机械加工表面质量分析
机械加工表面加工质量

由于切屑的崩碎而在加工表面留下许多麻点,使表 面粗糙。
机械加工表面加工质量
(2)切削速度的影响 (3)进给量的影响
加工塑性材料时,切削速度对
表面粗糙度的影响(对积屑瘤和鳞 刺的影响)见如图4-41所示。
此外,切削速度越高,塑性变 形越不充分,表面粗糙度值越小
(1)磨削用量
▪ 砂轮的转速↑ →材料塑性变形↓ → 表面粗
糙度值↓ ;
▪磨削深度↑、工件速度↑ → 塑性变形↑ →表
面粗糙度值↑ ; 为提高磨削效率,通常在开始磨削时采
用较大的径向进给量,而在磨削后期采用较 小的径向进给量或无进给量磨削,以减小表 面粗糙度值。
机械加工表面加工质量
(2)工件材料
•太硬易使磨粒磨钝 →Ra ↑ ; •太软容易堵塞砂轮→Ra ↑ ; •韧性太大,热导率差会使磨
影响显微硬度因素
•塑变引起的冷硬
•金相组织变化引起 的硬度变化
表面物理力学 性能
影响残余应力因素
•冷塑性变形 •热塑性变形 •金相组织变化
影响金相组织变化 因素
•切削热
机械加工表面加工质量
1. 表面层的冷作硬化
(1) 表面层加工硬化的产生
定义:机械加工时,工件表面层金属受到 切削力的作用产生强烈的塑性变形,使晶 格扭曲,晶粒间产生剪切滑移,晶粒被拉 长、纤维化甚至碎化,从而使表面层的强 度和硬度增加,这种现象称为加工硬化, 又称冷作硬化和强化。
机械加工表面加工质量
三、表面层金相组织变化与磨削烧伤
1.表面层金相组织变化与磨削烧伤的产生
切削加工中,由于切削热的作用,在工件的加 工区及其邻近区域产生了一定的温升。
定义:磨削加工时,表面层有很高的温度,当 温度达到相变临界点时,表层金属就发生金相组织 变化,强度和硬度降低、产生残余应力、甚至出现 微观裂纹。这种现象称为磨削烧伤。
机械加工精度与表面质量分析

机械加工精度与表面质量分析机械加工是制造业中常见的一种工艺,它对于零件的精度和表面质量要求非常高。
机械加工精度和表面质量的好坏直接影响到零件的使用效果和寿命。
本文将从机械加工精度和表面质量的定义、影响因素、提高方法等方面进行阐述。
1. 机械加工精度的定义机械加工精度指的是加工零件的尺寸和形状与设计要求之间的偏差程度。
一般来说,机械加工精度分为三个方面:形位精度、尺寸精度和粗糙度。
形位精度是指零件各个面、轴线和孔中心轴线之间的位置关系,包括平行度、垂直度、圆度、同心度等。
尺寸精度是指零件在加工过程中的实际尺寸与设计尺寸之间的偏差,包括直线度、平面度、圆度等。
粗糙度是指加工表面的光洁度,也就是表面的起伏程度,常用Ra值来表示。
粗糙度越小,表面越光滑。
2. 影响机械加工精度的因素机械加工精度受到多种因素的影响,包括机床的精度、刀具的强度和刚度、切削工况、刀具磨损和材料性质等。
其中,机床的精度是机械加工精度的基础,如刚性、传动精度等。
刀具的强度和刚度决定了切削力和振动情况,对加工精度影响较大。
切削工况包括切削速度、进给量和切削深度,不同工况会引起不同的加工精度。
此外,刀具磨损和材料性质也会影响加工精度。
3. 机械加工表面质量的定义机械加工表面质量是指零件在机械加工过程中获得的表面光洁度和形貌特征。
表面质量的好坏通常通过表面粗糙度和表面形貌来衡量。
表面粗糙度是指在单位表面积内,表面起伏的最小值与最大值之差。
通常使用Ra值来表示,Ra值越小,表面质量越好。
表面形貌是指加工表面的纹理和形态特征,如划痕、疤痕等。
表面质量的好坏直接影响到零件的摩擦、磨损、密封性能等。
