19.3课题学习 选择方案
19.3 课题学习 选择方案

首先应考虑到影响水的调运量的因素有 两个,即水量(单位:万吨)和运程 (单位:千米),水的调运量是两者的 乘积(单位:万吨· 千米);其次应考虑 到由A、B水库运往甲、乙两地的水量共4 个量,即A--甲,A--乙,B--甲,B--乙 的水量,它们互相联系。
设从A水库调往甲地的水量为x吨,则有:
调入地 水量/万吨 调出地
甲
x 15-x
乙
14-x x-1
总计
14 14
A
B
总计
15
13
28
设水的运量为y万吨· 千米,则有: y=50x+30(14-x)+60(15-x)+45(x-1)
(1)y=5x+1275
y/万吨· 千米
1≤x≤14
( 2)
1345
1280
O
1
14
x/吨
(3)最佳方案为:从A调往甲1万吨水, 调往乙13万吨水;从B调往甲14万吨水。 水的最小调运量为1280万吨· 千米。
(1)要保证240名师生有车坐 (2)要使每辆汽车上至少要有1名教 师 6 根据(1)可知,汽车总数不能小于____;根据 6 (2)可知,汽车总数不能大于____。综合起来 6 可知汽车总数为 _____。 设租用x辆甲种客车,则租车费用y(单位:元) 是 x 的函数,即 y=400x+280(6-x) 化简为: y=120x+1680
问题
4两甲种客车,2两乙种客车; y1=120×4+1680=2160
5两甲种客车,1辆乙种客车; y2=120×5+1680=2280
应选择方案一,它比方案二节约Fra bibliotek20元。从A、B两水库向甲、乙两地调水, 其中甲地需水15万吨,乙地需水13万 吨,A、B两水库各可调出水14万吨。 从A地到甲地50千米,到乙地30千米; 从B地到甲地60千米,到乙地45千米。 设计一个调运方案使水的调运量(单 位:万吨· 千米)尽可能小。
19.3课题学习选择方案

简介本文档旨在讨论19.3课题学习选择方案,以帮助学生理解如何选择适合自己的课题,并制定合理的学习计划。
问题陈述在进行课题学习之前,学生需要明确以下几个问题: 1. 课题的背景和意义是什么? 2. 我的兴趣和专长领域是哪些? 3. 该课题是否适合我?是否能够在该课题上取得有意义的研究成果? 4. 学习该课题对我未来的发展有何帮助?解决方案1. 研究课题背景和意义在选择课题时,了解研究课题的背景和意义非常重要。
学生可以通过文献阅读、查阅相关资料或与导师进行交流,深入了解该课题的重要性和对现有知识的补充。
2. 确定个人兴趣和专长领域学生应考虑自己的兴趣和专长领域,选择与之相关的课题。
这样能够提高学生对课题的热情和主动性,并有助于学生在该领域发展自己的专业能力。
3. 评估课题的适合程度在选择课题时,学生需要评估该课题是否适合自己。
可以从以下几个方面进行评估: - 与自己的兴趣和专长领域是否相关。
- 是否具备足够的时间和资源来进行深入研究。
- 是否符合学校或导师的要求和规定。
4. 考虑课题的学习和发展影响选择一个合适的课题对学生的学习和发展有着重要影响。
学生应考虑以下几个方面: - 该课题是否能帮助学生锻炼和提高自己的研究能力。
- 该课题是否能为学生提供未来发展所需的专业技能和知识。
- 该课题是否与学生未来的职业规划和目标一致。
实施计划1. 了解课题学生可以通过以下途径了解课题: - 阅读相关文献和研究资料。
- 参加学术研讨会或学术讲座。
- 与导师进行交流和讨论。
2. 制定学习计划学生应制定合理的学习计划,包括以下内容: - 课题学习的时间安排:合理安排学习时间,确保有足够的时间进行研究和实验。
- 学习目标和里程碑:明确学习目标,设定达到目标的里程碑,并制定相应的计划和时间表。
- 学习资源的获取:确定所需的学习资源,包括书籍、文献、实验设备等,并尽早获取和准备。
3. 学习和实践根据学习计划,学生应根据所制定的里程碑进行学习和实践。
19.3课题学习-选择方案教学设计

