灰色预测模型介绍.

合集下载

灰色预测模型公式

灰色预测模型公式

灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。

灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。

灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。

灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。

系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。

灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。

2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。

3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。

4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。

5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。

灰色预测模型在实际应用中具有广泛的应用价值。

它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。

同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。

灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。

灰色理论预测模型

灰色理论预测模型

灰⾊理论预测模型灰⾊理论通过对原始数据的处理挖掘系统变动规律,建⽴相应微分⽅程,从⽽预测事物未来发展状况。

优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较⼩;缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。

灰⾊预测模型在多种因素共同影响且内部因素难以全部划定,因素间关系复杂隐蔽,可利⽤的数据情况少下可⽤,⼀般会加上修正因⼦使结果更准确。

灰⾊系统是指“部分信息已知,部分信息未知“的”⼩样本“,”贫信息“的不确定系统,以灰⾊模型(G,M)为核⼼的模型体系。

灰⾊预测模型建模机理灰⾊系统理论是基于关联空间、光滑离散函数等概念,定义灰导数与会微分⽅程,进⽽⽤离散数据列建⽴微分⽅程形式的动态模型。

灰⾊预测模型实验以sin(pi*x/20)函数为例,以单调性为区间检验灰⾊模型预测的精度通过实验可以明显地看出,灰⾊预测对于单调变化的序列预测精度较⾼,但是对波动变化明显的序列⽽⾔,灰⾊预测的误差相对⽐较⼤。

究其原因,灰⾊预测模型通过AGO累加⽣成序列,在这个过程中会将不规则变动视为⼲扰,在累加运算中会过滤掉⼀部分变动,⽽且由累加⽣成灰指数律定理可知,当序列⾜够⼤时,存在级⽐为0.5的指数律,这就决定了灰⾊预测对单调变化预测具有很强的惯性,使得波动变化趋势不敏感。