4. 影响机械加工表面质量的因素机械加工表面质量的好坏与多种因素有关。
首先,刀具的磨损和切削参数会直接影响表面粗糙度。
刀具磨损会增加切削力和振动,导致表面粗糙度增加。
其次,材料的硬度和韧性对表面质量有重要影响。
硬度高的材料加工困难,容易产生划痕和裂纹。
磨削加工过程中机械表面质量的实验研究与分析

【活动背景】 纸是现代社会不可获缺的重要载体,在人类 的日常生活、学习、工作中有着广泛的用途。它的 出现促进了人类社会文明的进步,给人类带来极 大的便利。但是现在大部分的学生知道“树”是造 纸的原料,在我们的身边浪费严重的纸张可以重 新造出新的纸,此次活动的开展,以学生制作再生 纸为目的,让学生在探索与创造的过程中,体验制 作再生纸的乐趣,培养学生的动手能力,满足了孩 子的探究欲望、培养了他们勤俭节约,保护环境的 意识。 【活动目标】 1.让学生了解制作纸的众多材料中,用过的 废纸也能够再造出新纸来。 2.让学生知道再生纸的制作流程:制浆、抄 纸、压水、揭纸和晾干。 3.让学生亲身体验制作一张再生纸的乐趣。 【重点、难点】 1.重点:了解了解再生纸的制作的方法。 2.难点:能利用废纸制作再生纸。 【材料准备】 一张废纸、毛巾、矿泉水瓶、小石块、筛网、水 槽、泡沫块。 【活动过程】 (一)导入
- 189 -
综合园地
2016 年第 6 期
师:这节课,我们就上到这边,下课!
给了学生充分的活动空间和时间,又给了学生适
生:老师再见。
时的指导与帮助,这些做法都符合培养学生创新
师:同学们再见。
精神这一课程核心。同时,精心制作课件,即有理
专家点评
论的指导也有实践的参与,对帮助学生掌握再生
郑老师的《再生纸的制作》这一课,给我留下 了深刻的印象。下面就这节综合实践课谈谈我的 体会:
- 188 -
2016 年第 6 期 给大家准备再生纸制作的视频,请同学们认真观 看视频,并且记录再生纸的制作的流程,看看,屏 幕上的这些材料和工具都有哪些的用途,好不好?
生:好 PPT 播放再生纸制作的微视频(5 分钟) 师:同学们,制作再生纸都有哪些流程呢? 第一步是“制浆”,接第二布是“抄纸”,第三步 是“挤压”,第四步是“揭纸”,最后是“晾干”。 师:现在,你们知道怎么制作再生纸了吗? 生:知道 师:在活动之前老师还要给大家一个温馨提 示 PPT 展示:温馨提示 1.小组分工,合作完成。 2.制作过程,轻声细语。 3.小心用水,勿湿桌面。 4.音乐响起,安静坐好。 师:可以做到吗? 生:可以 (三)制作再生纸 师:当你们拿到材料之后就可以开始活动了。 现在请小组长上来领取活动材料。 生:(制作再生纸中……10 分钟后音乐响起) 师:你们都成功做出再生纸了吗? 生:成功了。 (四)比一比 师:请每个小组派出一位同学带上你们做的 最好的一张再生纸,到前面展示给大家,看看哪个 小组的再生纸做的最好。 师:同学们评一评,哪个小组的再生纸做的最 好,为什么? 生:我觉得,第一小组的再生纸做的最好,因 为他的纸做的比较细腻 师:观察的真仔细,你们都同意吗?你有不同 意见,请你说 生:我觉得第二的小组做的比较好,因为他的 再生纸做的很圆 师:你的表达非常清晰,大家一听就明白。你
机械加工表面质量

第三章机械加工表面质量第一节概述评价零件是否合格的质量指标除了机械加工精度外,还有机械加工表面质量。
机械加工表面质量是指零件经过机械加工后的表面层状态。
探讨和研究机械加工表面,掌握机械加工过程中各种工艺因素对表面质量的影响规律,对于保证和提高产品的质量具有十分重要的意义。