x y O人教版数学八年级下册19.3课题学习 选择方案教学设计【学习目标】1.会用一次函数知识解决方案选择问题,体会函数模型思想; 2.能从不同的角度思考问题,优化解决问题的方法; 3.能进行解决问题过程的反思,总结解决问题的方法。
【重、难点】重点:体会如何运用一次函数选择最佳方案. 难点:体会如何运用一次函数选择最佳方案.【学习流程】问题导入:做一件事情,有时有不同的实施方案.比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.在选择方案时,往往需要从数学的角度分析,涉及变量的问题常用到函数.同学们通过讨论下面两个问题,体会如何运用一次函数选择最佳方案.一、自主学习,探究新知选择哪种方式节省上网费?1.哪种方式上网费是会变化的?哪种不变?2.在A 、B 两种方式中,上网费由哪些部分组成?3.影响超时费的变量是什么? 填写下表:解:设 , 表示方案A 的收费金额. 表示方案B 的收费金额. 表示方案C 的收费金额. 在方式A 中,超时费一定会产生吗?什么情况下才会有 超时费? 写出方式A 的上网费y 1关于上网时间 x 之间的函 数关系式。
你能自己写出方式B 的上网费y 2关于上网时间 x 之间的函 数关系式吗?方式C 的上网费y 3关于上网时间x 之间的函数关系式呢? 你能在同一直角坐标系中画出它们的图象吗? 当上网时间__________时,选择方式A 最省钱.图(1)当上网时间__________时,选择方式B最省钱.当上网时间_________时,选择方式C最省钱.归纳:解决含有多个变量的问题时,(1)选取作为自变量.(2)根据问题的条件列函数关系式.(3)建立数学模型,解决问题.二、合作学习,展示提高针对不同的消费人群,某电信公司提供两种套餐的移动通讯服务的收费标准如下表:A套餐B套餐每月基本服务费30元50元每月免费通话时间120分200分超出后每分收费0.4元0.4元如果请你选择其中一种套餐,应如何选择?三、巩固练习,能力提升1、如图(2),l1、l2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x(时)的函数图象,两种灯的使用寿命都是6000时,照明效果一样。
19.3 课题学习 选择方案

19.3课题学习选择方案一、教学目标1.核心素养:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.2.学习目标(1)巩固一次函数知识,进一步明确一次函数与不等式相结合的实际问题处理方法.灵活运用变量之间的关系建立函数模型.(2)让学生通过“选择上网收费方式”,提高运用函数知识解决实际问题的能力.(3)让学生通过“怎样租车”,提高运用函数知识解决实际问题的能力.3.学习重点(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.4.学习难点如何构建一次函数模型.二、教学设计(一)课前设计1.预习任务任务1:预习教材P102-104页,了解上宽带网有几种收费方式,思考影响收费的因素有哪些?任务2:思考租车数量由什么决定,租车费用与哪些因素有关?(二)课堂设计2.知识回顾(1)形如y=kx+b(k,b是常数且k≠0)的函数,y是x的一次函数.(2)一次函数y=kx+b中,当k>0时,y随x的增大而增大.当k<0时,y随x 的增大而减小.(3)一元一次方程kx+b=0可看作是直线y=kx+b与x轴交点的横坐标.(4)一元一次不等式kx+b>0可看作是直线y=kx+b与x轴交点上方图象对应的x的值.3.问题探究问题探究一怎样选取上网收费方式请认真学习课本P102-103页“问题1”的内容,边学习边思考下列问题:【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一1.选择方案的依据是什么?【答】根据省钱原则选择方案2.要比较三种收费方式的费用,需要做什么?【答】分别计算每种方案的费用.3.怎样计算费用?