本⽂所⽤测试代码:1 clc2 clear all3 % 本程序主要⽤来计算根据灰⾊理论建⽴的模型的预测值。

4 % 应⽤的数学模型是 GM(1,1)。

5 % 原始数据的处理⽅法是⼀次累加法。

6 x=[0:1:10];7 x1=[10:1:20];8 x2=[0:1:20];9 y=sin(pi*x/20);10 n=length(y);11 yy=ones(n,1);12 yy(1)=y(1);13 for i=2:n14 yy(i)=yy(i-1)+y(i);15 end16 B=ones(n-1,2);17 for i=1:(n-1)18 B(i,1)=-(yy(i)+yy(i+1))/2;19 B(i,2)=1;20 end21 BT=B';22 for j=1:n-123 YN(j)=y(j+1);24 end25 YN=YN';26 A=inv(BT*B)*BT*YN;27 a=A(1);28 u=A(2);29 t=u/a;30 t_test=5; %需要预测个数31 i=1:t_test+n;32 yys(i+1)=(y(1)-t).*exp(-a.*i)+t;33 yys(1)=y(1);34 for j=n+t_test:-1:235 ys(j)=yys(j)-yys(j-1);36 end37 x=1:n;38 xs=2:n+t_test;39 yn=ys(2:n+t_test);40 det=0;41 for i=2:n42 det=det+abs(yn(i)-y(i));43 end44 det=det/(n-1);4546 subplot(2,2,1),plot(x,y,'^r-',xs,yn,'b-o'),title('单调递增' ),legend('实测值','预测值');47 disp(['百分绝对误差为:',num2str(det),'%']);48 disp(['预测值为: ',num2str(ys(n+1:n+t_test))]);495051 %递减52 y1=sin(pi*x1/20);53 n1=length(y1);54 yy1=ones(n1,1);55 yy1(1)=y1(1);56 for i=2:n157 yy1(i)=yy1(i-1)+y1(i);58 end59 B1=ones(n1-1,2);60 for i=1:(n1-1)61 B1(i,1)=-(yy1(i)+yy1(i+1))/2;62 B1(i,2)=1;63 end64 BT1=B1';65 for j=1:n1-166 YN1(j)=y1(j+1);67 end68 YN1=YN1';69 A1=inv(BT1*B1)*BT1*YN1;70 a1=A1(1);71 u1=A1(2);72 t1=u1/a1;73 t_test1=5; %需要预测个数74 i=1:t_test1+n1;75 yys1(i+1)=(y1(1)-t1).*exp(-a1.*i)+t1;76 yys1(1)=y1(1);77 for j=n1+t_test1:-1:278 ys1(j)=yys1(j)-yys1(j-1);79 end80 x21=1:n1;81 xs1=2:n1+t_test1;82 yn1=ys1(2:n1+t_test1);83 det1=0;84 for i=2:n185 det1=det1+abs(yn1(i)-y1(i));86 end87 det1=det1/(n1-1);8889 subplot(2,2,2),plot(x1,y1,'^r-',xs1,yn1,'b-o'),title('单调递增' ),legend('实测值','预测值');90 disp(['百分绝对误差为:',num2str(det1),'%']);91 disp(['预测值为: ',num2str(ys1(n1+1:n1+t_test1))]);9293 %整个区间93 %整个区间94 y2=sin(pi*x2/20);95 n2=length(y2);96 yy2=ones(n2,1);97 yy2(1)=y2(1);98 for i=2:n299 yy2(i)=yy2(i-1)+y2(i);100 end101 B2=ones(n2-1,2);102 for i=1:(n2-1)103 B2(i,1)=-(yy2(i)+yy2(i+1))/2;104 B2(i,2)=1;105 end106 BT2=B2';107 for j=1:n2-1108 YN2(j)=y2(j+1);109 end110 YN2=YN2';111 A2=inv(BT2*B2)*BT2*YN2;112 a2=A2(1);113 u2=A2(2);114 t2=u2/a2;115 t_test2=5; %需要预测个数116 i=1:t_test2+n2;117 yys2(i+1)=(y2(1)-t2).*exp(-a2.*i)+t2;118 yys2(1)=y2(1);119 for j=n2+t_test2:-1:2120 ys2(j)=yys2(j)-yys2(j-1);121 end122 x22=1:n2;123 xs2=2:n2+t_test2;124 yn2=ys2(2:n2+t_test2);125 det2=0;126 for i=2:n2127 det2=det2+abs(yn2(i)-y2(i));128 end129 det2=det2/(n2-1);130131 subplot(2,1,2),plot(x2,y2,'^r-',xs2,yn2,'b-o'),title('全区间' ),legend('实测值','预测值'); 132 disp(['百分绝对误差为:',num2str(det2),'%']);133 disp(['预测值为: ',num2str(ys2(n2+1:n2+t_test2))]);。

01灰色预测

01灰色预测

算法简介1、灰色预测模型(必掌握) 灰色预测模型使用范围:①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式③只适合做中短期预测,不适合长期预测。

灰色预测原理比较简单,详细的可以参考司守奎《数学建模算法与应用》。

需要注意的几点是:(1)灰色预测的使用范围(2)灰色预测中的“级比”如果级比不在范围要对数据进行处理。

(3)司老师书中的代码,并没有运行出后面的运行结果,如果想运行出预测的结果,看下面的说明。

(4)在使用灰色预测的时候要考虑残差等(见代码的最后三行) (5)代码直接复制粘贴文本文档的文件就可以了。

(6)文本文档是给出了两种代码,不要复制错了,第一个是司老师书中的。

第二个是学员提交的作业,可以直接得出预测结果,但是没有检验结果。

例 北方某城市 1986~1992 年道路交通噪声平均声级数据见1。

表1 城市交通噪声数据/dB(A)序号 年份 eq L序号 年份 eq L1 1986 71.1 5 1990 71.42 1987 72.4 6 1991 72.03 1988 72.4 7 1992 71.6 4198972.1该例题源代码如下: clc,clearx0=[71.1 72.4 72.4 72.1 71.4 72.0 71.6]';%注意这里为列向量 n=length(x0);lamda=x0(1:n-1)./x0(2:n) %计算级比 range=minmax(lamda') %计算级比的范围 x1=cumsum(x0); %累加运算B=[-0.5*(x1(1:n-1)+x1(2:n)),ones(n-1,1)]; Y=x0(2:n); u=B\Y syms x(t)x=dsolve(diff(x)+u(1)*x==u(2),x(0)==x0(1));%求微分方程的符号解xt=vpa(x,6)%以小数格式显示微分方程的解yuce1=subs(x,t,[0:n-1]);%为提高预测精度,先计算预测值,再显示微分方程的解。