一机械加工表面质量的含义机械加工表面质量又称为表面完整性,其含义包括两个方面的内容:1.表面层的几何形状特征表面层的几何形状特征如图3-1所示,主要由以下几部分组成:⑴表面粗糙度它是指加工表面上较小间距和峰谷所组成的微观几何形状特征,即加工表面的微观几何形状误差,其评定参数主要有轮廓算术平均偏差R a或轮廓微观不平度十点平均高度R z;⑵表面波度它是介于宏观形状误差与微观表面粗糙度之间的周期性形状误差,它主要是由机械加工过程中低频振动引起的,应作为工艺缺陷设法消除。
⑶表面加工纹理它是指表面切削加工刀纹的形状和方向,取决于表面形成过程中所采用的机加工方法及其切削运动的规律。
⑷伤痕它是指在加工表面个别位置上出现的缺陷,如砂眼、气孔、裂痕、划痕等,它们大多随机分布。
2.表面层的物理力学性能表面层的物理力学性能主要指以下三个方面的内容:⑴表面层的加工冷作硬化;⑵表面层金相组织的变化;⑶表面层的残余应力。
二表面质量对零件使用性能的影响1.表面质量对零件耐磨性的影响零件的耐磨性是零件的一项重要性能指标,当摩擦副的材料、润滑条件和加工精度确定之后,零件的表面质量对耐磨性将起着关键性的作用。
由于零件表面存在着表面粗糙度,当两个零件的表面开始接触时,接触部分集中在其波峰的顶部,因此实际接触面积远远小于名义接触面积,并且表面粗糙度越大,实际接触面积越小。
在外力作用下,波峰接触部分将产生很大的压应力。
当两个零件作相对运动时,开始阶段由于接触面积小、压应力大,在接触处的波峰会产生较大的弹性变形、塑性变形及剪切变形,波峰很快被磨平,即使有润滑油存在,也会因为接触点处压应力过大,油膜被破坏而形成干摩擦,导致零件接触表面的磨损加剧。
机械加工中的表面粗糙度与加工精度分析

机械加工中的表面粗糙度与加工精度分析引言:在机械加工过程中,表面粗糙度和加工精度是两个关键参数。
表面粗糙度是指工件表面的不规则度,而加工精度则是衡量加工结果与设计要求的接近程度。
这两个参数直接影响着产品的质量、性能和寿命。
本文将分析机械加工中表面粗糙度与加工精度的关系,并探讨一些改善加工质量的方法。
一、表面粗糙度与加工精度的定义和测量方法1. 表面粗糙度的定义表面粗糙度是指工件表面的不平滑度或不规则度。
它是由加工过程中切削工具与工件表面摩擦及切削引起的微小凹凸所形成的。
表面粗糙度可以以数值形式表示,通常使用Ra(均方根粗糙度)或Rz(最大峰值粗糙度)进行表征。
越小的数值表示表面越光滑。
2. 加工精度的定义加工精度是指工件实际加工结果与设计要求的接近程度。
它通常用公差来表示,是加工过程中所能保持的最大形状偏差。
加工精度的标准可以根据具体的产品需求而定,如汽车制造中的零件加工精度要求较高,需要达到很小的公差。
3. 表面粗糙度的测量方法表面粗糙度的测量可以使用多种仪器和方法。
常见的测量仪器有表面粗糙度仪、激光扫描仪和电子显微镜等。
这些仪器可以测量出工件表面的纹理、高度和形状等参数,并根据国际标准对其进行评价和分类。
二、表面粗糙度与加工精度的关系1. 表面粗糙度对加工精度的影响表面粗糙度对加工精度有直接影响。
当工件表面粗糙度较大时,切削刀具与工件表面的接触面积会增大,切削力也会增加。
这样容易导致加工误差和形状偏差的增大,从而降低加工精度。
2. 加工精度对表面粗糙度的影响加工精度对表面粗糙度也有一定的影响。
在加工过程中,加工工艺参数的选择和控制是保证加工精度的关键。
如果加工参数选择不当,容易造成工件表面过度磨损或过度切削,从而导致表面粗糙度的增加。
