人教版八年级下册数学:193课题学习选择方案

合集下载

人教版数学八年级下册19.3《课题学习选择方案》说课稿

人教版数学八年级下册19.3《课题学习选择方案》说课稿

人教版数学八年级下册19.3《课题学习选择方案》说课稿一. 教材分析人教版数学八年级下册19.3《课题学习选择方案》这一节的内容,主要让学生掌握如何从多个方案中选择最优方案,培养学生解决实际问题的能力。

本节内容是在学生已经学习了概率、统计和二元一次方程组的基础上进行授课的,对学生来说,是一个知识的巩固和拓展。

教材通过实例引入,让学生了解选择方案的实际应用,然后通过分析、讨论、总结,让学生掌握选择方案的方法和技巧。

二. 学情分析八年级的学生已经具备了一定的数学基础,对概率、统计和二元一次方程组的知识有一定的了解。

但是,学生在解决实际问题时,往往缺乏分析问题和解决问题的能力。

因此,在教学过程中,我将会引导学生通过实例分析,总结选择方案的方法,提高学生解决实际问题的能力。

三. 说教学目标1.知识与技能:让学生掌握选择方案的方法和技巧,能运用所学的知识解决实际问题。

2.过程与方法:通过实例分析,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学学习的习惯。

四. 说教学重难点1.教学重点:选择方案的方法和技巧。

2.教学难点:如何运用所学的知识解决实际问题。

五. 说教学方法与手段在教学过程中,我将采用实例教学法、讨论法、总结法等教学方法,利用多媒体课件辅助教学,帮助学生更好地理解和掌握所学知识。

六. 说教学过程1.导入:通过一个简单的实例,引入选择方案的概念,激发学生的学习兴趣。

2.新课讲解:讲解选择方案的方法和技巧,让学生通过实例分析,理解并掌握所学的知识。

3.课堂练习:设计一些练习题,让学生运用所学的知识解决实际问题,巩固所学内容。

4.总结:通过讨论和总结,让学生进一步理解和掌握选择方案的方法和技巧。

5.布置作业:布置一些相关的作业,让学生课后巩固所学知识。

七. 说板书设计板书设计如下:课题:选择方案1.实例引入2.方法讲解3.课堂练习八. 说教学评价教学评价将从学生的课堂表现、作业完成情况、练习题的正确率等方面进行。

人教版数学八年级下册19.3 课题学习-----选择方案教案

人教版数学八年级下册19.3 课题学习-----选择方案教案

课堂教学设计表
形成性练习
知识点
编号
学习
目标
练习题目内容
19.3-1
19.3-2
19.3-3
19.3-4
19.3-5
知识
和能力
过程
和方法
情感态度
与价值观
1. 某单位需要用车,准备和一个体车主或一国有出租公司其中的一家签订合同. 设
汽车每月行驶x km,应付给个体车主的月租费是y1元,付给出租公司的月租费是y2 元,
y1,y2 分别与x之间的函数关系图象是如图所示的两条直线,观察图象,回答下列问题:
(1)每月行驶的路程在什么范围内,租国有出租公司的出租车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家的车合算?
2.某班去商店为体育比赛优胜者买奖品,书包每个定价
30元,文具盒每个定价5 元,商品实行两种优惠方案:
①买一个书包赠送一个文具盒;②按总价的九折优惠.
若该班需买8个书包,文具盒x 个(x≥8),付款为y 元.
(1)分别求出两种方案中y 与x 之间的关系式;
(2)若购买文具盒30 个,应选哪种方案?付多少钱?
形成性评价
学生通过观察思考、自主探究、小组合作交流,能建立函数模型解决实际问题。

突出应用意识。

并顺利完成了学习目标。

教学反思通过让学生自主探究、小组合作交流,能灵活运用数学模型解决实际问题。

本节课最大亮点就是把课堂还给学生,让学生成为学习的主人,师生互动活跃,教师以学生为主体,通过引导、指点,调动学生积极主动地学习,激发学生的学习兴趣,使学生有成功的体验。

【同步作业】人教版 八年级下册数学19.3 课题学习 选择方案(含答案)