灰色预测模型

灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。

二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。

一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。

软件DPS 的分析结果也提供了C 、p 的检验结果。

(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。

我们在原始数据序列中取出一部分数据,就可以建立一个模型。

一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。

灰色预测模型原理

灰色预测模型原理

灰色预测模型原理灰色预测模型(Grey Prediction Model)是一种基于灰色系统理论和数学建模方法的预测模型。

灰色系统理论是我国学者黄金云教授于1982年提出的一种系统理论,它是研究非确定性和不完备信息系统的一种新方法,可用于研究多变量、小样本和非线性系统。

灰色预测模型主要基于灰色数学建模方法,通过对已知的部分序列数据进行建模和预测,来推测未知的序列数据趋势。

它适用于研究数据量小、信息不完备、非线性关系复杂的系统。

下面将简要介绍灰色预测模型的原理、模型建立过程以及一些应用案例。

1. 灰色预测模型的原理灰色预测模型的核心思想是通过对已知数据进行灰色关联度的度量,从而建立出合适的数学模型,进行未来数据的预测。

其基本原理可以概括为以下五个步骤:(1)建立灰色微分方程:根据原始数据的特点,确定合适的灰色微分方程,通常使用一阶或高阶灰色微分方程。

(2)求解灰色微分方程:根据所选择的灰色微分方程,求解其参数,得到模型的特征参数。

(3)模型检验:检验所建立的灰色预测模型的拟合程度和误差是否符合要求。

(4)进行灰色关联度分析:根据已知数据的变化规律,计算各个因素的灰色关联度,确定相关因素的重要性。

(5)进行预测:利用建立好的灰色预测模型,对未来的数据进行预测和分析,得出预测值。

2. 模型建立过程灰色预测模型的建立过程中,通常包括以下几个步骤:(1)数据的建立与处理:对原始数据进行筛选、预处理和归一化处理,以满足模型的要求。

(2)建立灰色微分方程:从已知数据中提取主要特征,并根据数据的特点选择合适的灰色微分方程。

(3)求解灰色微分方程:根据所选的灰色微分方程,通过累加生成序列、求解参数等方法,得到模型的特征参数。

(4)模型的检验:根据已知数据的拟合程度和误差范围,评估所建立的灰色预测模型的准确性和可靠性。

(5)模型的应用与预测:利用已建立的模型进行未来数据的预测和分析,得出预测结果。

3. 应用案例灰色预测模型在实际应用中具有广泛的应用范围,以下是一些常见的应用案例:(1)经济领域:用于对经济指标、市场需求、价格变动等进行预测,为经济决策提供参考。

灰色预测模型在人口增长预测中的运用

灰色预测模型在人口增长预测中的运用

灰色预测模型在人口增长预测中的运用摘要:本文依照灰色理论建立相应灰色预测模型,对榆林市城市人口未来人口总量进行了分析和预测。

笔者首先是对初始数据榆林市近年来城市人口数量进行预处理,进行合理的假设;其次,建立GM(1,1)模型,结合数据,推算出榆林市未来人口增长趋势;然后是对模型进行合理的检验,并对此模型进行评价。

关键词:人口增长;灰色预测;GM(1,1)模型一、灰色预测模型1、灰色预测模型灰色模型理论是由我国学者邓聚龙教授在1982年创立的。

灰色模型理论以“部分信息已知,部分信息未知”的“小样本”、“贫信息”不确定性系统为研究对象,主要通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行规律的正确认识和有效控制。

灰色预测模型属于全因素的非线性拟合外推类方法,在形式上是单数列预测,只运用研究对象自身的时间序列建立模型,与其相关联的因素没有参与建模,这正是灰色系统“灰”的体现。

因为任何一个系统究竟包含多少因素,难以说清。

比如人口系统的再生产是由生育、死亡、疾病、灾害、环境、社会、经济等诸多因素影响、制约的共同结果,如此众多的因素不可能通过几个指标就能表达清楚,它们对人口增长的潜在而复杂的影响更是无法精确计算。

