17遗传算法改进的模糊C-均值聚类MATLAB源代码

合集下载

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)Python遗传算法框架使用实例(一)使用Geatpy实现句子匹配在前面几篇文章中,我们已经介绍了高性能Python遗传和进化算法框架——Geatpy的使用。

本篇就一个案例进行展开讲述:pip install geatpy更新至Geatpy2的方法:pip install --upgrade --user geatpy查看版本号,在Python中执行:import geatpyprint(geatpy.__version__)我们都听过“无限猴子定理”,说的是有无限只猴子用无限的时间会产生特定的文章。

在无限猴子定理中,我们“假定”猴子们是没有像人类那样“智能”的,而且“假定”猴子不会自我学习。

因此,这些猴子需要“无限的时间"。

而在遗传算法中,由于采用的是启发式的进化搜索,因此不需要”无限的时间“就可以完成类似的工作。

当然,需要产生的文章篇幅越长,那么就需要越久的时间才能完成。

下面以产生"T om is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much."的句子为例,讲述如何利用Geatpy实现句子的搜索。

之前的文章中我们已经讲述过如何使用Geatpy的进化算法框架实现遗传算法编程。

这里就直接用框架。

把自定义问题类和执行脚本编写在下面的"main.py”文件中:# -*- coding: utf-8 -*-import numpy as npimport geatpy as eaclass MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置) # 定义需要匹配的句子strs = 'Tom is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much.'self.words = []for c in strs:self.words.append(ord(c)) # 把字符串转成ASCII码M = 1 # 初始化M(目标维数)maxormins = [1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = len(self.words) # 初始化Dim(决策变量维数)varTypes = [1] * Dim # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [32] * Dim # 决策变量下界ub = [122] * Dim # 决策变量上界lbin = [1] * Dim # 决策变量下边界ubin = [1] * Dim # 决策变量上边界# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵diff = np.sum((Vars - self.words)**2, 1)pop.ObjV = np.array([diff]).T # 把求得的目标函数值赋值给种群pop的ObjV执行脚本if __name__ == "__main__":"""================================实例化问题对象============================="""problem = MyProblem() # 生成问题对象"""==================================种群设置================================"""Encoding = 'RI' # 编码方式NIND = 50 # 种群规模Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,problem.borders) # 创建区域描述器population = ea.Population(Encoding, Field, NIND) # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)"""================================算法参数设置=============================="""myAlgorithm = ea.soea_DE_rand_1_L_templet(problem, population) # 实例化一个算法模板对象myAlgorithm.MAXGEN = 2000 # 最大进化代数"""===========================调用算法模板进行种群进化========================="""[population, obj_trace, var_trace] = myAlgorithm.run() # 执行算法模板population.save() # 把最后一代种群的信息保存到文件中# 输出结果best_gen = np.argmin(obj_trace[:, 1]) # 记录最优种群是在哪一代best_ObjV = obj_trace[best_gen, 1]print('最优的目标函数值为:%s'%(best_ObjV))print('有效进化代数:%s'%(obj_trace.shape[0]))print('最优的一代是第 %s 代'%(best_gen + 1))print('评价次数:%s'%(myAlgorithm.evalsNum))print('时间已过 %s 秒'%(myAlgorithm.passTime))for num in var_trace[best_gen, :]:print(chr(int(num)), end = '')上述代码中首先定义了一个问题类MyProblem,然后调用Geatpy内置的soea_DE_rand_1_L_templet算法模板,它实现的是差分进化算法DE-rand-1-L,详见源码:运行结果如下:种群信息导出完毕。

