半导体光电子材料

合集下载

半导体发光材料

半导体发光材料

半导体发光材料半导体发光材料是一种在电流或电场的作用下能够发出可见光的材料。

它们通常是由半导体材料构成的,具有直接能隙结构,能够实现电子和空穴的复合,从而产生光子。

半导体发光材料在现代光电子技术中具有广泛的应用,如LED、激光器、光电探测器等。

本文将从半导体发光材料的基本原理、材料种类以及应用领域等方面进行介绍。

半导体发光材料的基本原理是通过外加电场或电流使得电子和空穴发生复合,从而释放出能量,产生光子。

这种发光过程是一种固体物理学中的直接能隙辐射过程。

在半导体材料中,电子和空穴可以通过外加电场或电流被激发到激子态,当激子复合时,就会释放出光子,产生发光现象。

根据材料的不同,半导体发光材料可以分为多种类型,包括有机发光材料、无机发光材料、量子点发光材料等。

有机发光材料通常是指含有碳、氢、氧、氮等元素的有机化合物,如聚合物发光材料、有机小分子发光材料等。

无机发光材料则是指由无机化合物构成的发光材料,如氧化锌、氮化镓等。

而量子点发光材料是一种新型的半导体纳米材料,具有优异的光电性能和发光特性。

半导体发光材料在LED、激光器、光电探测器等领域有着广泛的应用。

LED作为一种新型的绿色照明光源,具有节能、环保、寿命长等优点,已经逐渐取代了传统的白炽灯和荧光灯。

激光器则是一种高亮度、高单色性、高方向性的光源,被广泛应用于通信、医疗、制造等领域。

光电探测器则是利用半导体发光材料的光电特性来实现光信号的转换和检测,广泛应用于光通信、光谱分析、遥感探测等领域。

总的来说,半导体发光材料作为一种重要的光电功能材料,具有广泛的应用前景。

随着科技的不断进步和发展,相信半导体发光材料将会在更多的领域得到应用,并为人类社会的发展做出更大的贡献。

半导体材料与光电子器件研究

半导体材料与光电子器件研究

半导体材料与光电子器件研究一、引言21世纪是信息技术快速发展的时代,电子行业作为信息技术的重要支撑产业,发挥着举足轻重的作用。

半导体材料和光电子器件作为电子行业中的重要组成部分,也在不断地得到更新和升级。

本文将从半导体材料和光电子器件两个方面进行探讨。

二、半导体材料1. 半导体材料的定义和特性半导体材料,是介于导体和绝缘体之间的材料。

它的导电性能介于导体和绝缘体之间,常用的半导体材料有硅、锗、砷化镓等。

半导体材料在电子器件中使用得越来越广泛,是由于它具有很多特殊的性质,如:(1)半导体材料的电导率介于导体和绝缘体之间,可变性能强;(2)受光、温度等外部力的作用,其电导率也会有所变化;(3)半导体具有p型和n型两种载流子,可通过n-p结实现电流的控制。

2. 半导体材料的应用场景半导体材料应用的范围非常广泛,在电路、光电子器件、微电子器件等领域都有大量的应用。

在电路中,半导体材料主要用于制造各种电子器件。

例如,半导体器件可以在电路中控制电流的方向和大小,实现各种逻辑操作和电子芯片的存储等功能。

在光电子器件中,半导体材料主要用于制造光电转换器件和半导体激光器等。

此外,半导体在微电子器件中也有广泛的应用。

例如,与半导体相关的微型加速器可以制造光学元件,其中,半导体常被用于生产光电子器件。

三、光电子器件1. 光电子器件的定义和特性光电子器件,指的是能够将光信号转化为电信号或者将电信号转化为光信号的器件。

光电子器件有着非常特殊的性质,如:(1)光电子器件具有极高的传输速度和带宽;(2)光电子器件的干扰和噪声比电子器件要小得多;(3)光电子器件具有光学放大的作用,信噪比提升明显。