这反映人口系统具有明显的灰色性,适宜采用灰色模型去发掘和认识其原始时间序列综合灰色量所包涵的内在规律。

灰色预测的基本思路事将已知的数据序列按照某种规则构成动态或非动态的白色模块,再按照某种变化、解法来求解未来的灰色模型。

它的主要特点是模型使用的不是原始数据序列,而是生成的数据序列。

其核心体系是灰色模型GM(1,1),即对原始数据作累加生成得到近似的指数规律再进行建模的方法。

优点是不需要很多数据,一般只需要四个数据就够,能解决历史数据少、序列的完整性及可靠性低的问题;能利用微分方程来充分挖掘系统的本质,精度较高;能将无规律的原始数据进行生成得到规律性较强的生成数列,运算简便,易于检验,具有不考虑分布规律,不考虑变化趋势的特点。

数学建模——灰色预测模型

数学建模——灰色预测模型

数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。

它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。

灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。

该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。

灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。

其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。

通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。

灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。

2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。

3.求解微分方程:求解微分方程,得到预测模型的参数。

4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。

示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。

然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。

这种情况下,你可以考虑使用灰色预测模型来预测销售量。

步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。

2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。

3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。

4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。

这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。

虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。

时序预测中的灰色模型介绍(十)

时序预测中的灰色模型介绍(十)

时序预测中的灰色模型介绍时序预测是一种应用广泛的数据分析方法,它可以帮助我们预测未来一段时间内的数据趋势。

而在时序预测中,灰色模型是一种常用的模型之一。

本文将介绍灰色模型的基本原理、应用范围和优缺点。

一、灰色模型的基本原理灰色系统理论最早由中国科学家陈裕昌教授提出,它是一种用于处理少量数据和缺乏信息的系统分析方法。

灰色模型的基本原理是通过对数据进行灰色关联分析、灰色预测等处理,来实现对未来时序数据的预测。

灰色模型的关键在于建立数据的灰色关联度,通过对数据进行加权处理,将不规则的数据变为规则的规整数据,进而实现对未来数据的预测。

这种方法不仅可以用于单变量时序数据的预测,还可以用于多变量时序数据的预测,具有一定的灵活性和适用范围。

二、灰色模型的应用范围灰色模型在实际应用中具有广泛的应用范围,主要包括以下几个方面:1. 经济领域:灰色模型可以用于对经济指标的预测,如国内生产总值、消费指数、失业率等。

通过对这些指标的预测,可以帮助政府和企业制定发展战略和政策。

2. 工业领域:灰色模型可以用于对工业生产数据的预测,如原材料价格、产量、需求量等。

这对于企业的生产计划和库存管理具有重要意义。

3. 环境领域:灰色模型可以用于对环境数据的预测,如空气质量、水质数据等。

通过对这些数据的预测,可以帮助政府和环保部门采取相应的措施来改善环境。

4. 医疗领域:灰色模型可以用于对医疗数据的预测,如疾病发病率、病人数量、医疗资源需求等。

这对于医院和卫生部门的资源配置和医疗服务规划具有重要意义。

三、灰色模型的优缺点灰色模型作为一种时序预测方法,具有以下优点:1. 适用范围广:灰色模型可以处理各种类型的时序数据,包括线性和非线性数据,适用范围广泛。

2. 数据要求低:灰色模型对数据的要求相对较低,对于缺乏信息或者数据量较少的情况也可以进行预测。

3. 预测精度高:灰色模型在一定范围内可以取得较高的预测精度,对于短期和中期的预测效果较好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型与数学实验数课程报告题目:灰色预测模型介绍专业:班级:姓名:学号:二0一一年六月1. 模型功能介绍预测模型为一元线性回归模型,计算公式为Y=a+b。

一元非线性回归模型:Y=a+blx+b2x2+…+bmxm。

式中:y为预测值;x为自变量的取值;a,b1,b2……bm为回归系数。

当自变量x与因变量y之间的关系是直线上升或下降时,可采用一元线性预测模型进行预测。

当自变量x和因变量y之间呈曲线上升或下降时,可采用一元非线性预测模型中的y=a+b1x+b2x2+…+bmxm这个预测模型。

当自变量x和因变量y之间关系呈上升一下降一再上升一再下降这种重复关系时,可采用一元线性预测模型中的Y=a+bx这个模型来预测。

其中我要在这里介绍灰色预测模型。

灰色预测是就灰色系统所做的预测,灰色系统(Grey System)理论[]1是我国著名学者邓聚龙教授20世纪80年代初创立的一种兼备软硬科学特性的新理论[95]96]。