30个智能算法matlab代码

30个智能算法matlab代码

30个智能算法matlab代码以下是30个使用MATLAB编写的智能算法的示例代码: 1. 线性回归算法:matlab.x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];coefficients = polyfit(x, y, 1);predicted_y = polyval(coefficients, x);2. 逻辑回归算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];model = fitglm(x, y, 'Distribution', 'binomial'); predicted_y = predict(model, x);3. 支持向量机算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [1, 1, -1, -1, -1];model = fitcsvm(x', y');predicted_y = predict(model, x');4. 决策树算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitctree(x', y');predicted_y = predict(model, x');5. 随机森林算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = TreeBagger(50, x', y');predicted_y = predict(model, x');6. K均值聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];idx = kmeans(data, 2);7. DBSCAN聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];epsilon = 2;minPts = 2;[idx, corePoints] = dbscan(data, epsilon, minPts);8. 神经网络算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];net = feedforwardnet(10);net = train(net, x', y');predicted_y = net(x');9. 遗传算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = gaoptimset('PlotFcns', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);10. 粒子群优化算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = particleswarm(fitnessFunction, nvars, lb, ub, options);11. 蚁群算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = antColonyOptimization(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);12. 粒子群-蚁群混合算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = particleAntHybrid(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);13. 遗传算法-粒子群混合算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;gaOptions = gaoptimset('PlotFcns', @gaplotbestf);psOptions = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = gaParticleHybrid(fitnessFunction, nvars, lb, ub, gaOptions, psOptions);14. K近邻算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcknn(x', y');predicted_y = predict(model, x');15. 朴素贝叶斯算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcnb(x', y');predicted_y = predict(model, x');16. AdaBoost算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [0, 0, 1, 1, 1];model = fitensemble(x', y', 'AdaBoostM1', 100, 'Tree'); predicted_y = predict(model, x');17. 高斯混合模型算法:matlab.x = [1, 2, 3, 4, 5]';y = [0, 0, 1, 1, 1]';data = [x, y];model = fitgmdist(data, 2);idx = cluster(model, data);18. 主成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = pca(x');transformed_x = x' coefficients;19. 独立成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = fastica(x');transformed_x = x' coefficients;20. 模糊C均值聚类算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; options = [2, 100, 1e-5, 0];[centers, U] = fcm(x', 2, options);21. 遗传规划算法:matlab.fitnessFunction = @(x) x^2 4x + 4; nvars = 1;lb = 0;ub = 5;options = optimoptions('ga', 'PlotFcn', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);22. 线性规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];lb = [0; 0];ub = [];[x, fval] = linprog(f, A, b, [], [], lb, ub);23. 整数规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];intcon = [1, 2];[x, fval] = intlinprog(f, intcon, A, b);24. 图像分割算法:matlab.image = imread('image.jpg');grayImage = rgb2gray(image);binaryImage = imbinarize(grayImage);segmented = medfilt2(binaryImage);25. 文本分类算法:matlab.documents = ["This is a document.", "Another document.", "Yet another document."];labels = categorical(["Class 1", "Class 2", "Class 1"]);model = trainTextClassifier(documents, labels);newDocuments = ["A new document.", "Another new document."];predictedLabels = classifyText(model, newDocuments);26. 图像识别算法:matlab.image = imread('image.jpg');features = extractFeatures(image);model = trainImageClassifier(features, labels);newImage = imread('new_image.jpg');newFeatures = extractFeatures(newImage);predictedLabel = classifyImage(model, newFeatures);27. 时间序列预测算法:matlab.data = [1, 2, 3, 4, 5];model = arima(2, 1, 1);model = estimate(model, data);forecastedData = forecast(model, 5);28. 关联规则挖掘算法:matlab.data = readtable('data.csv');rules = associationRules(data, 'Support', 0.1);29. 增强学习算法:matlab.environment = rlPredefinedEnv('Pendulum');agent = rlDDPGAgent(environment);train(agent);30. 马尔可夫决策过程算法:matlab.states = [1, 2, 3];actions = [1, 2];transitionMatrix = [0.8, 0.1, 0.1; 0.2, 0.6, 0.2; 0.3, 0.3, 0.4];rewardMatrix = [1, 0, -1; -1, 1, 0; 0, -1, 1];policy = mdpPolicyIteration(transitionMatrix, rewardMatrix);以上是30个使用MATLAB编写的智能算法的示例代码,每个算法都可以根据具体的问题和数据进行相应的调整和优化。

在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧在图像分析领域,模糊C均值聚类(FCM)是一种常用的工具,它可以帮助我们发现图像中隐藏的信息和模式。

通过使用Matlab中的模糊逻辑工具箱,我们可以轻松地实现FCM算法,并进行图像分析。

本文将介绍在Matlab中使用FCM进行图像分析的技巧。

首先,让我们简要了解一下FCM算法。

FCM是一种基于聚类的图像分割方法,它将图像的像素分为不同的聚类,每个聚类代表一类像素。

与传统的C均值聚类算法不同,FCM允许像素属于多个聚类,因此能够更好地处理图像中的模糊边界。

在Matlab中使用FCM进行图像分析的第一步是加载图像。

可以使用imread函数将图像加载到Matlab的工作区中。

例如,我们可以加载一张名为“image.jpg”的图像:```matlabimage = imread('image.jpg');```加载图像后,可以使用imshow函数显示图像。

