个单位正方形组成的纸片,请你把
它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)
目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上
效果:加深了对“新知”的理解,巩固了本课所学知识.
第五环节:课堂小结
内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?
2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?
目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.
第六环节:布置作业
习题2.1
六、教学设计反思
(一)生活是数学的源泉,兴趣是学习的动力
本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.
(二)化抽象为具体
常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.
(三)强化知识间联系,注意纠错
既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.。

相关文档
最新文档