【同步作业】人教版 八年级下册数学19.3 课题学习 选择方案(含答案)

19.3 课题学习选择方案基础知识:1、某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算().A.计时制B.包月制C.两种一样 D.不确定2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是().A.①②③④ B.①③④ C.①②④ D.①②③3、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买1件时,售价约为3元,其中正确的说法有.(填序号)4、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L,又知单开进水管10min可以把容器注满,若同时打开进、出水管,20min可以把满容器的水放完,现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是:()A. B. C. D.5、我区某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.4小时C.4.8小时D.5小时6、关于x的一次函数)2()73(-+-=axay的图像与y轴的交点在x轴的上方,则y随x的增大而减小,则a的取值范围是。

初中数学八年级下册《课题学习:选择方案》优秀教学设计

初中数学八年级下册《课题学习:选择方案》优秀教学设计

课题:课题学习:选择方案学习目标:1、会应用一次函数与一元一次方程和一元一次不等式的关系,解决实际生活中的方案问题。

2、培养学生分析问题、解决问题的能力学习重点:会应用一次函数与一元一次方程和一元一次不等式的关系,解决实际生活中的方案问题。

学习难点:会应用一次函数与一元一次方程和一元一次不等式的关系,解决实际生活中的方案问题。

一、创设问题情境:做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划是非常有必要的。

二、自主学习与合作探究:问题一怎样选取上网收费方式?问题二怎样租车某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。

现有甲、乙两种大客车,它们的(2)给出最节省费用的租车方案。

分析:(1)要保证240名师生有车坐(2)要使每辆汽车上至少要有1名教师根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。

综合起来可知汽车总数为_____。

讨论:根据问题中的条件,自变量x 的取值应有几种可能?为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。

综合起来可知x 的取值为____。

在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。

二、巩固与拓展:例1、为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.(2)该公司如何建房获得利润最大?(注:利润=售价-成本)(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?三、当堂检测:1、东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.•该商场为了促销制定了两种优惠方案供顾客选择.甲:买一支毛笔赠送一本书法练习本.乙:按购买金额打九折付款.某校欲为校书法兴趣组购买这种毛笔10支,书法练习本x(x≤10)本.如何选择方案购买呢?2、学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如下图所示.根据图象回答:(1)乙复印社的每月承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?3、某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.4、为了鼓励小强勤做家务,培养他的劳动意识,小强每月的生活费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的。

19.3 课题学习 选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版

19.3 课题学习 选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版

19.3 课题学习选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版课题背景本课题为初二数学教学内容,主要讨论学生们在教学过程中,如何针对不同的问题,在多种可行方案中做出最优选择。

教学目标•了解并掌握选择方案的基本概念与思想方法。

•培养学生分析问题、解决问题的能力,增强其综合应用知识的能力。

•培养学生合作探讨的意识和能力,提高学生的团队合作精神。

•提高学生对数学学科的兴趣,增强学生的自主学习能力和创造力。

教学内容选择方案的基本概念选择方案是指在多种可行方案(包括选择、排列、组合等)中,选取一种科学、符合要求、优良的方案的过程。

选择方案一般需要考虑多种因素,如成本、时间、可行性、安全等。

选择方案的思想方法一般情况下,选择方案需要遵循以下几个步骤:1.明确目标和要求:选择方案的第一步就是明确目标和要求,以便选择出最优方案。

明确目标和要求需要结合实际情况,根据情况合理确定要求。

例如,考虑购买电脑时,需要先确定使用目的和购买预算,再选择性价比高、质量可靠等因素来确定要求。

2.收集情报资料:为了作出最优选择方案,需要充分收集相关情报和资料。

情报资料可以来自多个方面,如熟人介绍、网上搜索、问卷调查等。

例如,考虑购买电脑时,可以通过互联网搜索、问卷调查等方式收集相关资料。

3.分析和比较方案:收集到情报和资料后,需要对比分析多个可行方案。

对比分析需要综合考虑多种因素,如性价比、质量、售后服务等。

例如,考虑购买电脑时,需要比较多家电脑品牌的产品性价比、质量、售后服务等。

4.作出最终决策:在分析比较多个方案后,需要作出最终决策。

决策可以根据目标和要求,选取最优方案。

例如,考虑购买电脑时,在研究分析多个品牌的电脑产品性价比、质量、售后服务等因素后,做出最终决策选择最优方案。

实例分析以下是一个具体实例,以帮助学生了解和掌握选择方案的思想方法。

实例:如何选择健康的午餐?游客到一个小城市旅游,到处都是美食,但是游客不能放纵自己吃大餐或者垃圾食品。

人教版数学八年级下册19.3课题学习--选择方案(教案)

