数据分析培训ppt课件
合集下载
常用数据分析方法PPT课件

序号 1 2 3 4 5
合计
产品 A B C D
其他
损耗 130 35 10
8 12 195
占损耗比率(%) 累积比率(%)
排列图:练习
39
序号 1 2 3 4 5
合计
产品 A B C D
其他
损耗 130 35 10
8 12 195
占损耗总数比率(%)
66.7 17.9 5.1 4.1 6.2 100
❖ 对帐单(检查表); ❖ 流程图; ❖ 散布图; ❖ 直方图; ❖ 排列图; ❖ 控制图; ❖ 因果分析图;
统计分析工具
4
第一部 数据分析概述
5
1、什么是数据?
数据是对图书销售业务全过程记录下来的、 可以以鉴别的符号。数据是销售业务全过 程的属性数量、位置及相通关系等等的抽 象表示。
数据表现形式
3K
直到 N为止
当出版商批量发货及产品特别多时,并且易作某种次序的整理时, 系统抽样比分层抽样好;
抽样方法
24
总体
管 理
结论
抽样 分析
样本 测 试
数据
总体、样本、数据间的关系
25
抽样的目的是通过样本来反映总体。 在书业公司经营管理中,常常将测试的样本数据,通过整理加工,找 出它们的特性,从而推断总体的变化规律、趋势和性质。 一批数据的分布情况,可以用中心倾向及数据的分散程度来表示,表 示中心倾向的有平均值、中位值等,表示数据分散程度的有方差、标 准偏差、极差等。
数据
500
12月
1月
2月
3月
4月
5月
6月
7月
8月
9月
10月
11月
列表
《数据分析培训》PPT课件

5、字体用微软雅黑or黑体,英文用Arial
9、使用合并单元格的标准:用于记录纯文本信息Or 确保这张表已经是用于汇报的表格(不会再需要经人 进行数据处理) 10、数据量较大的时候,不要保留公式和各种引用 (选择性粘贴为数值)
11、数据量较大却需要用公式函数进行数据处理时, 将计算模式改为【手动计算】 12、灰色是百搭色
如果数据分析需要绩效指标,一定不会是分析的对错,而是最终数据提升的结果
数据分析需要反馈。分析出的结论,必须用业务结果验证它。需与运营和产品人员紧密联系,看 看改进后的效果,一切以结果为准。如果结果并没有改善,则应反思分析过程
数据分析以结果为导向。只有结果的呈现和问题的暴露,没有任何跟进、改进的措施的数据分析
精选课件
1
精选课件
1 浅谈数据分析 2 EXCEL使用经验 3 重要函数应用 4 学习与进阶
2
浅谈数据分析
——彼得 ·德鲁克
数据分析并不是一个结果,只是过程
如果你不能用指标描述业务,那么你就不能有效增长/降低它
业务指导数据,数据驱动业务
数据本身不产生价值,如何分析和利用数据对业务产生帮助才是关键
核心指标都是可以付诸行动的,能指导并据此改变行为
核心指标具有比较性:如果能比较某数据指标在不同的时间段、用户群体、竞争产品之间的表现,就可以更 好地洞察产品的实际走向
虚荣数据指标大多是一维的,可再细分出深层指标的,易给人产生【大规模感】和【成长感】 无论你觉得自己有多么的客观,这些指标都会对判断带来一些影响
理解维度和度量,也是快速理解Excel的关键功能(如数据透视表)和各类BI软件(如Tableau)的基础
精选课件
6
数据分析的基本步骤
明确分析目的和思路/定义问题 数据收集 数据处理 数据分析 数据展现 报告撰写
9、使用合并单元格的标准:用于记录纯文本信息Or 确保这张表已经是用于汇报的表格(不会再需要经人 进行数据处理) 10、数据量较大的时候,不要保留公式和各种引用 (选择性粘贴为数值)
11、数据量较大却需要用公式函数进行数据处理时, 将计算模式改为【手动计算】 12、灰色是百搭色
如果数据分析需要绩效指标,一定不会是分析的对错,而是最终数据提升的结果
数据分析需要反馈。分析出的结论,必须用业务结果验证它。需与运营和产品人员紧密联系,看 看改进后的效果,一切以结果为准。如果结果并没有改善,则应反思分析过程
数据分析以结果为导向。只有结果的呈现和问题的暴露,没有任何跟进、改进的措施的数据分析
精选课件
1
精选课件
1 浅谈数据分析 2 EXCEL使用经验 3 重要函数应用 4 学习与进阶
2
浅谈数据分析
——彼得 ·德鲁克
数据分析并不是一个结果,只是过程
如果你不能用指标描述业务,那么你就不能有效增长/降低它
业务指导数据,数据驱动业务
数据本身不产生价值,如何分析和利用数据对业务产生帮助才是关键
核心指标都是可以付诸行动的,能指导并据此改变行为