三、改善加工精度与表面粗糙度的方法1. 选择合适的加工工艺与刀具在机械加工过程中,选择合适的加工工艺和刀具是提高加工精度和控制表面粗糙度的关键。
不同材料和工件形状适合不同的加工工艺和刀具。
机械加工质量分析及控制

机械加工质量分析及控制机械加工质量分析及控制一、引言二、机械加工质量分析机械加工质量的分析主要包括以下几个方面:1.表面粗糙度分析机械加工的表面粗糙度对于产品的外观和性能有着重要影响。
通过使用表面粗糙度测量仪器,可以对机械加工的表面粗糙度进行评估。
常用的表面粗糙度参数包括Ra、Rz等。
2.尺寸精度分析机械加工的尺寸精度是指产品的实际尺寸和设计图纸上的尺寸之间的偏差。
通过使用测量工具和仪器,可以对机械加工的尺寸精度进行评估。
常用的尺寸精度参数包括公差、尺寸偏差等。
3.形状偏差分析机械加工的形状偏差是指产品的实际形状和设计图纸上的形状之间的偏差。
通过使用形状测量仪器,可以对机械加工的形状偏差进行评估。
常用的形状偏差参数包括圆度误差、平面度误差等。
三、机械加工质量控制为了确保机械加工的质量,需要进行相应的控制措施。
以下是几个常用的机械加工质量控制方法:1.工艺参数控制调整机械加工的工艺参数,可以对机械加工的质量进行控制。
例如,通过调整切削速度、进给速度和切削深度等参数,可以控制机械加工的表面粗糙度和尺寸精度。
2.设备状态监控对机械加工设备的状态进行监控,可以及时发现并修复设备故障,避免对产品质量的影响。
常用的设备状态监控方法包括振动监测、温度监测等。
3.质量检验与统计分析对机械加工的产品进行质量检验,并进行统计分析,可以及时发现并纠正加工过程中的问题。
常用的质量检验方法包括外观检查、尺寸测量等。
四、机械加工质量的分析和控制是确保产品质量的重要手段。
通过对表面粗糙度、尺寸精度和形状偏差等进行分析,可以找出问题所在。
通过工艺参数控制、设备状态监控和质量检验与统计分析等控制措施,可以提高机械加工的质量水平。
影响机械加工表面质量因素问题分析及改进措施

影响机械加工表面质量因素问题分析及改进措施摘要:在机械加工中,所加工的工件质量对于工件在生产使用中的性能和寿命有较大影响。
为了提高加工工件的精度,应从在加工过程中影响工件表面质量的工艺因素分析,并在此基础上提出提高加工工件表面质量的改进措施。
关键词:表面质量;影响因素;改善方法引言机械制造技术是当今产品升级、发展生产力、增强市场竞争力的重要手段,也是现今科学技术发展的重中之重。
作为支撑国民经济发展的机械制造业,是其他产业的基础,其他各种产业的发展和进步离不开制造业为其提供相应的先进的专用或通用设备。
当今国际、国内生产领域竞争激烈,能够具备针对市场要求的快速反应能力,为其提供相应的优质产品,是加强市场竞争力的非常重要的因素。
而产品质量的提高主要取决于制造业水平,因而确保机械加工表面质量的问题就显得尤为重要。
1机械加工表面质量对工件使用性能的影响1.1表面结构及表面粗糙度的影响(1)影响零件的耐磨性,当两个零件的摩擦表面接触时,实际上只有占接触面积很小一部分的凸峰顶部接触。
在外力作用下,凸峰和凸峰之间的接触部分会产生较大的压强,从而导致零件表面发生相应的弹性形变,更严重的情况下会发生塑性形变,甚至发生剪切现象。
(2)影响零件的配合性质,在发生相对运动的配合零件,如二者之间长时间发生磨损,零件的尺寸就会发生变化,从而影响零件的配合性质。
比如零件的表面粗糙度选择不当时,会使零件的磨损速度加快,装配时所得到的合理间隙便迅速增大,一台新设备很快就失去正常的工作能力,有时会给单位带来不可估量的损失[1]。