所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。

一般地说,社会系统、经济系统、生态系统都是灰色系统。

例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。

灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。

尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

灰色系统的基本原理公理1:差异信息原理。

“差异”是信息,凡信息必有差异。

公理2:解的非唯一性原理。

信息不完全,不明确地解是非唯一的。

公理3:最少信息原理。

灰色系统理论的特点是充分开发利用已有的“最少信息”。

公理4:认知根据原理。

信息是认知的根据。

公理5:新信息优先原理。

新信息对认知的作用大于老信息。

公理6:灰性不灭原理。

“信息不完全”是绝对的。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

灰色预测模型实际上是一个微分方程, 称为GM模型。

GM(1,N)[]1表示1阶的,N个变量的微分方程型模型;则是1阶的,1个变量的微分方程型模型。

在实际进行预测时, 一般选用GM(1,1) 模型, 因为这种模型求解较易, 计算量小, 计算时间短, 精度较高。

现在下面简单介绍有关于灰色预测的相关知识点:为了弱化原始时间序列的随机性在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。

灰色系统常用的数据处理方式有累加和累减两种。

关联度]1[1、关联系数GM(1,1)[]1模型的建立(1)、设时间序列有n个观察值,,通过累加生成新序列,则GM(1,1)模型相应的微分方程为:其中:α称为发展灰数;μ称为内生控制灰数。

(2)、设为待估参数向量,,可利用最小二乘法求解。

解得:求解微分方程,即可得预测模型:,(3)、模型检验灰色预测检验一般有残差检验、关联度检验和后验差检验。

GM (n ,h )]1[模型(1)、残差模型:若用原始经济时间序列建立的GM (1,1)模型检验不合格或精度不理想时,要对建立的GM (1,1)模型进行残差修正或提高模型的预测精度。

修正的方法是建立GM (1,1)的残差模型。

(2)、GM (n ,h )模型GM (n ,h )模型是微分方程模型,可用于对描述对象作长期、连续、动态的反映。

从原则上讲,某一灰色系统无论内部机制如何,只要能将该系统原始表征量表示为时间序列,并有, (N 表数自然数集),即可用GM 模型对系统进行描述。

2.常用模型[]22.1常用模型1——数列预测模型数列预测就是对某一指标的发展变化情况所作的预测,其预测的结果是该指标在未来各个时刻的具体数值。

譬如,在地理学研究中,人口数量预测、耕地面积预测、粮食产量预测、工农业总产值预测,等等,都是数列预测。

数列预测的基础,是基于累加生成数列的GM(1,1)模型。

设(0)(0)(0)(1),(2),,()x x x M 是所要预测的某项指标的原始数据。

一般而言,(0){()}1M t x t =是一个不平稳的随机数列,对于这样一个随机数列,如果数据趋势无规律可循,则无法用回归预测法对其进行预测。

如果对(0){()}1M t x t =作依次累加生成处理,即(1)(0)(1)(1)x x =x (1)(2)=x (0)(1)+x (0)(2)x (1)(3)=x (0)(1)+x (0)(2)+x (0)(3)(1)(0)1(1)(0)1()()()()k t Mt x k x t x M x t ====∑∑则得到一个新的数列(1){()}1M t x t =。

这个数列与原始数列(0){()}1M t x t =相比较,其随机性程度大大弱化,平稳程度大大增加。

对于这样的新数列,其变化趋势可以近似地用如下微分方程描述:在(1)式中,a 和u 可以通过如下最小二乘法拟合得到:在(2)式中,Y M 为列向量Y M =[x (0)(2),x (0)(3),…,x (0)(M)]T;B 为构造数据矩阵: (1)(1)(1)(1)(1)(1)1/2(1)(2)11/2(2)(3)11/2(1)()1x x x x x M x M ⎡⎤⎡⎤-+⎣⎦⎢⎥⎢⎥⎡⎤-+⎣⎦⎢⎥⎢⎥⎢⎥⎡⎤--+⎢⎥⎣⎦⎣⎦微分方程(1)式所对应的时间响应函数为:(3)式就是数列预测的基础公式,由(3)式对一次累加生成数列的预测值(1)()x t 可以求得原始数的还原值:'(0)(1)(1)()()(1)(4)x t x t x t =--在(4)式中,t=1,2,…,M,并规定(1)(0)0x =。

原始数据的还原值与其观测值之间的残差值ε(0)(t)和相对误差值q(t)如下:(0)(0)(0)(0)(0)()()()(5)()()100%()t x t x t t q t x t εε'⎧=-⎪⎨=⨯⎪⎩对于预测公式(3),我们所关心的问题是它的预测精度。