核心指标具有比较性:如果能比较某数据指标在不同的时间段、用户群体、竞争产品之间的表现,就可以更 好地洞察产品的实际走向
虚荣数据指标大多是一维的,可再细分出深层指标的,易给人产生【大规模感】和【成长感】 无论你觉得自己有多么的客观,这些指标都会对判断带来一些影响
理解维度和度量,也是快速理解Excel的关键功能(如数据透视表)和各类BI软件(如Tableau)的基础
精选课件
6
数据分析的基本步骤
明确分析目的和思路/定义问题 数据收集 数据处理 数据分析 数据展现 报告撰写
数据分析(培训完整)ppt课件

对数据进行初步分析,了解数据 的分布、特征和关系。
结果解释和应用
将分析结果转化为业务洞察和行 动计划,并应用到实际业务中。
模型评估和优化
对模型进行评估和优化,以提高 预测准确性和业务洞察力。
建立模型
根据分析目标,选择合适的数据 分析方法和模型。
02
CATALOGUE
数据收集与整理
数据来源
01
02
格式统一
将不同格式的数据统一 为标准格式,便于后续
分析。
数据转换
对数据进行必要的转换 ,以满足分析需求。
数据存储与备份
选择合适的存储介质
根据数据量、访问频率和安全 性要据进行备份,以防数 据丢失。
数据归档
将不常用的数据归档到低成本 存储设备上。
数据迁移
随着数据量的增长,适时迁移 数据到更高级的存储设备。
03
04
内部数据
公司数据库、CRM系统、日 志文件等。
外部数据
市场调查、公共数据、第三方 数据提供商等。
社交媒体数据
社交媒体平台上的用户生成内 容。
IoT数据
物联网设备产生的数据。
数据清洗与整理
缺失值处理
删除缺失值过多、无法 获取有效信息的记录。
异常值处理
识别并处理异常值,如 离群点、错误数据等。
简洁明了
避免图表过于复杂,突出核心信息 ,减少不必要的元素。
选择合适的图表类型
根据数据特点选择合适的图表类型 ,如柱状图、折线图、饼图、散点图 等。
色彩和字体选择
使用易于阅读的颜色和字体,确保 图表清晰易读。
数据可视化案例分享
销售趋势分析
使用折线图展示不同时间段内的销售数据, 分析销售趋势。
结果解释和应用
将分析结果转化为业务洞察和行 动计划,并应用到实际业务中。
模型评估和优化
对模型进行评估和优化,以提高 预测准确性和业务洞察力。
建立模型
根据分析目标,选择合适的数据 分析方法和模型。
02
CATALOGUE
数据收集与整理
数据来源
01
02
格式统一
将不同格式的数据统一 为标准格式,便于后续
分析。
数据转换
对数据进行必要的转换 ,以满足分析需求。
数据存储与备份
选择合适的存储介质
根据数据量、访问频率和安全 性要据进行备份,以防数 据丢失。
数据归档
将不常用的数据归档到低成本 存储设备上。
数据迁移
随着数据量的增长,适时迁移 数据到更高级的存储设备。
03
04
内部数据
公司数据库、CRM系统、日 志文件等。
外部数据
市场调查、公共数据、第三方 数据提供商等。
社交媒体数据
社交媒体平台上的用户生成内 容。
IoT数据
物联网设备产生的数据。
数据清洗与整理
缺失值处理
删除缺失值过多、无法 获取有效信息的记录。
异常值处理
识别并处理异常值,如 离群点、错误数据等。
简洁明了
避免图表过于复杂,突出核心信息 ,减少不必要的元素。
选择合适的图表类型
根据数据特点选择合适的图表类型 ,如柱状图、折线图、饼图、散点图 等。
色彩和字体选择
使用易于阅读的颜色和字体,确保 图表清晰易读。
数据可视化案例分享
销售趋势分析
使用折线图展示不同时间段内的销售数据, 分析销售趋势。
数据分析统计分析培训ppt

9
大家应该也有点累了,稍作休息
大家有疑问得,可以询问与交流
10
第二课时: Excel常用操作技巧
Sum:求与 Average:平均值 Max:最大值 Min:最小值 Large:第几大值 Count:计数 Round:保留小数位 Int:取整数位 And Or If
常用 函数
最有价值得函数 Vlookup:查找引用 精确查找:最常用,找到完全
客户性别 客户年龄 消费值 地理区域 使用得产品类型 拆分后在同一个项目里可能拥有若干个呼叫子清单,之所以这样做 就是您会发现在不同得呼叫时段/不同得技能组/不同性别得电话销售 代表/不同得排序方式下,不同得呼叫子清单会有着不同得绩效表现。 这个时候我们要做得只就是根据数据分析得结果相应得去调整各个子 清单,与其最适合得要素进行搭配就可以了!
