应用抽样技术课后习题答案
应用抽样技术课后习题答案

=(0.0907,0.4433)
N1的95%的置信区间为: (159,776) 95%的置信区间为 (159, 的置信区间为:
(3)N=1750,n=30, (3)N=1750,n=30,n1=8, t=1.96, p=0.267, q=1q=1-0.267=0.733 由此可计算得: t 2q 1.962 × 0.733 n0 = 2 = =1054.64 r p 0.01× 0.267 n = n0/[1+(n0—1)/N] = 1054.64/[1+1053.64/1750]=658.2942 = 659 计算结果说明,至少应抽取一个样本量为659的简单随机 样本,才能满足95%置信度条件下相对误差不超过10%的精度 要求。
t=1.96 (2)易知,N=1750,n=30, n = 8 1 n 8 N − n 1750 − 30 1− f p= 1 = = 0.267 = = = 0.03389 n −1 (n −1)N 29 ×1750 n 30
pq = p(1 − p) = 0.267 × 0.733 = 0.1957
5.5 证明:由(5.6)得:
V ( yR ) ≈ 1− f n (Yi − RX i )2 ∑
i =1 N
N −n 2 令 Sd = V , Nn
2 d
N −1
=
N −n 2 Sd Nn
则n(NV + S ) = NS ,
2 d
S 2 NSd 从而n = = V 2 2 NV + Sd Sd 1+ NV
第五章 比率估计与回归估计
5.2 N=2000, n=36, 1-α=0.95, t=1.96, ˆ f = n/N=0.018, v(R) = 0.000015359, ˆ se(R) =0.00392 置信区间为[40.93%,42.47%]。 置信区间为[40.93%,42.47%]。
抽样技术课后习题_参考答案_金勇进

第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()ˆ(222=-=-==s nf N y N v YV 19.413081706366666(==)y v 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
抽样技术第二章参考答案

抽样技术第⼆章参考答案第⼆章习题判断下列抽样⽅法是否是等概的:(1)总体编号1~64,在0~99中产⽣随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产⽣随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产⽣随机数r 。
然后⽤r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有⼀些⼏个特点:第⼀,按照⼀定的概率以随机原则抽取样本。
第⼆,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当⽤样本对总体⽬标进⾏估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同解析:抽样理论和数理统计中关于样本均值的定义和性质的不同为了合理调配电⼒资源,某市欲了解50000户居民的⽇⽤电量,从中简单随机抽取了300户进⾏,现得到其⽇⽤电平均值=y (千⽡时),=2s 206.试估计该市居民⽤电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量⾄少应为多少解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()?(222=-=-==s nf N y N v YV19.413081706366666(==)y v该市居民⽤电量的95%置信区间为[])(y [2y V z N α±=[475000±*]即为(,)由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤-即n ≥862欲使相对误差限不超过10%,则样本量⾄少应为862某⼤学10000名本科⽣,现欲估计爱暑假期间参加了各类英语培训的学⽣所占的⽐例。
抽样技术课后习题_参考答案_金勇进

第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=0.35,是估计该大学所有本科生中暑假参加培训班的比例的95%置信区间。