2. 光电子器件的应用场景光电子器件也有着非常广泛的应用场景,包括通信、光学显微镜、光学传感器等等。

在通信领域中,光密集波分复用技术(DWDM)使得传输带宽得到极大提高,光电子器件成为实现这一目标的重要手段。

在显微镜领域中,光电子器件被用于制造光学镜头,提高成像质量。

光电子材料与器件研究

光电子材料与器件研究

光电子材料与器件研究光电子学是一门研究光电子材料和器件的学科,它涉及到光、电、磁、声等多种形态的能量交换和转换,是现代信息技术和能源技术发展的重要基石。

光电子材料和器件的研究一直是人们关注的焦点,因为它们对于促进社会发展和改善人类生活起着重要作用。

一、光电子材料1.半导体材料目前,光电子器件中最常用的材料是半导体材料,它具有很高的电子迁移率和较小的禁带宽度,可以实现电子与光子之间的高效转换。

在半导体材料中,硅材料最为常用,但是它的光电转换效率并不是特别高,因此人们正在寻找更加优越的半导体材料,例如III-V族半导体材料、II-VI族半导体材料等,它们具有较高的光电转换效率、高速和可靠性。

2.光学材料光学材料是指能够控制和改变光信号传输、转换、形态变化的材料,如光纤、光晶体、光学盘等。

光学材料的研究主要包括光学特性的探究和材料加工工艺的研发,以及应用领域的探索,如光通信、光存储、激光等。

3.导电材料导电材料是指具有良好的电导率和光透明性的材料,如氧化锌、导电膜等。

在透明导电材料的研究中,由于对于电子迁移率和光学性质的严格要求,其研究难度较大,但是其应用场景非常广泛,例如透明电子器件、太阳能电池等。

二、光电子器件1.太阳能电池太阳能电池是将光能转化为电能的一种器件,它是利用光生电效应将太阳辐射能转化为电能。

太阳能电池的核心是太阳能电池芯片,其主要由n型半导体和p型半导体构成,并在其表面形成pn结。

随着太阳能电池技术的不断发展,其效率不断提高,已广泛应用于民用领域。

2.激光器激光器是一种将电能转化为光能的器件,其主要应用于通讯、医学、工业等领域。

激光器是由激光介质、激发源和反射镜等组成,其特点是单色性强、光束聚焦度高、功率密度大、能量稳定性好。

3.光通信器件光通信器件是利用光学原理实现光信号传输的器件,其主要包括光纤、光放大器、光开关等。

随着信息时代的到来,光通信器件应用场景越来越广泛,例如超高速光纤通信、光无线通信、数据中心互联等。

半导体材料的重要成就

半导体材料的重要成就

半导体材料的重要成就
半导体材料是一类重要的电子材料,具有特殊的电学性能和广泛的应用领域。

以下是半导体材料的一些重要成就:
1. 集成电路:半导体材料的出现使得集成电路成为可能。

集成电路是将大量电子元件集成在一块芯片上的技术,它的出现极大地提高了电子设备的性能和可靠性。

2. 光电子学:半导体材料的光学性质也被广泛研究和应用。

例如,半导体激光器和发光二极管(LED)都是基于半导体材料的光学器件,它们在通信、照明和显示等领域有着广泛的应用。

3. 量子计算:半导体材料的量子性质也被用于量子计算领域。

量子计算机是一种新型的计算机,它利用量子比特来进行计算,具有比传统计算机更强大的计算能力。

4. 太阳能电池:半导体材料的光电转换性质也被用于太阳能电池领域。

太阳能电池是一种将太阳能转换为电能的装置,它的核心部分是由半导体材料制成的。

5. 传感器:半导体材料的电学性质也被用于传感器领域。

例如,温度传感器、压力传感器和气体传感器等都是基于半导体材料的传感器,它们在工业、医疗和环境监测等领域有着广泛的应用。