数据分析在整个电话销售项目中就是贯穿始末得,但主要集中在以 下三个方面:
数据清单得提取
现场活动得监控
项目活动得总结
20
第六课时:数据分析在电话销售项目中得应用
数据清单得提取
电话销售得一个前提条件就是拥有大量得呼叫清单(CALL LIST),呼 叫清单就意味着潜在客户,因此为了寻找合适得清单不少企业甚至宁愿 花费巨额代价去第三方公司购买。而在某些企业得合作案例中我们也 瞧到,客户资源竟作为重要得参股条件为企业获得股权上得利益。但另 一方面我们也注意到,在拥有大量终端客户资源得电信及银行等行业, 在实施电话销售项目时对数据得滥用令人痛心!
案例1:某电信公司在推广新业务得时候,对所有得用户进行地毯式 得外呼,耗时之长、影响之大令人叹为观止。但实际结果就是新增市场 份额得目得就是达到了,但作为一个商业项目来核算得话,收益却就是 负值。用户得满意度及忠诚度也会因为这个不合时宜得电销活动受到 影响,对今后其她电话销售活动得开展埋下了隐患。
数据分析师培训PPT课件完整版

商业智能定义
角色
在企业和组织中,数据分析师扮 演着数据解读者、业务顾问和决 策支持者的角色。
数据分析师的核心能力
数据处理和分析能力
沟通和表达能力
掌握数据处理和分析技术,包括数据 挖掘、数据清洗、数据可视化等。
能够将复杂的数据分析结果以简洁明 了的方式呈现给非技术人员,具备良 好的沟通和表达能力。
业务理解和洞察能力
从大量数据中提取出有用信息和 知识的过程。
数据挖掘流程
包括数据准备、数据挖掘、结果 评估和应用四个阶段。
数据挖掘技术
分类、聚类、关联规则挖掘、时 间序列分析等。
关联规则挖掘与聚类分析
关联规则挖掘
发现数据项之间的有趣关联和相关性,如购物篮 分析等。
聚类分析
将数据对象分组,使得同一组内的对象相似度较 高,不同组间的对象相似度较低。
颜色搭配等。
可视化工具
介绍常用的数据可视化工具和技术 ,如Excel、Tableau、Power BI 等。
报告制作
阐述数据分析报告的结构和内容, 包括标题、摘要、目录、正文、结 论和建议等部分,同时提供报告制 作的技巧和规范。
数据分析方法与技
03
术
描述性统计分析
数据可视化
利用图表、图像等方式 直观展示数据分布和特
根据样本数据构造总体参数的 置信区间,评估参数估计的可
靠性。
方差分析
研究不同因素对总体变异的影 响程度,确定各因素对结果的
影响显著性。
回归分析
探究自变量与因变量之间的线 性或非线性关系,建立预测模
型。
机器学习算法与应用
监督学习
通过已知输入和输出数据进行 训练,建立预测模型,如线性 回归、逻辑回归、支持向量机
角色
在企业和组织中,数据分析师扮 演着数据解读者、业务顾问和决 策支持者的角色。
数据分析师的核心能力
数据处理和分析能力
沟通和表达能力
掌握数据处理和分析技术,包括数据 挖掘、数据清洗、数据可视化等。
能够将复杂的数据分析结果以简洁明 了的方式呈现给非技术人员,具备良 好的沟通和表达能力。
业务理解和洞察能力
从大量数据中提取出有用信息和 知识的过程。
数据挖掘流程
包括数据准备、数据挖掘、结果 评估和应用四个阶段。
数据挖掘技术
分类、聚类、关联规则挖掘、时 间序列分析等。
关联规则挖掘与聚类分析
关联规则挖掘
发现数据项之间的有趣关联和相关性,如购物篮 分析等。
聚类分析
将数据对象分组,使得同一组内的对象相似度较 高,不同组间的对象相似度较低。
颜色搭配等。
可视化工具
介绍常用的数据可视化工具和技术 ,如Excel、Tableau、Power BI 等。
报告制作
阐述数据分析报告的结构和内容, 包括标题、摘要、目录、正文、结 论和建议等部分,同时提供报告制 作的技巧和规范。
数据分析方法与技
03
术
描述性统计分析
数据可视化
利用图表、图像等方式 直观展示数据分布和特