人教版数学八年级下册19.3课题学习--选择方案(教案)
-学生在分析实际问题时,可能会对如何提取关键信息、如何设置方程或不等式感到困惑。
-另一个难点是学生在团队合作中如何有效沟通与协作,将个人思考与团队智慧相结合,共同解决问题。
-举例:在解决“旅行路线规划”问题时,学生需要考虑时间、费用、景点满意度等多个因素,建立相应的方程组或不等式组。难点在于如何将这些因素合理地转化为数学变量,以及如何求解得到最佳路线。教师需要引导学生逐步分析问题,帮助学生突破这一难点。
最后,针对本节课的教学内容,我认识到要让学生真正掌握选择方案的方法,不仅需要他们在课堂上积极参与,还需要他们在课后进行大量的练习和思考。因此,我将在课后布置一些具有挑战性的实际问题,鼓励学生运用所学知识解决,以提高他们的实际操作能力。
其次,学生在小组讨论中表现出较强的合作意识和创新精神。他们能够主动提出自己的观点,并与组员展开热烈的讨论。这使得课堂氛围变得更加活跃,也让学生在实践中加深了对选择方案的理解。但我注意到,部分学生在讨论过程中过于依赖他人,缺乏独立思考。因此,在接下来的教学过程中,我要关注这部分学生,引导他们发挥自己的主观能动性,培养独立解决问题的能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了选择方案的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对选择方案的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-另一个重点是培养学生的数据分析能力,使学生能够从实际问题中提取关键信息,运用数学模型进行有效分析。
-举例:在讲解选择方案时,教师可通过案例“购物优惠方案”的对比分析,让学生理解如何运用数学知识进行选择。如比较不同商场的打折活动,通过建立方程组或不等式组,计算得出最佳购物方案。

人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案一. 教材分析人教版数学八年级下册《19.3 课题学习——选择方案》这一节主要让学生学会如何从多个方案中选择最优方案。

通过引入实际问题,让学生运用概率知识、列举法等方法,解决实际选择问题。

教材以案例的形式呈现,让学生在解决问题的过程中,掌握选择方案的方法和技巧。

二. 学情分析学生在学习本节内容前,已经掌握了概率基础知识,能够理解并运用列举法。

但如何在实际问题中灵活运用这些知识,选择最优方案,对学生来说还较为困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.让学生理解选择方案的概念,掌握选择方案的方法和技巧。