这可以帮助我们对图像有一个直观的了解:```matlabimshow(image);```接下来,我们需要将图像转换为灰度图像。

这是因为FCM算法通常用于灰度图像分析。

可以使用rgb2gray函数将彩色图像转换为灰度图像:```matlabgrayImage = rgb2gray(image);```在使用FCM算法之前,我们需要对图像进行预处理。

预处理的目的是消除图像中的噪声和不必要的细节,从而更好地提取图像中的特征。

常用的图像预处理方法包括平滑、锐化和边缘检测等。

Matlab中提供了许多图像预处理函数。

例如,可以使用imnoise函数向图像中添加高斯噪声:```matlabnoisyImage = imnoise(grayImage, 'gaussian', 0, 0.01);```还可以使用imfilter函数对图像进行平滑处理。

常见的平滑方法包括均值滤波和高斯滤波:```matlabsmoothImage = imfilter(noisyImage, fspecial('average', 3));```一旦完成预处理步骤,我们就可以使用模糊逻辑工具箱中的fcm函数执行FCM算法。

模糊c均值聚类 FCM算法的MATLAB代码

模糊c均值聚类 FCM算法的MATLAB代码

模糊c均值聚类FCM算法的MATLAB代码我做毕业论文时需要模糊C-均值聚类,找了好长时间才找到这个,分享给大家:FCM算法的两种迭代形式的MA TLAB代码写于下,也许有的同学会用得着:m文件1/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm)% 模糊C 均值聚类FCM: 从随机初始化划分矩阵开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm)% 输入:% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集,% Data 的每一行为一个观测样本的特征矢量,S 为特征矢量% 的维数,N 为样本点的个数% C: 聚类数,1<C<N% plotflag: 聚类结果2D/3D 绘图标记,0 表示不绘图,为缺省值% M: 加权指数,缺省值为2% epsm: FCM 算法的迭代停止阈值,缺省值为1.0e-6% 输出:% U: C×N 型矩阵,FCM 的划分矩阵% P: C×S 型矩阵,FCM 的聚类中心,每一行对应一个聚类原型% Dist: C×N 型矩阵,FCM 各聚类中心到各样本点的距离,聚类中% 心i 到样本点j 的距离为Dist(i,j)% Cluster_Res: 聚类结果,共C 行,每一行对应一类% Obj_Fcn: 目标函数值% iter: FCM 算法迭代次数% See also: fuzzydist maxrowf fcmplotif nargin<5epsm=1.0e-6;endif nargin<4M=2;endif nargin<3plotflag=0;end[N,S]=size(Data);m=2/(M-1);iter=0;Dist(C,N)=0; U(C,N)=0; P(C,S)=0;% 随机初始化划分矩阵U0 = rand(C,N);U0=U0./(ones(C,1)*sum(U0));% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新聚类中心PUm=U0.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(U-U0,Inf)<epsmbreakendU0=U;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);endm文件2/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm2(Data,P0,plotflag,M,epsm) % 模糊C 均值聚类FCM: 从指定初始聚类中心开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm2(Data,P0,plotflag,M,epsm)% 输入: Data,plotflag,M,epsm: 见fuzzycm.m% P0: 初始聚类中心% 输出: U,P,Dist,Cluster_Res,Obj_Fcn,iter: 见fuzzycm.m% See also: fuzzycmif nargin<5epsm=1.0e-6;if nargin<4M=2;endif nargin<3plotflag=0;end[N,S] = size(Data); m = 2/(M-1); iter = 0;C=size(P0,1);Dist(C,N)=0;U(C,N)=0;P(C,S)=0;% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P0(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 更新聚类中心PUm=U.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(P-P0,Inf)<epsmbreakendP0=P;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);m文件3/7:function fcmplot(Data,U,P,Obj_Fcn)% FCM 结果绘图函数% See also: fuzzycm maxrowf ellipse[C,S] = size(P); res = maxrowf(U);str = 'po*x+d^v><.h';% 目标函数绘图figure(1),plot(Obj_Fcn)title('目标函数值变化曲线','fontsize',8)% 2D 绘图if S==2figure(2),plot(P(:,1),P(:,2),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot(v(:,1),v(:,2),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2,'r:') endgrid on,title('2D 聚类结果图','fontsize',8),hold off end% 3D 绘图if S>2figure(2),plot3(P(:,1),P(:,2),P(:,3),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot3(v(:,1),v(:,2),v(:,3),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2, ...'r:',(max(v(:,3))+min(v(:,3)))/2) endgrid on,title('3D 聚类结果图','fontsize',8),hold off endm文件4/7:function D=fuzzydist(A,B)% 模糊聚类分析: 样本间的距离% D = fuzzydist(A,B)D=norm(A-B);m文件5/7:function mr=maxrowf(U,c)% 求矩阵U 每列第c 大元素所在行,c 的缺省值为1% 调用格式: mr = maxrowf(U,c)% See also: addrif nargin<2c=1;endN=size(U,2);mr(1,N)=0;for j=1:Naj=addr(U(:,j),'descend');mr(j)=aj(c);endm文件6/7:function ellipse(a,b,center,style,c_3d)% 绘制一个椭圆% 