根据样本数据构造总体参数的 置信区间,评估参数估计的可
靠性。
方差分析
研究不同因素对总体变异的影 响程度,确定各因素对结果的
影响显著性。
回归分析
探究自变量与因变量之间的线 性或非线性关系,建立预测模
型。
机器学习算法与应用
监督学习
通过已知输入和输出数据进行 训练,建立预测模型,如线性 回归、逻辑回归、支持向量机
数据分析培训课件精品ppt

总结词
探索性分析是对数据进行深入挖掘和探索的方法,旨在发现数据中的潜在规律 和模式。
详细描述
探索性分析通过绘制图表、计算相关系数、进行假设检验等方式,深入挖掘数 据中的潜在规律和模式,为后续的数据分析提供方向和思路。
预测性分析
总结词
预测性分析是利用已知数据和算法对未来进行预测的方法,包括回归分析、时间 序列分析等。
可读性
数据的格式和呈现是否易于理解。
03
数据处理与清洗
数据预处理
01
02
03
数据清洗
去除重复、无效或异常数 据,确保数据质量。
数据转换
将数据从一种格式或类型 转换为另一种格式或类型 ,以便于分析。
数据整合
将多个数据源的数据进行 整合,形成统一的数据集 。
数据缺失处理
删除缺失数据
对于缺失值较多的数据, 可以考虑删除含有缺失值 的记录。
市场风险分析:分析市场 走势和波动性,预测未来 市场风险,提前做好风险 管理准备。
用户行为分析
详细描述
用户画像构建:利用数据分析技 术,构建用户画像,了解用户特 征和需求。
用户行为路径分析:分析用户在 产品或服务中的使用路径和交互 行为,发现潜在优化点。
总结词:通过数据分析,了解用 户需求、偏好和行为模式,优化 产品设计和服务体验。
数据分析培训课件精品
汇报人:可编辑
2023-12-23
目录
• 数据分析基础 • 数据来源与获取 • 数据处理与清洗 • 数据分析方法与技巧 • 数据分析应用场景 • 数据分析案例分享
01
数据分析基础
数据分析的定义与重要性
数据分析的定义
数据分析是指通过统计方法和分 析工具对数据进行分析、挖掘和 解释,以提取有价值的信息和知 识的过程。
探索性分析是对数据进行深入挖掘和探索的方法,旨在发现数据中的潜在规律 和模式。
详细描述
探索性分析通过绘制图表、计算相关系数、进行假设检验等方式,深入挖掘数 据中的潜在规律和模式,为后续的数据分析提供方向和思路。
预测性分析
总结词
预测性分析是利用已知数据和算法对未来进行预测的方法,包括回归分析、时间 序列分析等。
可读性
数据的格式和呈现是否易于理解。
03
数据处理与清洗
数据预处理
01
02
03
数据清洗
去除重复、无效或异常数 据,确保数据质量。
数据转换
将数据从一种格式或类型 转换为另一种格式或类型 ,以便于分析。
数据整合
将多个数据源的数据进行 整合,形成统一的数据集 。
数据缺失处理
删除缺失数据
对于缺失值较多的数据, 可以考虑删除含有缺失值 的记录。
市场风险分析:分析市场 走势和波动性,预测未来 市场风险,提前做好风险 管理准备。
用户行为分析
详细描述
用户画像构建:利用数据分析技 术,构建用户画像,了解用户特 征和需求。
用户行为路径分析:分析用户在 产品或服务中的使用路径和交互 行为,发现潜在优化点。
总结词:通过数据分析,了解用 户需求、偏好和行为模式,优化 产品设计和服务体验。
数据分析培训课件精品
汇报人:可编辑
2023-12-23
目录
• 数据分析基础 • 数据来源与获取 • 数据处理与清洗 • 数据分析方法与技巧 • 数据分析应用场景 • 数据分析案例分享
01
数据分析基础
数据分析的定义与重要性
数据分析的定义
数据分析是指通过统计方法和分 析工具对数据进行分析、挖掘和 解释,以提取有价值的信息和知 识的过程。
数据分析(培训完整)ppt课件

收入
销售
支出
财务
购买
数据
绩效
交通
…
… 医疗
……
……
7
完整版PPT课件
什么是数据分析?