总之,半导体材料的重要成就包括集成电路、光电子学、量子计算、太阳能电池和传感器等领域。

这些成就不仅极大地推动了电子技术的发展,也为人类社会的进步做出了重要贡献。

常用半导体材料有哪些种类

常用半导体材料有哪些种类

常见半导体材料种类半导体材料是一类在电子学和光电子学中应用广泛的功能材料,其电学特性介于导体和绝缘体之间。

常用的半导体材料种类有多种,每种材料都具有独特的电学和光学特性,适用于不同的应用领域。

1. 硅(Silicon)硅是最常见的半导体材料之一,广泛用于集成电路和光电子器件制造中。

硅具有良好的半导体特性、稳定性和可加工性,成本较低,是电子工业中的基础材料。

2. 碳化硅(Silicon Carbide)碳化硅是一种耐高温、高频率特性优异的半导体材料,主要应用于功率器件、高频器件和光电子器件中。

碳化硅具有较高的电子迁移率和热导率,适用于高温高频环境。

3. 氮化镓(Gallium Nitride)氮化镓是一种宽禁带半导体材料,在功率电子和光电子领域具有广泛的应用。

氮化镓器件具有高电子迁移率、高工作温度和较宽的带隙,适用于高功率和高频率应用。

4. 磷化铟(Indium Phosphide)磷化铟是一种用于光电子器件和微波器件的半导体材料,具有较高的光电转换效率和较高的电子迁移率。

磷化铟器件常用于光通信系统和毫米波雷达等领域。

5. 砷化镓(Gallium Arsenide)砷化镓是一种高速电子器件的关键材料,适用于高频率和光电子器件制造。

砷化镓具有优异的电子特性和较高的迁移率,常用于微波通信、光通信和太赫兹器件中。

总结以上是常见的半导体材料种类,每种材料都有独特的特性和适用领域。

在电子学和光电子学领域,选择合适的半导体材料对器件性能和应用效果至关重要,不同材料的特性可以满足不同需求。

随着技术的不断发展,半导体材料的种类和性能将继续拓展,为电子器件和光电子器件的应用提供更多可能性。

半导体材料有哪些

半导体材料有哪些

半导体材料有哪些半导体材料是一类介于导体和绝缘体之间的材料,具有独特的电学和光学性质,被广泛应用于电子器件、光电子器件、太阳能电池等领域。

半导体材料的种类繁多,常见的半导体材料包括硅、砷化镓、氮化镓、碳化硅等。

下面将对这些常见的半导体材料进行介绍。

硅(Si)。

硅是最常见的半导体材料,其晶体结构稳定,制备工艺成熟,价格相对较低。

硅材料广泛应用于集成电路、太阳能电池、光电子器件等领域。

同时,硅材料的性能也在不断提升,如多晶硅、单晶硅等新型硅材料的研究和应用不断推进。

砷化镓(GaAs)。

砷化镓是一种III-V族化合物半导体材料,具有较高的电子迁移率和较小的能隙,适用于高频器件和光电子器件。

砷化镓材料在微波通信、激光器、光电探测器等领域有着重要的应用。

氮化镓(GaN)。

氮化镓是一种III-V族化合物半导体材料,具有较大的能隙和较高的电子迁移率,适用于高功率、高频率的器件。

氮化镓材料被广泛应用于LED照明、激光器、功率器件等领域,并在照明、通信、医疗等领域展现出巨大的市场潜力。

碳化硅(SiC)。

碳化硅是一种宽禁带半导体材料,具有优异的热稳定性、耐辐照性和高电场饱和漂移速度,适用于高温、高压、高频的电子器件。

碳化硅材料在电力电子、汽车电子、新能源领域有着广阔的应用前景。

除了上述常见的半导体材料外,还有许多新型半导体材料在不断涌现,如氮化铝镓、氮化铟镓、铜铟镓硒等化合物半导体材料,以及石墨烯、硒化铟、氧化铟锡等新型二维材料,它们在光电子器件、柔性电子器件、传感器等领域展现出独特的优势和潜力。