解析:由已知得:10000=N 200=n 35.0=p 02.0==Nnf 又有:35.0)()(===∧p p E p E 0012.0)1(11)(=---=∧p p n fp V该大学所有本科学生中暑假参加培训班的比例95%的置信区间为:])()([2∧∧±P V Z P E α代入数据计算得:该区间为[0.2843,0.4157]2.5研究某小区家庭用于文化方面(报刊、电视、网络、书籍等)的支出,N=200,现抽取一个容量为20的样本,调查结果列于下表:编号 文化支出 编号 文化支出 1 200 11 150 2 150 12 160 3 170 13 180 4 150 14 130 5 160 15 100 6 130 16 180 7 140 17 100 8 100 18 180 9 110 19 170 1024020120估计该小区平均的文化支出Y ,并给出置信水平95%的置信区间。
应用抽样技术期末试题及答案

应用抽样技术期末试题及答案一、选择题1. 抽样是统计调查中的一种重要方法,以下关于抽样的说法正确的是:A. 抽样是指从整体中选择出有代表性的样本进行研究或调查B. 抽样是指从部分中选择出有代表性的样本进行研究或调查C. 抽样是指从样本中选择出有代表性的整体进行研究或调查D. 抽样是指从总体中选择出有代表性的样本进行研究或调查2. 在抽样调查中,以下哪种抽样方法可以保证每个个体被等可能地被抽取到样本中?A. 系统抽样B. 随机抽样C. 整群抽样D. 方便抽样3. 利用抽样获得的样本数据,能够推断总体的特征,以下哪种类型的推断是建立在统计学原理基础上的?A. 修改性推断B. 统计推断C. 精确推断D. 直接推断4. 通过抽样的方法,我们可以评估总体参数的数值,以下哪种方法是建立在中心极限定理的基础上的?A. 置信度B. 可信度C. 可靠度D. 信度5. 抽样调查中使用的样本容量过小可能导致结果的不准确,以下哪个因素不会影响样本容量的大小?A. 总体的大小B. 误差容忍度C. 可用资源D. 概率分布二、填空题1. 整群抽样是指将总体按照特定的特征分成多个________,然后从某些群体中选择样本进行调查。
答案:群体2. 抽样误差是指样本的统计特征与总体的真实特征之间的差异,它受到样本容量和________的影响。
答案:抽样方法3. 置信区间是用来估计总体参数的区间范围,常见的置信区间水平有________。
答案:90%、95%、99%4. 在简单随机抽样中,每个个体被选入样本的概率是________。
答案:相等的5. 样本的有效性是指样本是否真实、准确地反映了总体的特征,影响样本有效性的因素有样本的________。
答案:无偏性三、问答题1. 请简要说明抽样方法的分类及其特点。
答:抽样方法可以分为概率抽样和非概率抽样。
概率抽样是指每个个体被抽中的概率是可以计算的,包括简单随机抽样、系统抽样、整群抽样等。
抽样理论与应用习题答案

抽样理论与应用习题答案
《抽样理论与应用习题答案》
抽样理论与应用是统计学中非常重要的一个领域,它涉及到了如何从一个大的总体中抽取样本,并利用样本数据对总体进行推断和预测。
在实际应用中,我们经常会遇到各种各样的抽样问题,因此掌握抽样理论与应用的知识是非常重要的。
以下是一些关于抽样理论与应用的习题答案,希望能够帮助大家更好地理解这一领域的知识。
1. 什么是简单随机抽样?简单随机抽样是指从总体中随机地抽取样本,且每个样本具有相同的概率被选中。
2. 为什么简单随机抽样是一种有效的抽样方法?简单随机抽样能够保证样本的代表性,因为每个样本被选中的概率都是相同的,不会出现抽样偏差。
3. 什么是分层抽样?分层抽样是将总体按照某种特征分成若干层,然后从每一层中分别进行简单随机抽样,最终将各层的样本合并成总体样本。
4. 为什么要使用分层抽样?分层抽样能够保证每一层的样本都能够得到充分的代表性,从而提高总体样本的代表性。
5. 什么是整群抽样?整群抽样是将总体按照某种特征分成若干群,然后随机地选择若干群作为样本。
6. 为什么要使用整群抽样?整群抽样能够减少抽样的复杂度,同时也能够保证样本的代表性。
以上是一些关于抽样理论与应用的习题答案,希望能够帮助大家更好地理解这一领域的知识。
在实际应用中,我们需要根据具体情况选择合适的抽样方法,
并且在进行抽样时要注意保证样本的代表性,以便能够对总体进行准确的推断和预测。
抽样技术第三版全部课后答案