2.培养学生运用概率知识、列举法解决实际问题的能力。

3.培养学生独立思考、合作交流的能力。

四. 教学重难点1.重点:选择方案的方法和技巧。

2.难点:如何将所学知识应用于实际问题中,灵活选择最优方案。

五. 教学方法1.案例教学法:通过引入实际问题,让学生在解决问题的过程中掌握选择方案的方法。

2.引导发现法:教师引导学生发现问题的解决方法,培养学生的独立思考能力。

3.合作交流法:分组讨论,让学生在合作中发现问题、解决问题,提高学生的沟通能力。

六. 教学准备1.准备相关案例材料,用于引导学生解决实际问题。

2.准备多媒体教学设备,用于展示案例和引导学生思考。

七. 教学过程1.导入(5分钟)利用多媒体展示一个实际问题:某商场举行抽奖活动,奖品有电视机、洗衣机、电风扇和玩具。

奖品设置如下:一等奖:电视机,概率为1/10;二等奖:洗衣机,概率为2/10;三等奖:电风扇,概率为3/10;四等奖:玩具,概率为4/10。

提问:如果你参加这次抽奖活动,你希望获得哪个奖项?为什么?2.呈现(10分钟)引导学生分析问题,让学生认识到选择最优方案的重要性。

呈现教材中的案例,让学生了解选择方案的方法和技巧。

八年级下册数学教案《课题学习 选择方案》

八年级下册数学教案《一次函数与二元一次方程组》学情分析本节教学内容选择了生活中的两种方案为例:①如何交网费;②如何租车。

学生在此之前已经学习了一元一次方程、二元一次方程组、一元一次不等式的解法和应用,一次函数的图象和性质,一次函数和一元一次方程、二元一次方程组、一元一次不等式。

本节教学内容结合现实背景,分析现实背景中的变量和对应关系,采用多种方法选择方案,可以采用方程不等式,也可以采用函数知识,选择优化方案,也是对之前学习的知识的综合应用和升华。

教学目的1、会用一次函数知识解决方案选择问题,体会函数模型思想。

2、正确理解问题中的数量关系,运用所学知识解决相关的租车类问题。

教学重点运用函数知识,选择最佳方案。

教学难点从实际情景中建立数学模型,选择最佳方案。

教学方法讲授法、谈话法、讨论法、练习法教学过程一、直接导入做一件事情,有时有不同的实施方案。

比较这些方案,从中选择最佳方案作为行动计划,是非常有必要的。

在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数。

同学们通过讨论下面两个问题,可以体会如何运用一次函数选择最佳方案。

二、探究新知1、怎样选取上网收费方式?选择哪种方式能节省上网费?分析:在方式A,B中,上网时间是影响上网费的变量;在方式C中,上网费是常量。

设月上网时间为x h,则方案A,B的收费金额y1,y2都是x的函数。

要比较它们,需在x>0的条件下,考虑何时:(1)y1 = y2,(2)y1<y2,(3)y1>y2。

利用函数解析式,通过方程、不等式或函数图象能够解答上述问题。

在此基础上,再用其中省钱的方式与方式C进行比较,则容易对收费方式作出选择。

在方式A中,月使用费30元与包时上网时间25h是常量。

考虑收费金额时,要把上网时间分为25h以内和超过25h两种情况,得到的是如下的函数y1= 30(0≤x≤25)= 30 + 0.05×60(x-25)(x>25)化简,得y1= 30,0≤x≤253x - 45,x>25图象如图所示。

【人教版】八年级数学下册教案:19.3 课题学习 选择方案

19.3课题学习选择方案1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;(重点)2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.(难点)一、情境导入某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价基础上打八折优惠,乙旅行社则推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮忙分析出如何选择旅行社更划算吗?二、合作探究探究点:运用一次函数解决方案选择性问题【类型一】利用一次函数解决自变量是非负实数的方案选择问题小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦·时,请你帮助他们选择哪种灯可以省钱?解析:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元.根据“费用=灯的售价+电费”,分别列出y1、y2与x的函数解析式;然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.解:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元,由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.①当使用两灯费用相等时,y1=y2,即0.005x+60=0.03x+3,解得x=2280;②当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280;③当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.本题中两种灯的照明效果是一样的.使用寿命也相同(3000小时以上),所以买节能灯可以省钱.方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.【类型二】利用一次函数解决自变量是非负整数的方案选择问题某灾情发生后,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答的车辆数为y .求y 与x 的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.解析:(1)装运生活用品的车辆为(20-x -y )辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x 的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.解:(1)根据题意,装运食品的车辆为x 辆,装运药品的车辆为y 辆,那么装运生活用品的车辆数为(20-x -y )辆,则有6x +5y +4(20-x -y )=100,整理得,y =-2x +20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x ,20-2x ,x ,由题意得⎩⎪⎨⎪⎧x ≥5,20-2x ≥4,解得5≤x ≤8.因为x为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆;(3)设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16000-480x .因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需x 最大,则x =8.故选方案四,W 最小=16000-480×8=12160(元).答:选方案四,最少总运费为12160元.方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最佳方案.【类型三】 利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题已知A 、B 两地的路程为240千米.某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费项目及收费标准表货运收费项目及收费标准表:(1)汽车的速度为______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围),当x 为何值时,y 汽>y 火(总费用=运输费+冷藏费+固定费用);(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解析:(1)根据图①上两点的坐标分别为(2,120),(2,200),直接得出两车的速度即可;(2)根据图表得出货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.解:(1)60 100(2)根据题意得y 汽=240×2x +24060×5x+200=500x +200;y火=240×1.6x +240100×5x +2280=396x +2280.若y 汽>y 火,得出500x +200>396x +2280.解得x >20,当x >20时,y 汽>y 火;(3)上周货运量x =(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题. 三、板书设计1.利用一次函数解决自变量是非负实数的方案选择问题2.利用一次函数解决自变量是非负整数的方案选择问题3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.。