总的来说,半导体材料的种类繁多,每种材料都具有独特的性能和应用优势。

随着科技的不断进步和创新,新型半导体材料的研究和应用将会不断拓展,为电子信息、能源、医疗等领域的发展带来更多可能性。

光电子材料的性质与应用

光电子材料的性质与应用

光电子材料的性质与应用光电子材料是指能够将光电转换成电能或将电能转换成光能的材料。

这些材料具有独特的性质,可以应用于许多领域。

本文旨在介绍光电子材料的性质和应用,并探讨其未来发展趋势。

一、光电子材料的性质1. 光电效应光电效应是光电子材料最为重要的性质之一。

通过光照射,光子被吸收后,会将一部分能量释放出来,形成光电子。

这些光电子可以形成电流,从而转换为电能。

例如,太阳能电池板就是利用光电效应将阳光转换为电能。

2. 半导体性质光电子材料通常具有半导体性质。

半导体是一种介于导体和绝缘体之间的材料,它的导电率介于导体和绝缘体之间。

半导体常被应用于电子器件和电路中,例如晶体管、集成电路等。

3. 能带结构光电子材料的能带结构是其电子性质的关键。

能带结构可以描述材料的导电性和光学性。

在固体物质中,电子能级可以分成能量带,包括价带和导带。

当电子处于价带中时,材料呈现绝缘或半导体特性。

当电子在导带中运动时,材料具有导电特性。

二、光电子材料的应用1. 太阳能电池板太阳能电池板是将太阳能光子转换为电能的光电子器件。

太阳能电池板由半导体材料制成,例如硅、硒化铟和钙钛矿等。

太阳能电池板的使用已成为清洁能源的重要来源之一。

2. 电视屏幕电视屏幕的显示原理是利用光电子材料的发光特性。

在电视屏幕中,使用荧光层来发射光子,荧光层由氟化物和磷酸盐等材料组成。

这些荧光材料会在电流作用下发射光子,形成所需的颜色,从而呈现出完整的图像。

3. LED照明LED照明是将电能转化为光能的一种光电子应用。

LED的基础是能实现电能转换到光能的PN结。

LED照明具有高效能、节能、寿命长等优点,已经成为照明产业的一个重要组成部分。

三、光电子材料的未来发展趋势光电子材料将继续成为科技发展的重要方向。

随着人们对清洁能源、高效能和便携性的追求,太阳能电池板等领域的光电子材料将会进一步发展。

此外,光电子材料在高速通信、光电子计算机等领域也将发挥更重要的作用。

半导体主要材料有哪些

半导体主要材料有哪些

半导体主要材料介绍
半导体作为一种重要的材料,在电子行业中扮演着至关重要的角色。

它的特性使得半导体在电子学、光电子学、计算机科学等领域中有着广泛的应用。

本文将介绍半导体的主要材料种类,以便更好地了解半导体材料的特性和应用。

硅(Silicon)
硅是最常见且应用最广泛的半导体材料之一。

它具有良好的半导体特性,化学稳定性高,且价格相对较低。

硅半导体广泛应用于集成电路、太阳能电池等领域。

硒化镉(Cadmium Selenide)
硒化镉是一种II-VI族半导体材料,具有优良的光电特性。

它在红外探测、半导体激光器等领域有着重要的应用。

砷化镓(Gallium Arsenide)
砷化镓是一种III-V族半导体材料,其电子迁移率高,适用于高频器件和微波器件。

砷化镓在通信领域和光电子领域中具有广泛的应用。

硒化铟(Indium Selenide)
硒化铟是一种III-VI族半导体材料,具有光电性能优异的特点。

硒化铟在太阳能电池、红外探测等领域有着重要的应用。

氧化锌(Zinc Oxide)
氧化锌是一种广泛应用的半导体材料,具有优良的透明导电性能,适用于透明电子器件、柔性显示屏等领域。

以上介绍了几种常见的半导体材料,每种材料都具有独特的性能和应用特点。

随着科学技术的不断发展,半导体材料的研究和应用也将不断深化,为现代电子科技的发展提供有力支撑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异质结构在能带结构和折射率上具有独特之处。