【答】费用=月使用费+超时费超时费=超时使用价格×超时使用时间4.在A,B,C三种上网收费方式中,上网费用是变量的方式有__________,上网费用的多少与__________有关;上网费用是常量的方式是__________.【答】方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数.方案C费用固定.活动二 1.设上网时间为x h,A,B,C三种方式的收费y1,y2,y3各怎样表示?(注意考虑自变量x的取值范围)2.怎样比较y1,y2,y3的大小?分析:对于这个复杂的问题,我们画函数的图象,借助图象的直观性来解决.【详解】结合图象可知:(1)若y 1=y 2,即3t -45=50,解方程,得t =3123(2)若y 1<y 2,即3t -45<50,解不等式,得t <3123(3)若y 1>y 2,即3t -45>50,解不等式,得t >3123(4)若y 2=y 3,即3t -100=120,解方程,得t =7313(5)若y 2>y 3,即3t -100>120,解不等式,得t >7313综上所述:当上网时间不超过31小时40分,选择方案A 最省钱;当上网时间为31小时40分至73小时20分,选择方案B 最省钱;当上网时间超过73小时20分,选择方案C 最省钱.问题探究二怎样租车思考与讨论:阅读教材P103----P104,【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一 1.影响最后的租车费用的因素有哪些?【答】主要影响因素是甲,乙两种车所租辆数.2.汽车所租辆数又与哪些因素有关?【答】与乘车人数有关.3.如何由乘车人数确定租车辆数呢?【答】(1)要保证240名师生都有车坐,汽车总数不能小于6辆;(2)要使每辆汽车上至少有1名教师,汽车总数不能大于6辆.所以共需租6辆车.活动二在汽车总数确定后,租车费用与租车的种类有关.如果租甲类车x 辆,能求出租车费用y=.在这个函数中,y 随x 的增大而.要求y 的最小值,就要先求x 的取值范围,怎样求x 的取值范围?【详解】设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则y=400x+280(6-x)化简得y=120x+1680.(1)为使240名师生有车坐,则45x+30(6-x)≥240;(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300.解得:4≤x≤316据实际意义可取4或5;因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值为2160.所以,租甲种车4辆,乙种车2辆.结论:在涉及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.3.课堂总结【知识梳理】基础知识思维导图【重难点突破】(1)本节的问题,其实质是运用一次函数选择最佳方案,一是用一次函数的图像性质;二是多变量的问题.(2)用一次函数解决生活中的方案选择问题需要根据题意列出函数解析式及图像,分三种情况:函数值相等、大于、小于,结合方程、不等式进行说明,在此基础上选择合理方案.(3)将实际问题抽象概括成函数模型体现建模思想,其步骤:审清题意---建立数学模型---数学方法解决问题----验证结果.4.随堂检测:参见ppt巩固练习提升题。
人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案一. 教材分析人教版数学八年级下册《19.3 课题学习——选择方案》这一节主要让学生学会如何从多个方案中选择最优方案。
通过引入实际问题,让学生运用概率知识、列举法等方法,解决实际选择问题。
教材以案例的形式呈现,让学生在解决问题的过程中,掌握选择方案的方法和技巧。
二. 学情分析学生在学习本节内容前,已经掌握了概率基础知识,能够理解并运用列举法。