调用: ellipse(a,b,center,style,c_3d)% 输入:% a: 椭圆的轴长(平行于x 轴)% b: 椭圆的轴长(平行于y 轴)% center: 椭圆的中心[x0,y0],缺省值为[0,0]% style: 绘制的线型和颜色,缺省值为实线蓝色% c_3d: 椭圆的中心在3D 空间中的z 轴坐标,可缺省if nargin<4style='b';endif nargin<3 | isempty(center)center=[0,0];endt=1:360;x=a/2*cosd(t)+center(1);y=b/2*sind(t)+center(2);if nargin>4plot3(x,y,ones(1,360)*c_3d,style)elseplot(x,y,style)endm文件7/7:function f = addr(a,strsort)% 返回向量升序或降序排列后各分量在原始向量中的索引% 函数调用:f = addr(a,strsort)% strsort: 'ascend' or 'descend'% default is 'ascend'% -------- example --------% addr([ 4 5 1 2 ]) returns ans:% [ 3 4 1 2 ]if nargin==1strsort='ascend';endsa=sort(a); ca=a;la=length(a);f(la)=0;for i=1:laf(i)=find(ca==sa(i),1);ca(f(i))=NaN;endif strcmp(strsort,'descend') f=fliplr(f);end几天前我还在这里发帖求助,可是很幸运在其他地方找到了,在这里和大家分享一下!function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类%% 用法:% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);%% 输入:% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值% N_cluster ---- 标量,表示聚合中心数目,即类别数% options ---- 4x1矩阵,其中% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)% options(2): 最大迭代次数(缺省值: 100)% options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5)% options(4): 每次迭代是否输出信息标志 (缺省值: 1)% 输出:% center ---- 聚类中心% U ---- 隶属度矩阵% obj_fcn ---- 目标函数值% Example:% data = rand(100,2);% [center,U,obj_fcn] = FCMClust(data,2);% plot(data(:,1), data(:,2),'o');% hold on;% maxU = max(U);% index1 = find(U(1,:) == maxU);% index2 = find(U(2,:) == maxU);% line(data(index1,1),data(index1,2),'marker','*','color',' g');% line(data(index2,1),data(index2,2),'marker','*','color',' r');% plot([center([1 2],1)],[center([1 2],2)],'*','color','k') % hold off;if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个error('Too many or too few input arguments!');enddata_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度% 默认操作参数default_options = [2; % 隶属度矩阵U的指数100; % 最大迭代次数1e-5; % 隶属度最小变化量,迭代终止条件1]; % 每次迭代是否输出信息标志if nargin == 2,options = default_options;else %分析有options做参数时候的情况% 如果输入参数个数是二那么就调用默认的option;if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;tmp = default_options;tmp(1:length(options)) = options;options = tmp;end% 返回options中是数的值为0(如NaN),不是数时为1nan_index = find(isnan(options)==1);%将denfault_options中对应位置的参数赋值给options中不是数的位置.options(nan_index) = default_options(nan_index);if options(1) <= 1, %如果模糊矩阵的指数小于等于1error('The exponent should be greater than 1!');endend%将options 中的分量分别赋值给四个变量;expo = options(1); % 隶属度矩阵U的指数max_iter = options(2); % 最大迭代次数min_impro = options(3); % 隶属度最小变化量,迭代终止条件display = options(4); % 每次迭代是否输出信息标志obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcnU = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,% Main loop 主要循环for i = 1:max_iter,%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);if display,fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));end% 终止条件判别if i > 1,if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,break;end,endenditer_n = i; % 实际迭代次数obj_fcn(iter_n+1:max_iter) = [];[center, U, obj_fcn] = FCMClust(Data,N_cluster,options)data=[94.4304 98 60 0 8592.8068 70 70 0 75.286.3522 100 75 24.87 91.580.5512 50 90 0 65.480.494 76 100 0 9888.1528 100 60 80 78.484.567 55 80 0 8587.722 30 60 0 4988.0056 95 70 46.459 45.885.948 100 60 0 55.683.9578 10 90 0 78.490.0822 5 60 0 58.876.7448 10 60 0 39.295.062 100 70 62.37 94.8];N_cluster=4;options(1)=[2];options(2)=[100];options(3)=[1e-5];options(4)=[1];。