8
完整版PPT课件
故事……….
+
啤 酒 尿不湿
9
完整版PPT课件
完整版PPT课件
10
完整版PPT课件
11
什么是数据分析?
统计分析方法 实际业务方法
数据
决策/判断/行动
完整版PPT课件
12
数据分析的目的?
完整版PPT课件
24
比例、比率
比例: 各部分/总体。 比率: 不同类别数值的对比。
完整版PPT课件
25
同比、环比ቤተ መጻሕፍቲ ባይዱ
同比: 与历史时期进行对比。 环比: 与前一个统计期比较。
完整版PPT课件
26
频数、频率
频数: 个别数据重复出现的次数。 频率: 每组类别次数/总次数。
完整版PPT课件
27
目录
什么是数据分析 数据分析的步骤 数据分析的指标 数据分析的方法
完整版PPT课件
28
数据分析方法-对比分析法
完整版PPT课件
29
数据分析方法-平均分析法
完整版PPT课件
30
数据分析方法-漏斗图分析法
完整版PPT课件
31
数据分析方法-交叉分析法
完整版PPT课件
32
看图方法
1 2015年销售额走势图
3
5
销
售
额
4
走势线
2 日期
33
完整版PPT课件
看图方法
数据分析培训课件

未来股价进行预测。
数据来源
收集股票市场数据,包括历史股价、 成交量、市盈率、市净率等指标。
结论与建议
根据预测结果,制定投资策略,选择 具有上涨潜力的股票进行投资,降低 风险。
超市销售数据分析
确定目标
通过分析销售数据,识别热销商品和滞销商品,优化商品 结构,提高销售额。
数据来源
收集商品销售数据、库存数据、顾客购买行为数据等。
数据科学的发展趋势与前景
总结词
数据科学将成为未来发展的重要驱动力,前景广阔。
详细描述
数据科学是一门跨学科的综合性学科,它将统计学、计算机科学、商业理解等知识应用于数据的收集 、处理、分析和解释中。随着人工智能、机器学习等技术的不断发展,数据科学将在更多领域得到广 泛应用,成为推动社会进步的重要力量。
务目标。
数据驱动决策
数据分析的最终目的是支持业务 决策,通过数据分析和可视化, 能够更好地理解业务状况,发现
潜在机会和风险。
数据质量与准确性
数据分析的准确性非常重要,低 质量的数据可能导致错误的结论 和决策。因此,在进行数据分析 前,需要确保数据的准确性和完
整性。
数据分析的重要性
提高决策效率
通过数据分析,企业可以更快 地获取和理解业务信息,提高
详细介绍了各种常用的数据分析方法,如描述性统计、回归分析、聚类
分析、时间序列分析等。
数据分析的展望与未来发展
大数据时代的挑战与机遇
随着大数据时代的到来,数据分析面临着更大的挑战,同时也带来了更多的机遇。未来, 需要更加高效、灵活的数据分析方法和工具来处理海量数据。
人工智能与数据分析的结合
人工智能技术的发展为数据分析提供了新的机遇。未来,人工智能将与数据分析更加紧密 地结合,实现更加智能化、自动化的数据分析和决策支持。
数据来源
收集股票市场数据,包括历史股价、 成交量、市盈率、市净率等指标。
结论与建议
根据预测结果,制定投资策略,选择 具有上涨潜力的股票进行投资,降低 风险。
超市销售数据分析
确定目标
通过分析销售数据,识别热销商品和滞销商品,优化商品 结构,提高销售额。
数据来源
收集商品销售数据、库存数据、顾客购买行为数据等。
数据科学的发展趋势与前景
总结词
数据科学将成为未来发展的重要驱动力,前景广阔。
详细描述
数据科学是一门跨学科的综合性学科,它将统计学、计算机科学、商业理解等知识应用于数据的收集 、处理、分析和解释中。随着人工智能、机器学习等技术的不断发展,数据科学将在更多领域得到广 泛应用,成为推动社会进步的重要力量。
务目标。
数据驱动决策
数据分析的最终目的是支持业务 决策,通过数据分析和可视化, 能够更好地理解业务状况,发现
潜在机会和风险。
数据质量与准确性
数据分析的准确性非常重要,低 质量的数据可能导致错误的结论 和决策。因此,在进行数据分析 前,需要确保数据的准确性和完
整性。
数据分析的重要性
提高决策效率
通过数据分析,企业可以更快 地获取和理解业务信息,提高
详细介绍了各种常用的数据分析方法,如描述性统计、回归分析、聚类
分析、时间序列分析等。
数据分析的展望与未来发展
大数据时代的挑战与机遇
随着大数据时代的到来,数据分析面临着更大的挑战,同时也带来了更多的机遇。未来, 需要更加高效、灵活的数据分析方法和工具来处理海量数据。
人工智能与数据分析的结合