但如何在实际问题中灵活运用这些知识,选择最优方案,对学生来说还较为困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.让学生理解选择方案的概念,掌握选择方案的方法和技巧。
2.培养学生运用概率知识、列举法解决实际问题的能力。
3.培养学生独立思考、合作交流的能力。
四. 教学重难点1.重点:选择方案的方法和技巧。
2.难点:如何将所学知识应用于实际问题中,灵活选择最优方案。
五. 教学方法1.案例教学法:通过引入实际问题,让学生在解决问题的过程中掌握选择方案的方法。
2.引导发现法:教师引导学生发现问题的解决方法,培养学生的独立思考能力。
3.合作交流法:分组讨论,让学生在合作中发现问题、解决问题,提高学生的沟通能力。
六. 教学准备1.准备相关案例材料,用于引导学生解决实际问题。
2.准备多媒体教学设备,用于展示案例和引导学生思考。
七. 教学过程1.导入(5分钟)利用多媒体展示一个实际问题:某商场举行抽奖活动,奖品有电视机、洗衣机、电风扇和玩具。
奖品设置如下:一等奖:电视机,概率为1/10;二等奖:洗衣机,概率为2/10;三等奖:电风扇,概率为3/10;四等奖:玩具,概率为4/10。
提问:如果你参加这次抽奖活动,你希望获得哪个奖项?为什么?2.呈现(10分钟)引导学生分析问题,让学生认识到选择最优方案的重要性。
呈现教材中的案例,让学生了解选择方案的方法和技巧。
19.3课题学习---选择方案.doc

19.3 课题学习选择方案教学设计龙兴镇中心学校陈明教材分析:教材的地位和作用:本节课是学习了一元一次不等式、一元一次不等式组和一次函数后的有一节应用课,本节课中渗透了数学中的建模思想,学好本节课能为以后更深层次的数学学习打下坚实的基础,因此本节课的学习至关重要。
教学目标:根据新课标的要求及学生的认知规律制定以下学习目标知识与技能:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.过程与方法:经历实际问题的分析、探究和解答过程,进一步感受数学中的建模思想情感态度与价值观:通过本节课的学习,培养学生合作交流的意识和探索的精神, 树立学好数学的自信心教学中的重点、难点:重卢•(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.难点:如何构建一次函数模型.教学手段:1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
准备工作:多媒体课件、导学案,引导学生思考。
等式kx+b>0可看作是直线y=kx+b 与X轴交点上方图象对应的X的值.自主学习问题1怎样选取规定时间上网收费方式?交流展示1、展示自学内容, 不会的小组研讨,质疑点拨。
整理好上述各题。
2、自学103页的问题2,回答课本上给出的问题,组内交流.归纳总结达标检测练习规定时间任务,组内巡视,对完全没有思路的学生进行点拨。
组织展示相应内容,对不准确的问题适时的提出疑问,完善问题的答案。
提示学生注意总结问题1的解题方法及对函数性质的应用,组间巡视C引导学生归纳总结规定时间,监督学生独立完成相应问题。
通过学生自主学习及导学案的引导,学生独立完成相应问题。
学生能够独立思考的让学生独立完成,培养学生的学习能力。
学生的展示与相互的质疑可以培养学生的表达能力,更能处近学生积极思考。
八年级数学下册(人教版)19.3课题学习选择方案说课稿

3.合作学习:通过小组合作、讨论等形式,促进学生之间的互动与交流,培养学生的团队协作能力和沟通能力,同时提高学生的自主学习能力。
(二)媒体资源
我将使用以下教具、多媒体资源和技术工具来辅助教学:
教学内容主要包括以下知识点:
1.认识选择方案,理解其在生活中的实际意义。
2.学会运用概率、统计等知识对选择方案进行量化分析。
3.掌握各种选择方案的评价方法,如期望值法、决策树法等。
4.能够根据实际问题,运用所学方法做出最佳选择。
(二)教学目标