(3)影响零件的疲劳强度,在某些工况下,零件之间会产生交变载荷,这时由于零件表面的较大的粗糙度如划痕、裂纹等缺陷会造成零件表面应力集中的问题。
在微观的低凹处所产生的应力,会超过材料的疲劳极限从而会出现疲劳裂纹。
而这样的疲劳裂纹会影响零件的抗腐蚀性。
化学腐蚀是由于在加工表面粗糙度的凹谷处易积聚腐蚀性介质而产生化学反应。
机械加工质量分析及控制

单击此处添加副标题
演讲人姓名
第一节 概 述
添加标题
添加标题
添加标题
添加标题
零件的加工质量是保证机械产品工作性能和产品寿命的基础。
加工精度 表面质量
本章的任务是讨论零件的机械加工精度问题。
衡量进行加工质量的指标有两方面
一、加工精度和表面质量的概念
在机械加工过程中,由于各种因素的影响,使刀具和工件间的正确位置发生偏移,因而加工出来的零件不可能与理想的要求完全符合,两者的符合程度可用机械加工精度和加工误差来表示。
距表层深度
加工后
0
-σ
距表层深度
+σ
0
-σ
+σ
加工时
金相组织变化的影响 切削时产生的高温会引起表面层的相变。由于不同的金相组织有不同的比重,表面层金相组织变化的结果造成了体积的变化。表面层体积膨胀时,因为受到基体的限制,产生压应力;反之表面层体积缩小,则产生拉应力。各种金相组织中,马氏体比重最小,奥氏体比重最大。
0
-σ
距表层深度
+σ
加工时
0
-σ
距表层深度
+σ
加工后
(1)冷塑性变形的影响 当切削加工完成后,切削力已去除,里层金属趋向复原(弹性恢复),但受到已产生塑性变形的表面层限制,回复不到原状,因而在表面层产生残余压应力,里层则为拉应力与之相平衡。
0
-σ
距表层深度
+σ
(2)热塑性变形的影响 表面层在切削热的作用下产生热膨胀,此时基体温度较低,因此表面热膨胀受到基体的限制而产生热压缩应力。当表面层的温度超过材料的弹性变形的温度范围时,就会产生热塑性变形(在压力作用下材料相对缩短)。当切削过程结束,温度下降至与基体温度一致时,因为表面层已产生热塑性变形,但受到基体的限制产生拉应力,里层则为残余压应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科 技论 坛 f f f
机械加工表 面质量分析
李 晓 明
( 河北钢铁 集团唐钢公司技 术中心 , 河北 唐 山 0 30 ) 60 0
摘 要 : 究加工表面质量的 目 研 的就是要掌握机械加工过程 中各种因素对表面质量的影响规律 , 并通过这些规律控制加工过程 , 高零件的加 提 工表 面质量 , 最终提 高产品的使 用性能。 关键词 :t z ; f  ̄ r 表面质量 ; _ 零件 ; 使用性能 零件的机械加工质量不仅指加 工精度 , 还有表面质量 。机械加工表 面质量, 是指零件在机械加工后表面 层的微观几何形状误差和物理力学 性能。 产品的工作性能、 可靠性、 寿命 在很大程度上取决于主要零件 的表 面质量。机器零件的破坏 , 在多数情 况下都是从表面开始的, 这是由于表 表 面粗糙 度 面是零件材料的边界, 常常承受工作 图 2磨损过程的基本规律 图3表 面粗糙度与初期磨损量的关 系 负荷所引起的最大应力和外界介质 1轻 负荷 ;一 负荷 一 2重 的侵蚀, 表面上有着引起应力集 中而 ( a ) ( b ) ( c ) 佳 表 面粗糙 度 配合中, 如果零件的配合表面粗糙 , 则会使配合件 导致破坏的根源 , 以这些表面直接 所 图 I加 工表 面层 沿深度 方向的变化情况 值 最佳表面粗 很快磨损而增大配合间隙 , 改变配合性质, 降低配 与机器零件的使用性能有关。 