人工智能技术的发展为数据分析提供了新的机遇。未来,人工智能将与数据分析更加紧密 地结合,实现更加智能化、自动化的数据分析和决策支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
“精通”的意义
挑选一条道路,然后致力于发现“如何”抵达的可能性 以下是关于发展精通能力的核心思想概括:
* 不存在一种你应该“追随”的内在激情,相反,激情会跟随着你。 * 自信不是通向成功的路,相反,成功的行为才是通向自信的驱动力。 * 当你掌握了那些稀缺且有价值的技能进而获得“职业资本”的时候,你就会开始培养自信、激情和个性。 * 因此,你的个性不会影响你的行为,相反,你的行为塑造了自己的个性。 * 你是自己身份、幸福和对生活产生影响的创造者。 如果你的想法与上面这些恰恰相反,那么很有可能正处于“固定心态”里,要警惕,因为它会让你变得固步自封。
5、字体用微软雅黑or黑体,英文用Arial
9、使用合并单元格的标准:用于记录纯文本信息Or 确保这张表已经是用于汇报的表格(不会再需要经人 进行数据处理) 10、数据量较大的时候,不要保留公式和各种引用 (选择性粘贴为数值)
11、数据量较大却需要用公式函数进行数据处理时, 将计算模式改为【手动计算】 12、灰色是百搭色
以此类推还有很多思维模型可以应用于我们的工作,这也被称之为“结构化思维”,这里不一一列举
8
“精通”的意义
人与人效率之间的差距十分巨大,无论你将节约出来的时间是用来“偷懒”、继续工作还是思考创新,你都比坚持 蛮干的人要优秀。
并不存在“正确”工作 大多数人没有成功绝对是事出有因。他们对世界如何运转有着错误的预设。 有一种理论假设,作为人,我们必须事先拥有需要“发现”并随后追随的雄心壮志。著名心理学家,《看见成长 的自己》(Mindset)一书作者卡罗尔·杜依可认为这是一种“固定心态”。 相对于自私地追求自己所热爱的生活,纽波特建议人们成为一名“工匠”,在这个过程中,人们可以练得难得的、 有价值的技能。纽波特把这些稀有而有价值的技能称为“职业资本”。
核心指标都是可以付诸行动的,能指导并据此改变行为
核心指标具有比较性:如果能比较某数据指标在不同的时间段、用户群体、竞争产品之间的表现,就可以更 好地洞察产品的实际走向
虚荣数据指标大多是一维的,可再细分出深层指标的,易给人产生【大规模感】和【成长感】 无论你觉得自己有多么的客观,这些指标都会对判断带来一些影响
通过业务建立和筛选出指标,将指标作为维度,利用维度进行分析
PS:可以尝试复习一下你学过的基础统计学了,80%的业务分析用不到太高级的统计方法
4
核心指标和虚荣指标
核心驱动指标一定能给公司和个人带来最大优势和利益,实施后的反馈结果贴合业务目标、企业使命及愿景 另外一方面,好的指标还有一个特性,它应该是比率或者比例。
如果数据分析需要绩效指标,一定不会是分析的对错,而是最终数据提升的结果
数据分析需要反馈。分析出的结论,必须用业务结果验证它。需与运营和产品人员紧密联系,看
看改进后的效果,一切以结果为准。如果结果并没有改善,则应反思分析过程
数据分析以结果为导向。只有结果的呈现和问题的暴露,没有任何跟进、改进的措施的数据分析
12
一些好习惯和经验
1、没事就按按Ctrl+S
8、基础数据表禁用合并单元格功能
2、自动保存时间间隔设置Байду номын сангаас2~3min(默认是10min)
3、给他人发送excel前,请尽量将光标定位在需要他人首 先阅览的位置,例如Home位置(A1),例如结论sheet, 长表尽量将位置定位到最顶端 4、同类型数据的行高、列宽、字体、字号,尽量一致。关爱 强迫症,人人有责。 (格式刷)
理解维度和度量,也是快速理解Excel的关键功能(如数据透视表)和各类BI软件(如Tableau)的基础
6
数据分析的基本步骤
明确分析目的和思路/定义问题 数据收集 数据处理 数据分析 数据展现 报告撰写
学会提问,问对问准问题
7
一个常用的分析模型
AARRR模型:
获取用户(Acquisition) 提高活跃度(Activation) 提高留存率(Retention) 获取营收(Revenue) 自传播(Referral)
6、有必要的时候请冻结首行;没必要但可追究的内容,可 以隐藏处理
7、八月十五号、8月15号、8\15、8.15、8。15这些Excel 都不觉得代表时间
12、数据从A1开始,不要有空行空列
10
掌握数据思维的重要性
不要给自己设限,在这样一个信息时代,具备一定的数 据分析思维和技能是诸多工作的基础,而非个性化、高 精尖的发展方向。
11
对于Excel,你了解多少?