1.知识与技能目标
(1)理解选择方案的概念,知道选择方案在实际生活中的应用。
5.结合学生的兴趣和特长,设计富有挑战性的拓展任务,激发学生的探究欲望。
三、教学方法与手段
(一)教学策略ቤተ መጻሕፍቲ ባይዱ
我将采用的主要教学方法包括启发式教学、情境教学和合作学习。选择这些方法的理论依据如下:
1.启发式教学:这种方法能够激发学生的思维,引导他们主动探索问题,培养学生独立思考的能力。通过设置问题情境,让学生在探究中学习,有助于提高他们的学习兴趣和动机。
1.教具:实物模型、卡片、图表等,用于直观展示问题情境,帮助学生更好地理解抽象的数学概念。
2.多媒体资源:PPT、教学视频、网络资源等,丰富教学内容,提高学生的学习兴趣。
3.技术工具:投影仪、计算机、互动白板等,实现课堂信息化教学,提高教学效果。
这些媒体资源在教学中的作用主要有:提供丰富的教学情境,激发学生的学习兴趣;直观展示抽象概念,降低学生的学习难度;拓展教学时空,提高教学效率。
3.情感态度与价值观目标
19.3课题学习选择方案

19.3课题学习选择方案1. 引言课题学习是学校课程中的一项重要组成部分,它旨在帮助学生更深入地理解和掌握所学的知识。
本文将针对19.3课题学习的选择方案进行讨论和总结,从教师和学生角度出发,提出一套全面、有效的选择方案。
2. 教师角度教师在课题学习的选择方案中起着重要的指导作用。
以下是教师在选择19.3课题学习时应考虑的几个方面:2.1 学科相关性选择与所授学科相关的课题,可以更好地帮助学生巩固和拓展所学的知识。
教师应确保选取的课题与已经教授的知识内容有较强的关联性,避免选取过于分散的课题。
2.2 学生兴趣在考虑学科相关性的基础上,教师还应关注学生的兴趣。
选取能引起学生兴趣的课题,有助于激发学生的学习积极性。
教师可以通过与学生的交流和调查了解学生的兴趣爱好,并据此选取适合的课题。
2.3 知识深度和广度课题学习应旨在帮助学生深入理解和掌握知识,教师在选择课题时应考虑其知识深度和广度。
课题不应过于简单和肤浅,同时也不宜过于复杂和深奥。
教师可以根据学生的学习水平和能力,选取合适的课题。
3. 学生角度学生在19.3课题学习过程中扮演着主体的角色,他们的理解和参与程度直接影响着学习效果。
以下是学生在选择课题学习时应考虑的几个方面:3.1 兴趣和热爱学生应根据自己的兴趣和热爱选择课题,这样能更好地培养学习的兴趣和动力。
选择感兴趣的课题,学生会更加主动地参与学习,提高学习效果。
3.2 目标和发展需求学生在选择课题时应考虑自身的目标和发展需求。
他们可以思考自己希望在课题学习中达到什么目标,以及这个课题对自己的专业发展是否有帮助。
学生可以从个人的角度出发,选取与自身发展需求相契合的课题。
3.3 学科相关性选择与所学学科相关的课题有助于学生更好地理解和应用所学的知识。
学生可以根据自己已经学习的知识,选取与之相关的课题。
学科相关性可以帮助学生更好地整合已有的知识,提高学习的连贯性。
4. 选择方案的制定在教师和学生的角度上述考虑因素后,可以根据实际情况制定一个选择方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习
水平放置的容器内原有210mm高的水,如图,将若干个球逐一放 入该容器中,每放入一个大球水面就上升4mm,每放入一个小球 水面就上升3mm,假定放入容器中的所有球完全浸没水中且水不 溢出.设水面高为ymm. (1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写 出x大的范围); (2)仅放入6个大球后,开始放入小球,且小球个数为x小. ①求y与x小的函数关系式(不必写出x小的范围); ②限定水面高不超过260mm,最多能放入几个小球.
问题2:如果单独租甲种车需要多少辆?乙种车呢? 单独租甲种车要6辆,单独租乙种车要8辆. 问题3:如果甲、乙都租,你能确定合租车辆的范围吗? 汽车总数不能小于6辆,不能超过8辆.