在现代 a .3 — .2 u 。表面纹理方 向 合精度 ; 在过盈配合中,如果零件的配合表面粗 机器中, 许多零件是在高速 、 、 高压 高温、 高负荷下 糙度 R 值约为 0 2 1 5 m 对耐磨性也有影响 ,这是因为它能影响金属表面 糙, 则装配后配合表面的凸峰被挤平 , 配合件间的 工作的, 对零件的表面质量提出了更高的要求。 留情况。 轻载时, 两 有效过盈量减小 , 降低配合件间连接强度, 影响配 1 机械加工表面质量的含义。任何机械加工 磨损最 合的可靠性。因此 , 对有配合要求的表面, 必须规 方法所获得的加工表面都不可能是绝对理想的表 表面的纹理方向与相对运动方向一致时, 零件的表面质量对零件 小; 当两表面纹理方向与相对运动方向垂直时, 磨 定较小的表面粗糙度值 。 面, 总存在着表面粗糙度、 表面波度等微观几何形 但是在重载情况下 , 由于压强、 分子亲和 的使用性能还有其他方面的影响。 例如, 对于液压 状误差。 表面层的材料在加工时还会产生物理、 力 损最大。 储存等因素的变化 , 其规律与上述 缸和滑阀, 较大的表面粗糙度值会影响密封性; 对 学性能变化,以及在某些情况下产生化学性质的 力和润滑液的 有所不同。 表面层的加工硬化, 一般能提高耐磨性 于工作时滑动的零件, 当的表面粗糙度值能提 恰 变化。 l 图 (羡示加工表面层沿深度方向的变化 晴 a .5 l 这是因为加工硬化提高了表面层的强 高运动的灵活性, 减少发热和功率损失 ; 零件表面 况。在最外层生成有氧化膜或其他化合物,并吸 0 ~ 倍。 减少了表面进一步塑性变形和咬焊的可能。 但 层的残余应力会使加工好的零件因应力重新分布 收、 渗进了气体 、 液体和固体的粒子 , 称为吸附层, 度, 其厚度一般不超过 8 m。压缩层即为表面塑性变 过度的加工硬化会使金属组织疏松 ,甚至出现疲 而在使用过程中逐渐变形,从而影响其尺寸和形 n 从而使耐磨性下降。 状精度等。总之, 所以 提高加工表面质量 , 对保证零件 形 区, 由切削力造成 , 厚度约为几十至几百微米 , 劳裂纹和产生剥落现象, 其上部为纤维层, 是由 零件的表面硬化层必须控制在一定的范围之内。 的使用性能,提高零件的使用寿命是很重要的。 2 2表面质量对零件疲劳强度的影响。 零件在交变 2 _ 5磨削加工后的表面。 被加工材料与刀具之间的摩擦力所造成的。另外, 切削热也会使表面层产生各种变化 , 如同淬火、 载荷的作用下,其表面微观不平的凹谷处和表面 随机分 布磨粒的砂轮和工件 的相对运动来 实现 回 在磨削过程 中, 磨粒在工件表面上滑擦、 耕犁 火一样使材料产生相变 以及晶粒大小的变化等 。 层的缺陷处容易引起应力集中而产生疲劳裂纹 , 的。 造成零件的疲劳破坏。 试验表明 , 减小零件表面粗 和切下切屑, 把加工表面刻划出无数微细的? , 勾 槽 因此, 表面层的物理力学性能不同于基体, 产生了 使零件的疲劳强度有所提高。 此 , 因 对 沟槽两边伴随着塑性隆起, 形成表面粗糙度。a 磨 如图 l 晰 、 的显微硬度和残余应力变化。综 糙度值可以 于一些承受交变载荷的重要零件,如曲轴其曲拐 削用量对表面粗糙度的影响提高砂轮速度,可以 E 所述, 表面质量的含义有两方面的内容。 同时 , 塑性变形造 2加工表面质量对零件 使用性能的影响 。 