人教版八年级下册数学课时练《193 课题学习、选择方案》 试题试卷 含答案解析

《19.3课题学习选择方案》课时练学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知果农贩卖的西红柿,其重量与价钱成线型函数关系,今小华向果农买一竹篮的西红柿,含竹篮秤得总重量为15公斤,付西红柿的钱25元.若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少公斤?()A .1.5B .2C .2.5D .32.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,已约有400人排队等侯,此后每分钟又有4位旅客进入售票厅准备购票,而售票厅的一个售票窗口每分钟只能办理3位旅客的购票事宜.某天售票厅排队等候购票的人数y (人)与售票厅开放后的时间x (分钟)的关系如图所示,其中前a 分钟只开放了两个售票窗口,那么a 的值和a 分钟后共开放的售票窗口数分别是().A .24,3B .24,4C .40,3D .40,53.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了14.如果加满汽油后汽车行驶的路程为km x ,油箱中的剩油量为L y ,则y 与x 之间的函数解析式和自变量取值范围分别是()A .0.0625,0y x x =>B .500.0625,0y x x =->C .0.0625,0800y x x =££D .500.0625,0800y x x =-££4.某种品牌的同一种洗衣粉有A ,B ,C 三种袋装包装,每袋分别装有400克、300克、200克的洗衣粉,售价分别为3.5元、2.8元、1.9元.A ,B ,C 三种包装的洗衣粉,每袋的包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A ,B ,C 三种包装的洗衣粉各1200千克,获得利润最大的是()A .A 种包装的洗衣粉B .B 种包装的洗衣粉C .C 种包装的洗衣粉D .三种包装的都相同5.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类5025B 类20020C 类40015例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A .购买A 类会员卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡6.如图,点B ,C 分别在直线2y x =和直线y kx =上,A ,D 是x 轴上的两点,若四边形ABCD 是长方形,且:1:2AB AD =,则k 的值是()A .23B .25C .27D .29二、填空题7.如图,射线OA ,BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s ,t 分别表示行驶路程和时间,则这两人骑自行车的速度每小时相差________km.8.商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y (件)与衬衣价格x (元)销售之间的函数关系式为_________.9.如图,直线y=2x+4与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点C′恰好落在直线AB 上,则点C′的坐标为_____.10.一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示.当01x 时,y 关于x 的函数解析式为60y x =,那么当12x < 时,y 关于x 的函数解析式为________.三、解答题11.某公司40名员工到一景点集体参观,该景点规定满40人可以购买团体票,票价打八折.这天恰逢妇女节,该景点做活动,女士票价打五折,但不能同时享受两种优惠.请你帮助他们选择购票方案.12.小明用的练习本可在甲、乙两个商店买到.已知两个商店的标价都是每本1元.但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第1本开始就按标价的八五折卖.(1)小明要买20本练习本,到哪个商店购买较省钱?(2)小明现有24元,最多可买多少本练习本?13.甲、乙两辆摩托车从相距20km 的A ,B 两地相向而行,图中1l ,2l 分别表示甲、乙两辆摩托车离A 地的距离(km)s 与行驶时间(h)t 之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲车行驶到A ,B 两地的中点?14.如图,已知一次函数y kx b =+的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式(2)△AOB的面积y,l反映了y与t之间的关系.