问题2:怎样租车——分析问题
甲种客车 载客量(单位:人/辆) 租金 (单位:元/辆) 45 400 乙种客车 30 280
问题2:怎样租车——分析问题
甲种客车 x辆 载客量(单位:人/辆) 租金 (单位:元/辆) 45 400 乙种客车 (6-x)辆 30 280
(1)为使240名师生有车坐, (2)为使租车费用不超过2300 可以确定x的一个范围吗? 元,又可以确定x的范围吗? 45x+30(6-x)≥240 400x+280(6-x)≤2300 15x≥60 x≥4 x的取值范围:4≤x≤5 结合问题的实际意义,你能有几种不同的租车方案?为节 省费用应选择其中的哪种方案? 120x≤620 x≤5
问题2:怎样租车——分析问题
甲种客车 x辆 载客量(单位:人/辆) 租金 (单位:元/辆) 45 400 乙种客车 (6-x)辆 30 280
设租用 x 辆甲种客车,则租车费用y(单位:元)是 x 的函数,即
y=400x+280(6-x) 化简为:y=120x+1680
怎样确定 x 的 取值范围呢?
解:(1)总费用y1(元)和y2(元)与参演男生人 数x之间的函数关系式分别是: y1=0.7[120x+100(2x-100)]+2200=224x-4800, y2=0.8[100(3x-100)]=240x-8000;
(2)由题意,得 当y1>y2时,即224x-4800>240x-8000,解得:x<200 当y1=y2时,即224x-4800=240x-8000,解得:x=200 当y1<y2时,即224x-4800<240x-8000,解得:x>200 即当参演男生少于200人时,购买B公司的服装比较合算; 当参演男生等于200人时,购买两家公司的服装总费用相 同,可任一家公司购买;当参演男生多于200人时,购买 A公司的服装比较合算.
解:(1)由题意,得 yA=(10×30+30x)×0.9=27x+270, yB=10×30+30(x﹣2)=30x+240. (2)当yA=yB时,27x+270=30x+240,得x=10; 当yA>yB时,27x+270>30x+240,得x<10; 当yA<yB时,27x+270=30x+240,得x>10。 ∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市 一样划算,当x>10时在A超市购买划算. (3)由题意知x=15>10, ∴选择A超市,yA=27×15+270=675元, 先选择B超市购买10副羽毛球拍,送20个羽毛球, 然后在A超市购买剩下的羽毛球(10×15﹣20)×3×0.9=351元, 共需要费用10×30+351=651(元)。 ∵651<675, ∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买 130个羽毛球.
解:(1)乙;甲;乙槽内的圆柱形铁块的高度为14厘米 ; (2)设线段AB的解析式为y1=kx+b, 过点(0,2),(4,14), 可得解析式为y1=3x+2; 设线段DE的解析式为y2=mx+n,它过点(0,12)、(6,0), 可得解析式为y2=﹣2x+12; 当y1=y2时,3x+2=﹣2x+12, ∴x=2; (3)设铁块的底面积为s cm2 , 根据题意有5×36=6(36-s) 解得:s=6 则铁块的体积为:6×14=8调运量尽可能小。 (调运量=调运水的重量×调运的距离,单位:万吨·千米)
解:设从A水库调往甲地的水量为x万吨 ,总调运量 为y万吨·千米则 从A水库调往乙地的水量为 (14- x) 万吨 从B水库调往甲地的水量为 从B水库调往乙地的水量为 (15-x) 万吨 (x-1) 万吨
y3=120
( x> 0 )
你能在同一直角坐标系中画出它们的图象吗?
问题1:怎样选取上网收费方式——解决问题 当上网时间__________时, 选择方式A最省钱.
当上网时间__________时, 选择方式B最省钱.
当上网时间_________时, 选择方式C最省钱.
问题2
租车问题
某学校计划在总费用2300元的限额内,租用汽车送234名学生 和6名教师集体外出活动,每辆汽车上至少有1名教师. 现有甲、乙两种大客车,它们的载客量和租金如表所示: 甲种客车 载客量(单位:人/辆) 租金 (单位:元/辆)
(1)共需租多少辆汽车?
乙种客车 30 280
45 400
Zx`````x``k
(2)给出最节省费用的租车方案.