与轴颈交接处精加工后常进行光整加工 ,以减小 增加在工件单位面积上的刻痕 , 提高其疲劳强度。 加工硬化 而下降 ,所以粗 21表面质量对零件耐磨f . 生的影响。 零件的耐磨眭 零件的表面粗糙度值 , 表 面层 的适 度硬 糙度值减小。 在其他条件不变的情况下 , 提高工件 与摩擦副的材料 、润滑条件和零件的表面质量等 在工件表面上的刻痕数 因素有关。 特别是在前两个条件已确定的前提下 , 化可以在零件表面形成—个硬化层 ,它能阻碍表 速度,磨粒在单位时间内 从而使零件疲劳强度提高 。 减少, 因而将增大磨削表面粗糙度值。 磨削深度增 零件的表面质量就起着决定性的作用 。零件的磨 面层疲劳裂纹的出现 , 反而易于产生裂纹 , 加 , 磨削过程中磨削力及磨削温度都增加, 磨削表 损可分为三个阶段, 如图 2所示。第 1 阶段际初期 但零件表面层硬化程度过大, 从而增大表面粗糙度值。b  ̄ . P l f 磨损阶段。 由于摩擦副开始工作时 , 两个零件表面 故零件的硬化程度与硬化深度也应控制在—定 的 面塑性变形增大, 范围之内。表面层 的残余应力对零件疲劳强度也 对表面粗糙度的影响砂轮的粒度。砂轮的粒度越 互相接触 , 一开始只是在两表面波峰接触 , 实际的 当表面层为残余压应力时 , 能延缓疲 细, 单位面积上的磨粒数越多, 工件表面上的刻痕 接触面积只是名义接触面积的一小部分。当零件 有很大影响 , 提高零件的疲劳强度 ; 当表面层为 密而细 , 则表面粗糙度值越小。但磨粒过细时, 砂 受力时 , 波峰接触部分将产生很大的压强 , 因此磨 劳裂纹的扩展, 残余拉应力时, 容易使零件表面产生裂纹而降低 轮易堵塞, 磨削性能下降, 反而使粗 糙度值增大。 。 损非常显著。经过初期磨损后,实际接触面积增 3 硬度的大小应合适。 砂轮太硬, 磨粒 大, 磨损变缓 , 进人磨损 的第 Ⅱ阶段 , 即正常磨损 其疲劳强度。2 表面质量对零件耐腐蚀性 的影 砂轮的硬度。 阶段。 这一阶段零件的耐磨性最好, 持续的时间也 响。零件的耐腐蚀性在很大程度上取决于零件 的 钝化后仍不能脱落,使工件表面受到强烈摩擦和 塑性变形程度增加 , 表面粗糙度值增大 表面粗糙度。 零件表面越粗糙 , 越容易积聚腐蚀性 挤压作用, 较长。最后, 由于波峰被磨平, 表面粗糙度值变得 凹谷越深, 渗透与腐蚀作用越强烈。 因此 , 减 或使磨削表面烧伤。砂轮太软 , 磨粒易脱落 , 常会 非常小, 不利于润滑油的储存, 且使接触表面之间 物质, 而使表面粗糙度值变差。 砂 的分子亲和力增大 , 甚至发生分子粘合, 使摩擦阻 小零件表面粗糙度值,可以提高零件的耐腐蚀性 产生磨损不均匀现象 , 能。 零件表面残余压应力使零件表面紧密 , 腐蚀性 轮的修整。砂轮修整的目的是为了去除外层已钝 力增大, 从而进 入 磨损的第Ⅲ阶段, 即急剧磨损阶 可增强零件的耐腐蚀性, 而表面残 化的或被磨屑堵塞的磨粒,保证砂轮具有足够的 段。 表面粗糙度对摩擦副的初期磨损影响很大, 但 物质不易进入 , 2 4表面质量对 等高微刃。 微刃等高性越好, 磨出工件的表庙 组 糙 也不是表面粗糙度值越小越耐磨。图 3 是表面粗 余拉应力则降低零件的耐腐蚀性。 . 配合性质及零件其他性能的影响。相配零件间的 度值越小。 糙度对初期磨损量影响的实验曲线。 从图中看到, 在间隙 在一定工作条件下,摩擦副表面总是存在一个最 配合关系是用过盈量或间隙值来表示的。
,
。
一ห้องสมุดไป่ตู้
6 一