第二章习题2.1判定以下抽样方法是否是等概的: (1)总体编号1~64,在0~99中产生随机数r ,假设r=0或r>64那么舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,假设余数为0那么抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原那么抽取样本。
第二,每个单元被抽中的概率是的,或者是能够计算的。
第三,当用样本对总体目标进行估量时,要考虑到该样本被抽中的概率。
因此〔1〕中只有1~64是可能被抽中的,故不是等概的。
〔2〕不是等概的【缘故】〔3〕是等概的。
y 的定义和性质有哪些不同?机抽取了300户进行,现得到其日用电平均值=y 9.5〔千瓦时〕,=2s 206.试估量该市居民用电量的95%置信区间。
要是盼瞧相对误差限不超过10%,那么样本量至少应为多少?解:由可得,N=50000,n=300,5.9y =,2062=s 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为〔394035.95,555964.05〕 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,那么样本量至少应为8622.4某大学10000名本科生,现欲估量爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=0.35,是估量该大学所有本科生中暑假参加培训班的比例的95%置信区间。
解析:由得:10000=N 200=n 35.0=p 02.0==Nnf又有:35.0)()(===∧p p E p E 0012.0)1(11)(=---=∧p p n fp V该大学所有本科学生中暑假参加培训班的比例95%的置信区间为:])()([2∧∧±P V Z P E α代进数据计算得:该区间为[0.2843,0.4157]2.5研究某小区家庭用于文化方面〔报刊、电视、网络、书籍等〕的支出,N=200,现抽取一个容量为20的样本,调查结果列于下表:编号 文化支出 编号 文化支出 1 200 11 150 2 150 12 160 3 170 13 180 4 150 14 130 5 160 15 100 6 130 16 180 7 140 17 100 8 100 18 180 9 110 19 170 1024020120估量该小区平均的文化支出Y ,并给出置信水平95%的置信区间。
抽样技术习题答案

抽样技术习题答案抽样技术习题答案在统计学中,抽样技术是一种重要的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样技术的正确应用对于得出准确的结论和推断至关重要。
本文将通过一些抽样技术的习题来探讨相关答案,并解释其背后的原理。
1. 简单随机抽样假设有一个总体包含1000个元素,我们希望从中抽取一个简单随机样本,样本容量为100。
那么,我们可以使用随机数表或随机数生成器来选择100个随机数,然后根据这些随机数在总体中选择相应的元素。
2. 系统抽样假设我们有一个总体包含10000个元素,我们希望从中抽取一个系统样本,样本容量为200。
首先,我们计算出总体的抽样框架,即总体中每隔多少个元素抽取一个样本元素。
在这个例子中,总体容量除以样本容量得到的商为50,所以我们每隔50个元素抽取一个样本元素。
3. 分层抽样假设我们有一个总体分为三个层次,每个层次的容量分别为1000、2000和3000。
我们希望从每个层次中抽取相应的样本容量进行研究。
首先,我们计算每个层次的抽样比例,即样本容量除以总体容量。
然后,根据这些比例从每个层次中抽取相应的样本。
4. 整群抽样假设我们有一个总体包含50个群组,每个群组包含100个元素。
我们希望从每个群组中抽取一个样本,样本容量为20。
首先,我们计算每个群组的抽样比例,即样本容量除以群组容量。
然后,根据这些比例从每个群组中抽取相应的样本。
5. 效应量抽样效应量抽样是一种根据总体中的变异程度和所需的抽样误差来确定样本容量的方法。
假设我们想要研究某个总体的均值,我们需要根据总体的标准差、显著性水平和抽样误差来确定样本容量。
以上是一些常见的抽样技术及其应用。
通过正确选择和应用适当的抽样技术,我们可以获得可靠的数据,并进行准确的统计分析和推断。
然而,需要注意的是,抽样技术并不是万能的,它们都有自己的限制和假设条件。
因此,在使用抽样技术时,我们需要仔细考虑样本的代表性、样本容量和抽样误差等因素,以确保研究结果的可靠性和有效性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0.0167 2n
