人教版九年级数学上册(RJ)第25章 概率初步 随机事件
人教版数学九年级上册25.概率(共22张)

概率
适用 对象
等可能事件,其特点: (1)有限个;(2)可能性一样.
计算 公式
P( A) m (m是事件A包含的结果种数, n
n是试验总结果种数).
课后作业
见本课时练习
(1)事件B:抽出数字为偶数; 解:(1)点数为奇数有3种可能,即点数为2,4,6
因此P(B)= 3 1 62
(2)事件C: 抽出数字大于1小于6.
(2)点数大于1且小于6有4种可能,即点数为2,3,4, 5
因此 P(可能的结果,并
且它们产生的可能性都相等,事件A包括其中的m种结
合作探究
实验2:有6张数字卡片,它们的背面完全相同,正面分别
标有1,2,3,4,5、6现将它们的背面朝上,从中任意抽出 一张卡片
(1) 可能出现哪几种结果?
(2) 6个数字的出现可能性完全相同吗?
(3) 能否用一个具体数值来表示各个数 字出现的可能性吗?这个数值是多少?
思考:
以上三个实验有什么共同的特点:
D.1.
4、某射手在一次射击中,射中10环,9环,8环的概率分别是 0.2,0.3,0.1,那么此射手在一次射击中不够8环的概率为( A )
A. 0.4
B 0.3
C 0.6
D 0.9
课堂小结
定义
一般地,对于一个随机事件A,我们把刻画其产生可能性 大小的数值,称为随机事件A产生的概率,记为P(A).
果,那么事件A产生的概率
P( A) m n
事件A产生 的结果种数
实验的总共 结果种数
例1:话说唐僧师徒超出石砣岭,吃完午饭后,三徒弟商量着今天 由谁来刷碗,可半天也没个好主张.还是悟空聪明,他灵机一动, 扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子: 如果掷到2的倍数就由八戒来刷碗;
2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
第25章+++概率初步(知识点及考点精讲)课件+2024—2025学年人教版数学九年级上册

箱1
箱2
小结
一般地,随机事件发生的可能性是有大小的, 不同的随机事件发生的可能性大小可能不同
2
概率
情景引入 小白将一枚硬币抛向空中,落地后出现正面的可能性 有多大,出现背面的可能性多大?
概率 一般地,对于一个随机事件A,刻画其发生可能性大 小的数值,称之为随机事件A发生的概率,记为P(A)。 【注意】 ①每一次试验中,可能出现的结果只有有限个。 ②每一次试验中,各种结果出现的可能性相等。
频率
概率
试验值或统计值
理论值
区别
与试验次数变化有关
与试验人、时间、地点 有关
与试验次数变化无关
与试验人、时间、地点 无关
联系
试验的次数越多,频率越趋向于概率
一般地,如果在一次试验中,有n种可能的结果,且它们
发生的可能性相等,事件A包含其中的m种结果,那么事件A
发生的概率为:
P(A) m n
不
可 能
0
事
件
事件发生的可能性越来越小
事件发生的可能性越来越大 (概率的值率
列表法
当问题涉及两步试验(如一个骰(tou)子掷两次)或 一次试验要涉及两个因素(如同时掷两个骰子),且可能 出现的结果数目较多时,为不重不漏地列出所有可能的 结果,通常采用列表法。
思考 抽奖箱中有5个黄球,3个红球,摸出一个球是红球, 这一事件是随机事件吗?
不是。 原因:若红球比黄球大的条件下摸红球是必然事件
思考:增加什么限定条件,这一事件是随机事件? 这些球的形状、大小、质地等完全相同,即除颜色 外无差别。
思考 小白、小黄分别从箱1、箱2各抽取一球,两人摸出黄球 和红球的可能性一样大吗(除颜色外无差别)?
例:同时掷两个质地均匀的骰子,观察向上一面的点数, 求下列事件的概率: ①两个骰子点数的和是9.
人教版九年级数学上册第25章 概率初步1 用列表法求概率