前者为我们提供了能带结构上的各种势垒、势阱,从而能对半导体中的载流子产生电学限制作用;后者为我们提供折射率差,可以构成各种光波导波结构,从而能对半导体中的光波产生光学作用。

正是几乎完全的载流子限制作用和几乎完全的光学限制作用,构成了半导体光电子器件的物理作用。

异质结构为我们提供了一个新的可变参量——带隙,通过改变材料组分可以改变带隙的大小,再通过带隙的差别来裁剪能带结构,从而设计半导体的物理特性,进而研制出新型的半导体器件结构,最终实现我们所需要的电学或光学的特性。

禁带宽度大、折射率小是半导体光电材料的特征。

禁带大的材料能对禁带小的材料提供载流子限制作用,折射率小的材料能对折射率大的材料提供光学限制半导体——位于导带的电子同位于价带的空穴复合而发光。

光的增益——载流子注入,电子-空穴对辐射复合,产生光光的损耗——载流子跃迁,自由载流子吸收在激光物质中,要想实现受激辐射的光放大,必须其内部增益足够大,足以克服激射物质的内部损耗和端面损耗。

发光二极管是利用少数载流子流入PN结直接将电能转换为光能的半导体发光元件。

发光二极管是一种把电能转换成光能的特殊半导体器件,它具有一个PN结。

发光二极管发光(工作)原理:当加正向电压时,势垒降低,电子由N区注入到P区,和P区里的空穴复合;空穴则由P区注入到N区,和N区里的电子复合,这种电子空穴对的复合同时伴随着光子的放出,因而发光。

电子和空穴复合,所释放的能量等于PN结的禁带宽度(即能量间隙)E g。

所放出的光子能量用hν表示发光二极管基本结构:为了获得高辐射度,发光二极管常采用双异质结构。

按光输出的位置不同,发光二极管可以分为边发射型和面发射型超辐射发光二极管:介于激光二极管和发光二极管之间,光功率大且相干长度短。

超辐射发光是一种很接近激射、但还不是激光的光源。

其结构类似激光器,但没有谐振腔,或尽量破坏掉激光器的谐振腔;其发射逼近收集振荡,但始终还未共振;其相位不一致,因而是一飞相干光源,或称相干长度短的光源。

发光二极管的工作特性:(1)发射谱线和发散角:由于发光二极管没有谐振腔,所以它的发射光谱就是半导体材料导带和价带的自发发射谱线。

由于导带和价带都包含有许多能级,使复合发光的光子能量有一个较宽的能量范围,形成较宽的自发发射谱线。

同时,又由于自发发射的光的方向是杂乱无章的,所以LED输出光束的发散角也较大。

(2)响应速度:发光二极管的响应速度依赖于载流子的自发复合寿命时间。

通常在复合区采用高掺杂或使LED工作在高注入电流密度下,以减小载流子的寿命时间,从而提高LED的响应速度。

(3)热特性:发光二极管的输出功率随结温的升高而减小。

但由于它不是阈值器件,所以输出功率随结温呈缓慢的变化趋势。

有源区里实现了粒子数反转以后,受激辐射占据主导地位,但是,激光器初始的光场来源于导带和价带的自发发射,频谱较宽,方向也杂乱无章。

为了得到单色性和方向性好的激光输出,必须构成光学谐振腔,使满足横向谐振条件的频率成分得到加强,而其它的频率成分被消耗掉,从而形成稳定的激光振荡输出。

在半导体激光器中,光学谐振腔通常采用两种方式形成:一种是用晶体天然的解理面形成法布里—珀罗谐振腔(F—P腔),当光在谐振腔中满足一定的相位条件和振幅条件时,建立起稳定的光振荡。

这种激光器称为F—P腔激光器。

另一种是利用有源区一侧的周期性波纹结构提供光耦合来形成光振荡,如分布反馈(DFB)激光器和分布布拉格反射(DBR)激光器。

纵模频率是指在自发辐射谱内满足谐振条件,且损耗小于增益的频率。

F—P腔半导体激光器的结构:在F—P腔半导体激光器中,F—P腔的作用,首先使输出光的方向得到选择,使不能被反射镜面截获的、方向杂乱的光逸出腔外而损耗掉,能在谐振腔内建立起稳定振荡的光基本上是与反射镜面垂直方向的光。