P
的95%的置信区间为:
1
p (u
2
(1 f ) pq 1 ) 0.267 (1.96 0.08144 0.0167) n 1 2n
=(0.0907,0.4433)
= 25149054
se(Ysrs)= 5014.883
面积/ 产量/ 亩 斤 3 1400 2.5 1120 4.2 1710 3.6 1500 1.8 720 5.2 1980 3.2 1310 2.4 1080 2.6 1300 1.2 480 29.7 12600
5.6 解 (3) 回归估计:
V(Pprop) ≈ΣhWh2 [(1—fh)/nh] Ph Qh
≈ n-1ΣhWh Ph Qh = n-1[0.2*0.1*0.9+0.3*0.2*0.8+0.5*0.4*0.6]
= 0.186 n-1
故 n ≈ 92.26 ≈93
4.8 解 已知W1=0.7,W2=0.3,p1=1/43,p2=2/57 (1)简单随机抽样 Psrs=(1+2)/100=0.03 V(P)=PQ/(n-1)=0.03*0.97/99=0.0002937
பைடு நூலகம்
(2)事后分层
Ppst=ΣhWhph=0.7*1/43+0.3*2/57=0.0268 V(Ppst) =ΣhWh2[(1—fh)/(nh—1)]phqh =0.72*[1/42](1/43)(42/43)+0.32*[1/56](2/57)(55/57) =0.00031942
第五章 比率估计与回归估计
0.92 n 4600 2 0.05 0.08
1 0
0.05 0.95 n 19 2 0.05
2 0
0.95 n 7600 2 0.05 0.05
2 0
第四章 分层抽样
4.3解:
s( yst ) 3.08 (元) (元) (1) yst 20.07 , (2)按比例分配 n=186,n1=57,n2=92,n3=37 (3)Neyman分配 n=175,n1=33,n2=99,n3=43 4.5 yst 75.79 ,置信区间(60.63,90.95)元。 (元)
Mi
98 102 57 251 67 48 154 223
累计Mi
98 200 257 508 575 623 777 1000
代码
1~98 99~200 201~257 258~508 509~575 576~623 627~777 778~1000
2CY C = X 2CY C X 2CY
则
V(
) V ( ) X x
n
R C X (2 CY C X )<0
V(
V(
y y 1 f 2 ) V ( ) R C X (2 CY C X ) 0 X x n
y y 1 f 2 ) V ( ) R C X (2 CY C X ) X x n
5.2 N=2000, n=36, 1-α =0.95, t=1.96, ˆ ) 0.000015359, f = n/N=0.018, v( R ˆ ) =0.00392 se( R 置信区间为[40.93%,42.47%]。
第五章 比率估计与回归估计
5.3当 方法,当 = C X 时两种方法都可使用。这是因为:
3.5解:已知
PQ (1) 由 n0 得: V ( p)
1 0
P1= 0.08, Q1= 1-P1 = 0.92; P2= 0.05, Q2 = 1– P2 = 0.95; V(p) = 0.05*0.05
,
0.08 0.92 n 30 2 0.05 Q (2 得: 由 n0 2 ) Cv ( p) P
t=1.96 (2)易知,N=1750,n=30, n1 8 n 8 1 f N n 1750 30 p 1 0.267 0.03389 n 1 (n 1) N 29 1750 n 30
pq p(1 p) 0.267 0.733 0.1957
5.7解:
n 1 n ylr ylr B( X x ) y 2 B( X x ) [ yi 2 B( xi X )] n i 1 E ( ylr ) E ( ylr ) B[ X E ( x )] Y
lr
E ( ylr ) Y , V ( ylr ) 1 f SY2 (1 2 )
样本 序号
21 22 23 24 25 26 27 28 29 30
支出额 (元)
49 45 95 36 25 45 128 45 29 84
3.3解:(1)依据题意和表1的数据,有:
1682 2 56.07(元), s y (118266 16822 / 30) / 30 798.73 yi 1682, y 30
表1 总体单位规模比值
i
1
zi
0.098