解:根据题意,列表数的结果有2 种,数字之积为偶数的
结果有4 种,∴P(数字之积为奇数) = =
P(数字之积为偶数) = =
.
∵ × = × ,∴这个游戏对双方公平.
率公式求出概率.
注意:(1)要弄清楚事件所包含的是哪个或哪些结果.
(2)要弄清楚一次试验中所有等可能结果.
(3)直接列举试验结果时,要有一定的顺序性,保证
结果不重不漏.
教师讲评
知识点2.列表法求概率(重点)
用表格的形式反映事件发生的各种结果出现的次数和
列表法求概率
方式,以及某一事件发生的可能的次数和方式,并求
(1)用列表的方法列出所有等可能出现的结果;
解:(1)列表如下:
纵坐标
1
横坐标
1
-2
(-2,1)
3
(3,1)
-2
3
(1,-2)
(1,3)
(-2,3)
(3,-2)
例4 一个不透明袋子中装有三只大小、质地都相同的小球,球面上分
别标有1,-2,3,搅匀后先从中任意摸出一个小球(不放回),记下
数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,
小颖、小明和小凡都想去看周末的电影,但是只有一张电影票,三
人决定通过做游戏来决定谁去看电影.
游戏规则如下:
连续掷两枚质地均匀的硬币,若两枚硬币均正面 朝 上,则小明获胜
;若两枚硬币均反面朝上,则小颖获胜;若一枚硬币正面朝上一枚
硬币反面朝上,则小凡获胜.你认为这个游戏公平吗?
人教版数学九年级上册第25章:概率初步复习课件

-40%=60%,所以口袋中白色球的个数=10×60%=6,即布袋中白色球
的个数很可能是6.故选C.
章末复习
专题五 利用概率判断游戏的公平性
【要点指点】通过计算概率判断游戏是否公平是概率知识的一 个 重要应用, 解决游戏是否公平的问题, 应先计算游戏参与者获 胜的概率, 若概率相等, 则游戏公平;若概率不相等, 则游戏不公 平.
章末复习
例5 色盲是伴X染色体隐性先天遗传病, 患者中男性远多于女 生, 从 男性体检信息库中随机抽取体检表, 统计结果如下表:
根据表中数据, 估计在男性中, 男性患色盲的概率为___0_.0_7__ (结 果保留小数点后两位).
章末复习
分析 视察表格发现, 随着抽取的体检表的增多, 在男性中, 男性患色 盲的频率逐渐稳定在0.07附近, 所以估计在男性中, 男生患色盲的概 率为 0.07.
章末复习
例3 一个不透明的袋子中装有4个黑球, 2个白球, 这些球除颜色 不同 外其他都相同, 从袋子中随机摸出1个球, 摸到黑球的概率 是( D ).
章末复习
相关题3 如果从包括小军在内的 10名大学生中任选1名作 为 “保护母亲河”的志愿 者, 那么小军被选中的概 率是( C ).
解析 共有 10 种等可能的结果,小军被选中的结果有 1 种,故 P(小军 被选中)=110.
章末复习
解 (1)获奖的学生中男生3名, 女生4名, 男生、女生共7名, 故参加颁奖 大会的学生是男生的概率为 . (2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 用列表法 列出所有可能的结果如下:
章末复习
∵共有12种等可能的结果, 其中是1名男生、1名女生的结果有6种, ∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 刚好是 1名男生、1名女生的概率为
人教版九年级数学上册第25章:概率

第二十五章 概率初步
25.1 随机事件与概率
25.1.2 概 率
学习目标
1.理解一个事件概率的意义. 2.掌握在具体情境中求一个事件的概率的方法.(重点) 3.会进行简单的概率计算及应用.(难点)
新课导入
问题1 什么是必然事件,不可能事件和随机事件? 必然事件:在一定条件下,必然会发生的事件. 不可能事件:必然不会发生的事件. 随机事件:可能会发生,也可能不发生的事件.也叫 不确定性事件.
பைடு நூலகம்
A. A B.
C.
D.
1
1
3
1
2
4
20
10
随堂即练
2.不透明袋子里有1个红球,2个白球和3个黄球,每一个球除颜 色外都相同,从中任意摸出一个球,则
1 (1)P(摸到红球)= 6 ;
1
(2)P(摸到白球)= 3 ;
1
(3)P(摸到黄球)= 2 .
随堂即练
3.已知一个口袋装有7个只有颜色不同,其他都相同的球,其中3
5
新课讲解
活动2 掷一枚骰子,向上一面的点数有6种可能,即1,2,3,4,5,6.
因为骰子形状规则、质地均匀,又是随机掷出,所以
每种点数出现的可能性大小相等.我们用 每一种点数出现的可能性大小.
1表示
6
新课讲解
★概率的定义
数值
1 5
和
1 6
刻画了试验中相应随机事件发生的可能性
大小.
一般地,对于一个随机事件A,我们把刻画其发生可 能性大小的数值,称为随机事件A发生的概率,记为 P(A).
新课讲解
解:掷一枚质地均匀的骰子时,向上一面的点数可能
是1,2,3,4,5,6,共6种.这些点数出现的可能性相等.
人教版九年级数学上第25章概率初步25.1.1随机事件教案