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=0.0001;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=0.90; %交配概率pmutation=0.09; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump[Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<generationmax+1< p="">for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。

遗传算法matlab程序代码

遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。

在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。

遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码遗传算法及其MATLAB实现主要参考书:MATLAB 6.5 辅助优化计算与设计飞思科技产品研发中⼼编著电⼦⼯业出版社2003.1遗传算法及其应⽤陈国良等编著⼈民邮电出版社1996.6主要内容:遗传算法简介遗传算法的MATLAB实现应⽤举例在⼯业⼯程中,许多最优化问题性质⼗分复杂,很难⽤传统的优化⽅法来求解.⾃1960年以来,⼈们对求解这类难解问题⽇益增加.⼀种模仿⽣物⾃然进化过程的、被称为“进化算法(evolutionary algorithm)”的随机优化技术在解这类优化难题中显⽰了优于传统优化算法的性能。

⽬前,进化算法主要包括三个研究领域:遗传算法、进化规划和进化策略。

其中遗传算法是迄今为⽌进化算法中应⽤最多、⽐较成熟、⼴为⼈知的算法。

⼀、遗传算法简介遗传算法(Genetic Algorithm, GA)最先是由美国Mic-hgan⼤学的John Holland于1975年提出的。

遗传算法是模拟达尔⽂的遗传选择和⾃然淘汰的⽣物进化过程的计算模型。

它的思想源于⽣物遗传学和适者⽣存的⾃然规律,是具有“⽣存+检测”的迭代过程的搜索算法。

遗传算法以⼀种群体中的所有个体为对象,并利⽤随机化技术指导对⼀个被编码的参数空间进⾏⾼效搜索。

其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核⼼内容。

遗传算法的基本步骤:遗传算法是⼀种基于⽣物⾃然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从⼀组随机产⽣的称为“种群(Population)”的初始解开始搜索过程。

种群中的每个个体是问题的⼀个解,称为“染⾊体(chromos ome)”。

染⾊体是⼀串符号,⽐如⼀个⼆进制字符串。

这些染⾊体在后续迭代中不断进化,称为遗传。

在每⼀代中⽤“适值(fitness)”来测量染⾊体的好坏,⽣成的下⼀代染⾊体称为后代(offspring)。

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法matlab模糊c均值聚类算法模糊C均值聚类算法是一种广泛应用于数据挖掘、图像分割等领域的聚类算法。

相比于传统的C均值聚类算法,模糊C均值聚类算法能够更好地处理噪声数据和模糊边界。

模糊C均值聚类算法的基本思想是将样本集合分为K个聚类集合,使得每个样本点属于某个聚类集合的概率最大。

同时,每个聚类集合的中心点被计算为该聚类集合中所有样本的均值。

具体实现中,模糊C均值聚类算法引入了模糊化权重向量来描述每个样本点属于各个聚类集合的程度。

这些权重值在每次迭代中被更新,直至达到预设的收敛精度为止。

模糊C均值聚类算法的目标函数可以表示为:J = ∑i∑j(wij)q||xi-cj||2其中,xi表示样本集合中的第i个样本,cj表示第j个聚类集合的中心点,wij表示第i个样本点属于第j个聚类集合的权重,q是模糊指数,通常取2。

不同于C均值聚类算法,模糊C均值聚类算法对每个样本点都考虑了其属于某个聚类集合的概率,因此能够更好地处理模糊边界和噪声数据。

同时,模糊C均值聚类算法可以自适应地确定聚类的数量,从而避免了事先设定聚类数量所带来的限制。

在MATLAB中,可以使用fcm函数实现模糊C均值聚类算法。

具体来说,fcm函数的使用方法如下:[idx,center] = fcm(data,k,[options]);其中,data表示样本矩阵,k表示聚类数量,options是一个包含算法参数的结构体。