i
6
zi
0.067
2
3 4
0.102
0.057 0.251
7
8 9
0.048
0.154 0.223
6.1解:令 M 0 1000 ,则可以得到下表,从1-1000中 产生n=3个随机数,设为108,597,754,则第二、 第六和第七个单位入样。 i
1 2 3 4 5 6 7 8
^ ^
5.6 解 (2) 比率估计: R =∑i=1n Yi/ ∑i=1n Xi = 12600/29.7
= 424.2424
YR= XR = 460*424.2424 = 195151.5(斤) v(YR)=[N2(1—f)/n] *∑i=1n (yi—RXi )2/(n--1) =[1402(1—10/140)/90]*124363.5
C X 时用第一种方法,当 2CY
CX 2CY时用第二种
2CY y 1 f 2 2 1 f 2 2 1 f 2 1 f 2 2, V ( ) Y CY R CY 2 V ( y) SY Y CY X nX n n n
,
若
y ˆ ) 1 f R 2 (C 2 C 2 2 C C ) V ( ) V (R Y X Y X x n y y 1 f 2 CX
表1
样本 序号
1 2 3 4 5 6 7 8 9 10
30名学生某月购书支出金额的样本数据
支出额 (元)
85 62 42 15 50 39 83 65 32 46
样本 序号
11 12 13 14 15 16 17 18 19 20
支出额 (元)
20 75 34 41 58 63 95 120 19 57
4.6 解 已知W1=0.2,W2=0.3,W3=0.5, P1=0.1,P2=0.2,P3=0.4 P=ΣhWhPh=0.28,Q=1—P=0.72 n=100的简单随机抽样估计方差:
V(Psrs) ≈ [(1—f ’)/100]PQ ≈ 0.28*0.72/100
= 0.002016 按比例分配的分层抽样的估计方差:
2 d
5.6 解 (1) 简单估计:
总产量: Ysrs=(N/n)∑i=1n Yi=(140/10)[1400+1120+…+480]
^
=176400(斤)
v(Ysrs)=[N2(1—f)/n]SY2 =[1402(1—10/140)/10]*194911.1 = 354738222 se(Ysrs)= 18834.496
N1 的95%的置信区间为: (159,776)
(3)N=1750,n=30,n1=8, t=1.96, p=0.267, q=1-0.267=0.733 由此可计算得: t 2 q 1.962 0.733 n0 2 1054.64 r p 0.01 0.267
n = n0/[1+(n0—1)/N] = 1054.64/[1+1053.64/1750]=658.2942 = 659
= 1-0.397076 = 0.602924
5.5 证明:由(5.6)得:
V ( yR ) 1 f n
2 ( Y RX ) i i i 1 N
N 1
N n 2 Sd Nn
N n 2 令 Sd V , Nn
则n( NV S ) NS ,
2 d 2 d
S 2 NS d V 从而n 2 2 NV S d Sd 1 NV
回归系数 b = Sxy/Sxx2= 370.5965 ylr=x—b(x—X)=1260—370.5965*(2.97—460/140)=1377.089
Ylr=Nylr=192792.47(斤)
v(Ylr)=[N2(1—f)/n] *∑i=1n [yi—y—b(xi—x)]2/(n--2) =[1402(1—10/140)/80]*89480.59 = 20356834 se(Ylr)= 4511.855
故估计量 ylr 虽然与
一样都是 Y 的无偏估计, ylr
但方差不小于 ylr 的方差,
当 0时 V ( ylr ) V ( ylr ) ,
故 ylr 不优于
ylr。
第六章 不等概率抽样
6.1假设对某个总体,事先给定每个单位的与 规模成比例的比值 Zi ,如下表,试用代码 法抽出一个n=3的 PPS 样本。
第三章 简单随机抽样
3.3为调查某中学学生的每月购书支出水平,在全校 名学生中,用不放回简单随机抽样的方法抽得一 个的样本。对每个抽中的学生调查其上个月的购 书支出金额 yi (如表1所示)。 (1)在95%的置信度下估计该校学生该月平均购书支 出额; (2)试估计该校学生该月购书支出超出70元的人数; (3)如果要求相对误差限不超过10%,以95%的置信 度估计该校学生该月购书支出超出70元的人数比 例,样本量至少应为多少。