-解决方法:教师指导学生采用有序列举的方法,如画树状图或列表,确保结果不遗漏、不重复。
-实际问题的概率应用:将概率知识应用于解决实际问题,学生可能会感到难以入手。
-解决方法:通过设置真实的情境,引导学生分析问题结构,将实际问题转化为数学模型,再进行概率计算。
实践活动环节,同学们分组讨论和实验操作都进行得很顺利。我注意到,通过实际操作,大家更容易理解概率的计算过程,这也说明了动手实践在数学教学中的重要性。
不过,我也注意到在小组讨论中,有些同学还不够积极主动,可能是因为对主题不够感兴趣,或者是对自己的观点不够自信。在之后的课程中,我需要思考如何更好地激发这些同学的积极性,鼓励他们大胆表达自己的看法。
-例如:设计一个关于彩票中奖概率的问题,让学生了解如何将实际问题转化为概率计算。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《随机事件》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过一些不确定的事情?”比如抛硬币、抽签等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索随机事件的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“随机事件在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调随机事件的分类和概率计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
人教版九年级数学上册第二十五章概率初步课件:25.1.1随机事件(共24张PPT)

太阳从西边升起可能发生吗?今天一定能遇 到小帅吗?
探究新知
问题1:抽签研究: 5 名同学参加讲演比赛,以抽 签方式决定每个人的出场顺序,签筒中有 5 根形状、 大小相同的纸签,上面分别标有出场的序号 1 ,2 , 3 ,4 ,5 . 小军首先抽签,他在看不到纸签上的数 字的情况下从签筒随机( 任意 ) 抽取一根纸签,请 考虑讨论一下问题: (1) 抽到的序号有几种可能的结果? (2) 抽到的序号小于 6 吗? (3) 抽到的序号会是 0 吗? (4) 抽到的序号会是 1 吗?
(1) 抽到的序号有几种可能的结果?
每次抽签的结果不一定相同,序号 1 ,2 ,3 ,4 , 5 都有可能抽到,共有 5 种可能的结果,但是事先 不能预料一次抽签会出现哪一种结果 ;
(2) 抽到的序号小于 6 吗? 抽到的序号一定小于 6 ; (3) 抽到的序号会是 0 吗? 抽到的序号不会是 0 ;
25.1.1 随机事件
情境导入
问题1:今天去福利彩票投注站购买了 5 张彩票, 一等奖是 500 万元,我可以中 2500 万啦 .
你说是一定的吗?
问题2:今天早晨我去学校,从东面骑着共享单车, 看着西边缓缓升起的太阳,想着昨天我在校门口遇 到了我的好朋友小帅,今天一定还能在校门口遇到 小帅,心里美滋滋的 .
归纳: 一般地,随机事件发生的可能性是有黄球”比“摸出白球” 的可能性大的原因是什么? 黄球数量多于白球 (2) 能否通过改变袋子中某种颜色的球的数量,使 “摸到黄球'和”摸到白球'的可能性大小相同? 黄球数量=白球数量
例题解析
例题3:把黄、白共 18 个乒乓球放在三个不透明的 盒子里,每个盒子放 6 个乒乓球 . 乒乓球的形状、 大小完全相同,在看不到乒乓球的条件下: (1) 如果 1 号盒子里放入 5 个黄球和 1 个白球,那 么随机从盒子中摸出一个球是黄球和摸出一个球是 白球的可能性哪个大? 摸出一个球是黄球的可能性大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章 概率初步
25.1 随机事件与概率 25.1.1 随机事件
学习目标:1.会对必然事件,不可能事件和随机事件作出准确判断.
2.归纳出必然事件、不可能事件和随机事件的特点.
3.知道事件发生的可能性是有大小的.
重点:会对必然事件,不可能事件和随机事件作出准确判断. 难点:能归纳出必然事件、不可能事件和随机事件的特点.
一、知识链接
1.下列问题哪些是必然发生的?哪些是不可能发生的? (1)太阳从西边下山; (2)某人体温是100℃;
(3)水往低处流; (4)一元二次方程2230x x ++=有实数解.
2. 我们把上面的事件(1)、(3)称为必然事件,把事件(2)、(4)
称为不可
能事件,想一想什么是必然事件?什么是不可能事件呢?
二、要点探究
探究点1:必然事件、不可能事件和随机事件
活动1 掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,观察骰子向上的一面:
(1) 可能出现哪些点数?
(2) 出现的点数小于 7,可能发生吗?
(3) 出现的点数会是 8,可能发生吗?
(4) 抛掷一次,出现的点数是 6,可能发生吗?
活动2 摸球游戏
(1) 小明从盒中任意摸出一球,一定能摸到红球吗?
(2) 小麦从盒中摸出的球一定是白球吗?
(3) 小米从盒中摸出的球一定是红球吗?
(4) 三人每次都能摸到红球吗?
知识要点:在一定条件下,有些事情必然会发生,这样的事件叫做必然事件.
必然不会发生的事件叫做不可能事件.
必然事件与不可能事件统称确定性事件.