fcm函数的输出包括聚类标签idx和聚类中心center。

MATLAB中的fcm函数还提供了其他参数和选项,例如模糊权重阈值、最大迭代次数和收敛精度等。

可以根据具体应用需求来设置这些参数和选项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法改进的模糊C-均值聚类MATLAB源代码模糊C-均值算法容易收敛于局部极小点,为了克服该缺点,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,由遗传算法得到初始聚类中心,再使用标准的模糊C-均值聚类算法得到最终的分类结果。

function [BESTX,BESTY,ALLX,ALL Y]=GAFCM(K,N,Pm,LB,UB,D,c,m)
%% 此函数实现遗传算法,用于模糊C-均值聚类
% GreenSim团队——专业级算法设计&代写程序
% 欢迎访问GreenSim团队主页→/greensim
%% 输入参数列表
% K 迭代次数
% N 种群规模,要求是偶数
% Pm 变异概率
% LB 决策变量的下界,M×1的向量
% UB 决策变量的上界,M×1的向量
% D 原始样本数据,n×p的矩阵
% c 分类个数
% m 模糊C均值聚类数学模型中的指数
%% 输出参数列表
% BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优个体
% BESTY K×1矩阵,记录每一代的最优个体的评价函数值
% ALLX K×1细胞结构,每一个元素是M×N矩阵,记录全部个体
% ALL Y K×N矩阵,记录全部个体的评价函数值
%% 第一步:
M=length(LB);%决策变量的个数
%种群初始化,每一列是一个样本
farm=zeros(M,N);
for i=1:M
x=unifrnd(LB(i),UB(i),1,N);
farm(i,:)=x;
end
%输出变量初始化
ALLX=cell(K,1);%细胞结构,每一个元素是M×N矩阵,记录每一代的个体
ALL Y=zeros(K,N);%K×N矩阵,记录每一代评价函数值
BESTX=cell(K,1);%细胞结构,每一个元素是M×1向量,记录每一代的最优个体
BESTY=zeros(K,1);%K×1矩阵,记录每一代的最优个体的评价函数值
k=1;%迭代计数器初始化
%% 第二步:迭代过程
while k<=K
%% 以下是交叉过程
newfarm=zeros(M,2*N);
Ser=randperm(N);%两两随机配对的配对表
A=farm(:,Ser(1));
B=farm(:,Ser(2));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];%产生子代a
b=[B(1:P0,:);A((P0+1):end,:)];%产生子代b
newfarm(:,2*N-1)=a;%加入子代种群
newfarm(:,2*N)=b;
for i=1:(N-1)
A=farm(:,Ser(i));
B=farm(:,Ser(i+1));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];
b=[B(1:P0,:);A((P0+1):end,:)];
newfarm(:,2*i-1)=a;
newfarm(:,2*i)=b;
end
FARM=[farm,newfarm];
%% 选择复制
SER=randperm(3*N);
FITNESS=zeros(1,3*N);
fitness=zeros(1,N);
for i=1:(3*N)
Beta=FARM(:,i);
FITNESS(i)=FIT(Beta,D,c,m);
end
for i=1:N
f1=FITNESS(SER(3*i-2));
f2=FITNESS(SER(3*i-1));
f3=FITNESS(SER(3*i));
if f1<=f2&&f1<=f3
farm(:,i)=FARM(:,SER(3*i-2));
fitness(:,i)=FITNESS(:,SER(3*i-2));
elseif f2<=f1&&f2<=f3
farm(:,i)=FARM(:,SER(3*i-1));
fitness(:,i)=FITNESS(:,SER(3*i-1));
else
farm(:,i)=FARM(:,SER(3*i));
fitness(:,i)=FITNESS(:,SER(3*i));
end
end
%% 记录最佳个体和收敛曲线
X=farm;
Y=fitness;
ALLX{k}=X;
ALL Y(k,:)=Y;
minY=min(Y);
pos=find(Y==minY);
BESTX{k}=X(:,pos(1));
BESTY(k)=minY;
%% 变异
for i=1:N
if Pm>rand&&pos(1)~=i
AA=farm(:,i);
BB=GaussMutation(AA,LB,UB);
farm(:,i)=BB;
end
end
disp(k);
k=k+1;
end
%% 绘图
BESTY2=BESTY;
BESTX2=BESTX;
for k=1:K
TempY=BESTY(1:k);
minTempY=min(TempY);
posY=find(TempY==minTempY);
BESTY2(k)=minTempY;
BESTX2{k}=BESTX{posY(1)};
end
BESTY=BESTY2;
BESTX=BESTX2;
plot(BESTY,'-ko','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',2) ylabel('函数值')
xlabel('迭代次数')。

相关文档
最新文档