1.你的Excel版本是否更新到2013版以上,对了,今年是2018年:) 2.如果你经常需要进行数据处理类工作,你是否比较过WPS和Excel的区别? 3.是否经常逐行逐列处理数据? 够的渴望? 6.是否思考过表格类工作有没有更快更优的提升可能性? 7.有没有系统地整理过已掌握的Excel技巧?
是没有意义的
3
业务数据分析的核心
数据证明 数据导向型的思维,重在数据的应用 清晰的数据来源、统计口径、判断标准
代替
我认为
直觉化经验化的思维 模糊的、感性的、口语化
过去
现在
A区域 A产品
对比
B区域 B产品
A类别
B类别
A用户
B用户
单一的数据没有分析意义,只有多个数据组 合才能发挥出数据的最大价值。
“本周的用户转化率比上周高”显然比“转化率为2%“更有意义
销售额
总店铺数
活跃用户数
下载量
激活率
……
你现在能否区分出实际业务中的虚荣指标和核心指标?
5
维度和度量
维度
度量
维度是说明和观察事物的角度,指标是衡量数据的标准。维度是一个更大的范围,不只是数据,比如时间维 度和城市维度,我们就无法用指标表示,而指标(留存率、跳出率、浏览时间等)却可以成为维度。通俗理 解:维度>指标。
1
1 浅谈数据分析 2 EXCEL使用经验 3 重要函数应用 4 学习与进阶
2
浅谈数据分析
——彼得 ·德鲁克
数据分析并不是一个结果,只是过程
如果你不能用指标描述业务,那么你就不能有效增长/降低它
业务指导数据,数据驱动业务
数据本身不产生价值,如何分析和利用数据对业务产生帮助才是关键
“精通”的意义
挑选一条道路,然后致力于发现“如何”抵达的可能性 以下是关于发展精通能力的核心思想概括:
* 不存在一种你应该“追随”的内在激情,相反,激情会跟随着你。 * 自信不是通向成功的路,相反,成功的行为才是通向自信的驱动力。 * 当你掌握了那些稀缺且有价值的技能进而获得“职业资本”的时候,你就会开始培养自信、激情和个性。 * 因此,你的个性不会影响你的行为,相反,你的行为塑造了自己的个性。 * 你是自己身份、幸福和对生活产生影响的创造者。 如果你的想法与上面这些恰恰相反,那么很有可能正处于“固定心态”里,要警惕,因为它会让你变得固步自封。
5、字体用微软雅黑or黑体,英文用Arial
9、使用合并单元格的标准:用于记录纯文本信息Or 确保这张表已经是用于汇报的表格(不会再需要经人 进行数据处理) 10、数据量较大的时候,不要保留公式和各种引用 (选择性粘贴为数值)
11、数据量较大却需要用公式函数进行数据处理时, 将计算模式改为【手动计算】 12、灰色是百搭色
以此类推还有很多思维模型可以应用于我们的工作,这也被称之为“结构化思维”,这里不一一列举
8
“精通”的意义
人与人效率之间的差距十分巨大,无论你将节约出来的时间是用来“偷懒”、继续工作还是思考创新,你都比坚持 蛮干的人要优秀。
并不存在“正确”工作 大多数人没有成功绝对是事出有因。他们对世界如何运转有着错误的预设。 有一种理论假设,作为人,我们必须事先拥有需要“发现”并随后追随的雄心壮志。著名心理学家,《看见成长 的自己》(Mindset)一书作者卡罗尔·杜依可认为这是一种“固定心态”。 相对于自私地追求自己所热爱的生活,纽波特建议人们成为一名“工匠”,在这个过程中,人们可以练得难得的、 有价值的技能。纽波特把这些稀有而有价值的技能称为“职业资本”。
核心指标都是可以付诸行动的,能指导并据此改变行为
核心指标具有比较性:如果能比较某数据指标在不同的时间段、用户群体、竞争产品之间的表现,就可以更 好地洞察产品的实际走向
虚荣数据指标大多是一维的,可再细分出深层指标的,易给人产生【大规模感】和【成长感】 无论你觉得自己有多么的客观,这些指标都会对判断带来一些影响