根据图象回答下列问题:15.如图,某植物t天后的高度为cm(1)3天后该植物高度为多少?(2)预测该植物12天后的高度;(3)几天后该植物的高度为10cm?=+中,k和b的实际意义分别是什么?(4)图象对应的一次函数y kt b16.如图,1l表示某公司一种产品一天的销售收入与销售量的关系,2l表示该公司这种产品一天的销售成本与销售量的关系.x=时,销售收入=______万元,销售成本=______万元,盈利(收入-成本)=______万元;(1)1(2)一天销售______件时,销售收入等于销售成本;(3)1l对应的函数表达式是______;(4)你能写出利润与销售量间的函数表达式吗?参考答案1.C2.C 3.D 4.B 5.C 6.B7.48.52500y x =-+9.(﹣1,2)10.10040y x =-11.解:设该公司参观者中有女士x 人,选择购买女士五折票时所需费用为1y 元,选择购买团体票时所需费用为2y 元,并设一张票的原价是a 元(0a ¹),10.5(40)y a x a x =´+´-,整理得10.540y ax a =-+,2400.8y a =´´,整理得232y a =.由12y y =,得0.54032ax a a -+=,解得16x =;由12y y >,得0.54032ax a a -+>,解得16x <;由12y y <,得0.54032ax a a -+<,解得16x >.所以当女士恰好是16人时,两种方案所需费用相同;当女士人数少于16人时,购买团体票合算;当女士人数多于16人不超过40人时,购买女士五折票合算.12.解:(1)∵小王买20本练习本在甲商店所需要的钱为:10×1+(20−10)×1×70%=17(元),小王买20本练习本在乙商店所需要的钱为:20×1×85%=17(元),∴小王要买20本练习本,到两家商店购买一样省钱;(2)甲商店中的收款y =10×1+(x −10)×1×70%=0.7x +3(x >10),乙商店中的收款y =x ×1×85%=0.85x .当y =24时,在甲商店购买的数量为:24=0.7x +3,解得:x =30,在乙商店购买的数量为:24=0.85x解得:x =28417.∵28417<30,∴小王最多可以买30个本子.13.解:(1)根据图象可知甲走完全程用了0.6小时,路程是20km .则甲的速度是:20100(km/h)0.63=;根据图象可知乙走完全程用了0.5小时,路程是20km .则乙的速度是:2040(km/h)0.5=;所以,1002040(km/h)33-=;答:乙摩托车快,快20(km/h)3;(2)设直线1l 的解析式为(0)S kt k =¹,则200.6t =,解得,1003t =,则该直线方程为1003S t =.当1202S =´时,10012032t =´,解得,0.3t =,即当至少经过0.3h ,甲车行驶到A ,B 两地的中点.14.解:(1)把A (-2,-1),B (1,3)代入y =kx +b 得213k b k b -+=-ìí+=î,解得4k=35b=3ìïïíïïî,所以一次函数解析式为4533y x =+;(2)把x =0代入4533y x =+得53y =,所以D 点坐标为(0,53),所以△AOB 的面积=S △AOD +S △BOD 1515=2+12323´´´´5=2.15.解:(1)设y 与t 之间的函数解析式为y kt b =+,把(0,3),(10,10)代入得由题意得:10103k b b +=ìí=î,∴7103k b ì=ïíï=î,∴y 与t 之间的函数解析式为7310y t =+,∴当3t =时,77333 5.1cm 1010y t =+=´+=,∴3天后该植物高度为5.1cm ;(2)当12t =时,77312311.4cm 1010y t =+=´+=,∴预测12天后该植物高度为11.4cm ;(3)由函数图像可知,在第10天后植物的高度达到10cm ;(4)k 表示植物的增长的速度,b 表示开始时植物高度.16.解:(1)x =1时,销售收入=212=(万元),销售成本=12 1.52+=(万元),盈利(收入-成本)=310.52-=-(万元);故答案为:1,1.5,-0.5;(2)由图像可知一天销售2件时,销售收入等于销售成本;故答案为:2;(3)设l 1对应的函数表达式为:y =kx ,则2=2k ,解得:k =1,故l 1对应的函数表达式为:y =x ,故答案为:y =x ;(4)∵l 1的表达式为y =x ,设l 2的表达式为y =kx +b (k ≠0),代入(0,1),(2,2)可得1,12k b ==,∴l 2的表达式为112y x =+,设利润为p ,∴利润p =11(1)122x x x -+=-,所以利润与销售量间的函数表达式为:112p x =-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档