这一预测公式是否达到精度要求,可按下述方法进行精度检验。

首先计算:其次计算:方差比c=s 2/s 1 及小误差概率:(0)(0)1{|()|0.6745}P t s εε-<一般地,预测公式(3)的精度检验可由表10-2给出。

如果p 和c 都在允许范围之内,则可以计算预测值。

否则,需要通过对残差序列(0){()}2M t t ε=的分析对(3)式进行修正,灰色预测常用的修正方法有残差序列建模法和周斯分析法两种。

2.2常用模型2——灾变预测模型一般地,如果表征系统行为特征的指标超出了某个阈值(临界值),则称发生了灾害。

因此,所谓灾变是相对于所研究的问题的表征变量而言的。

是否发生灾变要依据有关的表征变量的数值大小而定。

譬如,旱灾和涝灾是相对于农作物生长过程中,作物需水与大气降水的差值大小而言的。

如果以降水量作为旱涝灾害标征指标,则只有当降水量小于(或大于)某一阈值时,才认为发生了旱(或涝)灾。

灾变预测就是指对灾变发生的年份的预测。

对于表征系统行为的指标数列:{x(0)(1),x(0)(2),…,x(0)(N)} (7)规定一个灾变阈值ξ,x(0)(i)中那些≤ξ(或≥ξ)的点被认为是具有异常值的点(灾变发生点),把它们按原来的编序挑选出来组成一个新的数据序列0(0)(0)'=≤(8){()}{()|()}x i x q x qξ则式(8)称之为下限(或上限)灾变数列。

作灾变映射p∶{i′}→{q} (9) 则灾变预测就是按灾变日期序列p={p(1′),p(2′),…,p(n′)} (10) 建立GM(1,1)预测模型所进行的灾变日期预测。

譬如,某地区连续17年的降水量数据如表10-4所示。

若规定降水量ξ≤320mm的年份为旱灾年份,试用灾变预测法预测下次旱灾发生的年份。

表1-1 某地区年降水量(单位:mm)(1)首先作灾变映射,建立GM(1,1)模型。

作映射p∶{i′}→{q}对灾变日期序列p={p(1′),p(2′),p(3′),p(4′),p(5′)}={3,8,10,14,17}建立GM(1,1)模型为了书写方便,不妨将p(i′)记为p(i)(i=1,2,3,4,5)将p中的数据作一次累加处理:p(1)(1)=p(1)=3p(1)(2)=p(1)+p(2)=11p(1)(3)=p(1)+p(2)+p(3)=21p(1)(4)=p(1)+p(2)+p(3)+p(4)=35p(1)(5)=p(1)+p(2)+p(3)+p(4)+p(5)=52p(1)(t)可用下述微分方程拟合:而系统辨识参数为(12)式中:因此(5)式就为:(13)式的时间响应为:p(1)(i+1)=27.677e-0.25361i-24.677 (14)(2)误差分析:灾变日期数列的预测计算值与实际值的相对误差计算如下:计算值实际值相对误差p(2)=7.999 p(2)=8 q(2)=0.125%p(3)=10.286 p(3)=10 q(3)=-2.86%p(4)=13.268 p(4)=14 q(4)=5.1%p(5)=17.099 p(5)=17 q(5)=-0.582%显然,最大相对误差为5.1%。

所以上述模型(14)式可用于预测。

(3)预测:将i=5,和i=6分别代入(14)式得:p (1)(5)=51.662,p (1)(6)=73.342因此:p(6)=p (1)(6)-p (1)(5)=21.68由于从n=17算起,21.68与17之差为4.68,所以从现在算起将在4年左右发生下一次旱灾。

2.3常用模型3——系统预测模型]3[灰色系统是指部分信息未知、部分信息已知的系统。

灰色系统理论所要考察的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的,研究的是信息不完全的对象,内涵不确定的概念,关系不明确的机制。

按其具体对象而言,可分为工程技术系统、农业系统、生态系统、社会系统等,除工程技术系统外其余系统称为本征性系统。

灰色系统理论就是研究本征性灰色系统的量化问题,即研究系统的建模、预测、分析、决策和控制。

用灰色系统模型进行预测的步骤如下。

相关文档
最新文档