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
例1 判断下列事件是必然事件、不可能事件还是随机事件.
(1) 乘公交车到十字路口,遇到红灯;
(2) 把实心铁块扔进水中,铁块浮起;
(3) 任选13人,至少有两人的出生月份相同;
(4) 从上海到北京的某次动车明天准点到达北京.
方法归纳:判断一个事件的类型,要从其定义出发,同时也要联系理论及生活的相关常识来判断;注意必然事件和不可能事件都是事先可以确定的,一定发生的是必然事件,一定不发生的是不可能事件,否则就是随机事件.
练一练下列现象哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1) 木柴燃烧,产生热量;
(2) 明天,地球还会转动;
(3) 煮熟的鸭子,飞了;
(4) 守株待兔.
说一说你能说出几个与必然事件、随机事件、不可能事件相关的成语吗?
探究点2:随机事件的可能性的大小
问题袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全
相同,在看不到球的条件下,随机地从袋子中摸出一个球.
(1) 这个球是白球还是黑球?
(2) 如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?
想一想:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?
要点归纳:一般地,
1.随机事件发生的可能性是有大小的;
2.不同的随机事件发生的可能性的大小有可能不同.
例2 有一个转盘(如图),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:
(1) 可能性最大的事件是_____,可能性最小的事件是_____(填写序号);
(2) 将这些事件的序号按发生的可能性从小到大的顺序排列: .
例3 一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.
方法归纳:要比较随机事件的可能性大小,可以按如下步骤进行:
(1)确定:明确“决定不同随机事件发生的要素”.
(2)计算:计算每一个要素的数量.
(3)结论:比较数量的多少,判断可能性的大小.
三、课堂小结
1.下列事件中,是必然事件的有_________,是不可能事件的有_________,是随机事件的有________.(填序号)
(1) 太阳从东边升起.
(2) 篮球明星林书豪投10次篮,次次命中.
(3) 打开电视正在播中国新航母舰载机训练的新闻片.
(4) 一个三角形的内角和为181度.
2.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x= .
3.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性( )“落在陆地上”的可能性.
A. 大于
B. 等于
C. 小于
D. 三种情况都有可能
4.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.
(1) 能够事先确定抽取的扑克牌的花色吗?
(2) 你认为抽到哪种花色扑克牌的可能性大?
(3) 能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小
相同?
5.如图,一个圆形转盘被平均分成8个小扇形.请在这8个小扇形中分别写上数字1、2、3,任意转动转盘,使得转盘停止转动后,“指针落在数字1的区域”的可能性最大,且“指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同.
参考答案
自主学习
知识链接
1.(1)必然发生(2)不可能发生(3)必然发生(4)不可能发生
2.必然事情是一定会发生的事情,不可能事件是绝对不会发生的事情. 课堂探究
二、要点探究
探究点1:必然事件、不可能事件和随机事件
活动1
(1)可能出现1点,2点,3点,4点,5点,6点,共6种
(2)一定会发生
(3)不可能发生
(4)可能发生,也可能不发生
活动2
(1)可能发生,也可能不发生
(2)是
(3)是
(4)只有小米每次都能摸到红球,小明可能摸到红球,也可能摸不到红
.
)随机事件(2)不可能事件(3)必然事件(4)随机事件
练一练①必然事件②必然事件③不可能事件④随机事件说一说答案不唯一,如必然事件:种瓜得瓜,种豆得豆,黑白分明
随机事件:塞翁失马,不期而至
不可能事件:海枯石烂,画饼充饥,拔苗助长
探究点2:随机事件的可能性的大小
问题(1)答:可能是白球也可能是黑球.
(2)答:摸出黑球的可能性大.
想一想:答:可以.例如:白球个数不变,拿出2个黑球;或黑球个数不变,加入2个白球.
例2 (1)④ ② (2)②③①④
例3 解:至少再放入4个绿球. 理由:此前袋中最多的为红球,有 7 个,摸到红球的可能性最大.如果要使摸到绿球的可能性最大,那么绿球需比红球多,则绿球至少为 8 个.而口袋中已有 4 个绿球,故至少需要再放入 4 个绿球.
当堂检测
1.(1)(4)(2)(3)
2.4
3.A
4.解:(1) 不能确定;
(2) 黑桃;
(3) 可以,去掉一张黑桃或增加一张红桃.
5.解:如图所示.。