通过业务建立和筛选出指标,将指标作为维度,利用维度进行分析
PS:可以尝试复习一下你学过的基础统计学了,80%的业务分析用不到太高级的统计方法
4
核心指标和虚荣指标
核心驱动指标一定能给公司和个人带来最大优势和利益,实施后的反馈结果贴合业务目标、企业使命及愿景 另外一方面,好的指标还有一个特性,它应该是比率或者比例。
如果数据分析需要绩效指标,一定不会是分析的对错,而是最终数据提升的结果
数据分析需要反馈。分析出的结论,必须用业务结果验证它。需与运营和产品人员紧密联系,看
看改进后的效果,一切以结果为准。如果结果并没有改善,则应反思分析过程
数据分析以结果为导向。只有结果的呈现和问题的暴露,没有任何跟进、改进的措施的数据分析
12
一些好习惯和经验
1、没事就按按Ctrl+S
8、基础数据表禁用合并单元格功能
2、自动保存时间间隔设置Байду номын сангаас2~3min(默认是10min)
3、给他人发送excel前,请尽量将光标定位在需要他人首 先阅览的位置,例如Home位置(A1),例如结论sheet, 长表尽量将位置定位到最顶端 4、同类型数据的行高、列宽、字体、字号,尽量一致。关爱 强迫症,人人有责。 (格式刷)
理解维度和度量,也是快速理解Excel的关键功能(如数据透视表)和各类BI软件(如Tableau)的基础
6
数据分析的基本步骤
明确分析目的和思路/定义问题 数据收集 数据处理 数据分析 数据展现 报告撰写
学会提问,问对问准问题
7
一个常用的分析模型
AARRR模型:
获取用户(Acquisition) 提高活跃度(Activation) 提高留存率(Retention) 获取营收(Revenue) 自传播(Referral)
6、有必要的时候请冻结首行;没必要但可追究的内容,可 以隐藏处理
7、八月十五号、8月15号、8\15、8.15、8。15这些Excel 都不觉得代表时间
12、数据从A1开始,不要有空行空列
10
掌握数据思维的重要性
不要给自己设限,在这样一个信息时代,具备一定的数 据分析思维和技能是诸多工作的基础,而非个性化、高 精尖的发展方向。
11
对于Excel,你了解多少?
1.你的Excel版本是否更新到2013版以上,对了,今年是2018年:) 2.如果你经常需要进行数据处理类工作,你是否比较过WPS和Excel的区别? 3.是否经常逐行逐列处理数据? 够的渴望? 6.是否思考过表格类工作有没有更快更优的提升可能性? 7.有没有系统地整理过已掌握的Excel技巧?
是没有意义的
3
业务数据分析的核心
数据证明 数据导向型的思维,重在数据的应用 清晰的数据来源、统计口径、判断标准
代替
我认为
直觉化经验化的思维 模糊的、感性的、口语化
过去
现在
A区域 A产品
对比
B区域 B产品
A类别
B类别
A用户
B用户
单一的数据没有分析意义,只有多个数据组 合才能发挥出数据的最大价值。
“本周的用户转化率比上周高”显然比“转化率为2%“更有意义
销售额
总店铺数
活跃用户数
下载量
激活率
……
你现在能否区分出实际业务中的虚荣指标和核心指标?
5
维度和度量
维度
度量
维度是说明和观察事物的角度,指标是衡量数据的标准。维度是一个更大的范围,不只是数据,比如时间维 度和城市维度,我们就无法用指标表示,而指标(留存率、跳出率、浏览时间等)却可以成为维度。通俗理 解:维度>指标。
1
1 浅谈数据分析 2 EXCEL使用经验 3 重要函数应用 4 学习与进阶
2
浅谈数据分析
——彼得 ·德鲁克
数据分析并不是一个结果,只是过程
如果你不能用指标描述业务,那么你就不能有效增长/降低它
业务指导数据,数据驱动业务
数据本身不产生价值,如何分析和利用数据对业务产生帮助才是关键