问题2:怎样租车——分析问题
某学校计划在总费用2300元的限额内,租用汽车送234名学生 和6名教师集体外出活动,每辆汽车上至少有1名教师. 现有甲、乙两种大客车,它们的载客量和租金如表所示:
点评:本题考查了根据条件求一次函数的解析式的运 用,运用不等式求设计方案的运用,解答本题时根据 数量关系求出解析式是关键,建立不等式计算优惠方 案是难点.
问题4.与几何图形有关的问题
如图1是甲、乙两个圆柱形水槽的轴截面示意图.乙槽中有一圆 柱形铁块放其中(圆柱形铁块的下底面完全落在水槽底面上). 现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象 提供的信息,解答下列问题: (1)图2中折线ABC表示 槽中的深度与注水时间之间的 关系.线段DE表示 槽中的深度与注水时间之间的关系 (以上两空选填“甲”或“乙”).点B的纵坐标表示的实际意 义是 . (2)注水多长时间时,甲、乙两个水槽中的水的深度相同? (3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块 的体积.
思路分析:(1)根据总费用=男生的人数×男生每套的价格+ 女生的人数×女生每套的价格就可以分别表示出y1(元)和y2 (元)与男生人数x之间的函数关系式; (2)根据条件可以知道购买服装的费用受x的变化而变化, 分情况讨论,当y1>y2时,当y1=y2时,当y1<y2时,求出x的范 围就可以求出结论.
问题1:怎样选取上网收费方式——分析问题
解:方式A的上网费y1关于上网时间 x之间的函数关系式 30 (0≤x≤25) y1 = 3x-45 (x>25)
{
方式B的上网费y2关于上网时间x之间的函数关系式
y2 =
{
50
(0≤x≤50) 3x-100 (x>50)
方式C的上网费y3关于上网时间x之间的函数关系式呢?
问题4:要使6名教师至少在每辆车上有一名,你能确定 排除哪种方案?你能确定租车的辆数吗? 说明了车辆总数不会超过6辆,可以排除方案2——单独租 乙种车;所以租车的辆数只能为6辆. 问题5:在问题3中,合租甲、乙两种车的时候,又有 很多种情况,面对这样的问题,我们怎样处理呢? 方法1:分类讨论——分5种情况; 方法2:设租甲种车x辆,确定x的范围.
除了分别计算两种方 案的租金外,还有其 他选择方案的方法吗?
问题3.购买策略问题
某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品 牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免 费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽 毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3 元,目前两家超市同时在做促销活动: A超市:所有商品均打九折(按标价的90%)销售; B超市:买一副羽毛球拍送2个羽毛球. 设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购 买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题: (1)分别写出yA和yB与x之间的关系式; (2)若该活动中心只在一家超市购买,你认为在哪家超市购买 更划算? (3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最 省钱的购买方案.
甲种客车 x辆 载客量(单位:人/辆) 租金 (单位:元/辆) 45 400
乙种客车 (6-x)辆 30 280
y=120x+1680 (4≤x≤5 )
方案一:当x=4时 即租用4辆汽车, 2辆乙种汽车 y=120×4+1680 =2160 方案二:当x=5时 即租用5辆汽车, 1辆乙种汽车 y=120×5+1680 =2280 由函数可知 y 随 x 增大而增大,所以 x =4时 y 最小.
A B 总计
(200-x)吨
(240-x)吨 (60+x)吨
240吨
260吨
解:(1)设从A城运往C乡化肥x吨,则从A城运往D城化肥 (200-x)吨,从B城运往C城化肥(240-x)吨,运往D城化肥 (60+x)吨,总运费为y元,根据题意有 y=20x+25(200-x)+15(240-x)+24(60+x) 即:y=4x+10040 (0≤x≤200) y 一次函数 y=4x+10040的值 y随x 的增大而增大,所以当x=0时y 有 · 10840· 最小值,最小值为4×0+10040= · y=4x+10040 10040,所以这次运化肥的方案应 10040 (0≤x≤200) 从A城调往C乡0吨,调往D乡200 吨;从B城调往C乡240吨,调往 D乡60吨. O · 200 x