另外,要使光在谐振腔内建立起稳定的振荡,必须满足一定的相位条件和振幅条件,相位条件使发射光谱得到选择,振幅条件使激光器成为一个阈值器件。

按照垂直于PN结方向的结构的不同,F—P腔激光器可分为同质结激光器、单异质结激光器、双异质结激光器和量子阱激光器同质结半导体激光器并不够理想。

它的主要缺点是:1)激活区域宽,约为1个微米,所需要的工作偏压高;2)激活区域与两侧临近区的折射率近似相等,光波导效应不明显,光损耗大;这使得同质结激光器的阈值工作电流密度高,一般在2~4×104A/cm2范围。

室温下只能以脉冲形式运转。

为克服上述缺点,人们发明了双异质结半导体激光器AlGaAs/GaAs双异质结(DH)激光器。

窄带隙的有源区(GaAs)材料被夹在宽带隙的GaAlAs之间,带隙差形成的势垒对载流子有限制作用,它阻止了有源区里的载流子逃离出去。

另一方面,双异质结构中的折射率差是由带隙差决定的,基本上不受掺杂的影响,有源区可以是重掺杂的,也可以是轻掺杂的。

有源区里粒子数反转的条件靠注入电流来实现。

由于带隙差所决定的折射率差较大(可达到5%左右),这使光场能很好的被限制。

有源区为窄直接带隙的半导体材料,它夹在两层掺杂型号相反的宽带隙半导体限制层之间。

有源层的带隙比限制层的带隙小,折射率比前者大,由此引起的禁带宽度不连续性和折射率不连续性,分别起着载流子限制和光限制的作用,将注入的自由载流子有效的限制在很薄的有源区中,从而为有效的受激辐射放大提供了有利的条件。

载流子的限制作用和光子的限制作用使激光器的阈值电流密度大大下降,从而实现了室温下连续工作。

目前光纤通信中使用的F—P腔激光器,均采用双异质结构异质结有源区厚度的减小是有利于降低阈值电流密度的。

但是由于在太小的有源区厚度下,光波模式会发生截止,所以限制了有源区厚度的减小。

为了进一步减小有源区厚度,同时又避免光波模式的截止,研究人员发明了分别限制异质结,以分别实现对光和载流子的限制。

在整个PN结面积上均有电流通过的结构是宽面结构,只有PN结中部与解理面垂直的条形面积上有电流通过的结构是条形结构。

条形结构提供了平行于PN结方向的电流限制,因而大大降低了激光器的阈值电流,改善了热特性。

隐埋条形半导体激光器,这种结构不仅具有低阈值电流、高输出光功率、高可靠性等优点,而且能得到稳定的基横模特性,从而受到广泛的重视。

分布布拉格反射DBR的结构及工作机理DBR激光器的腔体结构与F—P腔激光器不同,其基本原理是基于布拉格发射,布拉格发射是指在两种不同介质的交界面上,具有周期性的反射点,当光入射时,将产生周期性的反射,这种反射即称为布拉格发射。

交界面本身可以取不同的形状:正弦波形或非正弦(如:方波、三角波等)分布反馈DFB激光器的结构及工作机理:DFB激光器的激光振荡不是靠F—P腔来实现,而是依靠沿纵向等间隔分布的光栅所形成的光耦合DFB激光器的特点:(1)动态单纵模窄线宽输出:由于DFB激光器中光栅的栅距(A)很小,形成一个微型谐振腔,对波长具有良好的选择性,使主模和边模的阈值增益相对较大,从而得到比F—P腔激光器窄很多的线宽,并能保持动态单纵模输出。

(2)波长稳定性好:由于DFB激光器内的光栅有助于锁定给定的波长,其温度漂移约为0.8Å/℃,比F—P腔激光器要好得多。

DFB激光器工作特点:DFB-LD或DBR-LD 的高性能工作可归纳为以下的方面:窄线宽单模、动态单模且低啁啾、高功率输出、尽可能宽的波长可调谐范围垂直腔面发射激光器:它具有发散角小,单纵模工作,低阈值,动态调制频率高通常用于半导体量子阱的QW结构主要有三种类型,即多量子阱(MQW)、渐变折射率波导限制型单量子阱(GRIN—SCH—SQW)和带有超晶格缓冲层的渐变折射率波导限制型单量子阱(SLB—GRIN—SQW)。

QW激光器与一般的双异质结激光器相比,有一系列优越的特性:1)阈值电流很低2)谱线宽度窄,频率啁啾改善3)调制速率高由于有源区为量子阱结构,量子阱激光器具有新特点:(1)光子能量大于材料的禁带宽度(2)光谱的线宽明显变窄(3)高的注入效率,易于实现粒子束反转,增益大为提高。

(4)温度稳定性大为改善。

温度变化将改变激光器的输出光功率,有两个原因:一是激光器的阈值电流随温度升高而增大,二是外微分量子效率随温度升高而减小近场是指激光器反射镜面上的光强分布,远场是指离反射镜面一定距离处的光强分布。

由于激光腔为矩形光波导结构,因此近场分布表征其横模特性,在平行于结平面的方向,光强呈现周期性的空间分布,称为多横模;在垂直于结平面的方向,由于谐振腔很薄,这个方向的场图总是单横模。

光纤激光器与半导体激光器从原理上说,没有本质的区别。

它一般也由三部分组成:激励源(泵浦源)、有源区(工作物质)、激光谐振腔。

在光纤激光器中,工作物质根据激光器输出波长的要求,由不同的掺稀土杂质的特种光纤构成光照下改变自身的电阻率(当入射光子使电子由价带跃升到导带时,导带中的电子和价带中的空穴二者均参与导电,因此电阻显著减小,称为光敏电阻。

光电二极管的频率特性响应主要由三个因素决定:(a)光生载流子在耗尽层附近的扩散时间;(b)光生载流子在耗尽层内的漂移时间;(c)与负载电阻R L并联的结电容C i所决定的电路时间常数。

PIN光电二极管结构P型层、I型层、n型层构成的半导体二极管PIN光电二极管结构在掺杂浓度很高的P型、N型半导体之间,生成一层掺杂极低的本征材料,称为I层。

在外加反向偏置电压作用下,I层中形成很宽的耗尽层。

CCD——电荷耦合器件,集光电转换、存储、自扫描转移、输出于一体的半导体非平衡态功能器件。

电荷耦合器件(CCD)特点——以电荷作为信号。

CCD的基本功能——电荷存储和电荷转移。

CCD工作过程——信号电荷的产生、存储、传输和检测的过程。

电荷耦合器件的基本原理(1)、CCD的基本结构包括:转移电极结构、转移沟道结构、信号输入结构、信号输出结构、信号检测结构。

构成CCD的基本单元是MOS电容。

2)、电荷存储(3)电荷转移(4)光信号的注入5)电荷检测(输出)CCD的转移电极相数有二相、三相、四相等。

对于单层金属化电极结构,为了保证电荷的定向转移,至少需要三相BCCD——用离子注入方法改变转移沟道的结构,从而使势能极小值脱离界面而进入衬底内部,形成体内的转移沟道,避免了表面态的影响,使得该种器件的转移效率高达99.999%以上,工作频率可高达100MHz,且能做成大规模器件浮置栅CCD放大输出信号的特点是:信号电压是在浮置电平基础上的负电压;每个电荷包的输出占有一定的时间长度T;在输出信号中叠加有复位期间的高电平脉冲。

对CCD的输出信号进行处理时,较多地采用了取样技术,以去除浮置电平、复位高脉冲及抑制噪声。

CCD的电荷存储、转移的概念+ 半导体的光电性质——CCD摄像器件光电池的频率特性不太好。

相关文档
最新文档