半导体光电子学 §4.5 可见光LD

合集下载

半导体发光器件-LD和LED

半导体发光器件-LD和LED
相对亮度
7)寿命 LED的寿命一般很长,j=1A/cm2,寿命为106h,与j有关, 近似表示为 B(t ) B exp(tj / )
0
B0:起始亮度; j:工作电流密度; t:工作时间; : 老化时间常数, 一般为 106 mA / cm2
影响LED寿命的因素有: • 表面漏电流的增加 • 沾污物(Cu)的内扩散 • 在p-n结附近形成非辐射复合中心。 解决方法:对于前面两个因素,可采用合适的钝化、封 装以及清洗技术予以消除,对于后一个原因可以在制作 LED时尽量保证晶格的完整性,降低其缺陷密度,来达到 缓解非辐射复合中心产生的速度,但不能完全消除。
反向击穿电压 一般在十几伏~几十伏 非线性、整流特性 单向导电性:正向低接触电阻,反向高接触电阻
2) B~V特性和B~I特性(发光强度与正向电流特性) • LED的发光亮度B与电压V的关系,用下式表示:
B=B0 exp(ev / KT )
B0为起始亮度(开启点的 亮度)
• LED的B~I特性用下式表示:
: GaP:N
GaN
4.2Βιβλιοθήκη 0.7100.015~0.15
GaN+YAG
小芯片1.6, 大芯片18
例:
四、LED的驱动电路
1.为什么LED需要驱动电路? LED不像普通的白炽灯,可以直接连接220V交流市电使用。 LED是2~3V的低电压驱动,且是特性敏感的半导体器件(I-V 特性,负的电阻温度特性),因此必须设计合适的驱动电路 ,使其处于工作状态。 2.选择和设计LED驱动电路需要考虑的问题 1)高可靠性(特别对于室外照明显示) 2)高效率(符合LED节能环保的特点) 3)浪涌保护(提升LED抗反向电压能力) 4)保护功能(增加LED温度负反馈,仿真LED温度过高) 5)防护方面(防水、防潮、外壳耐晒) 6)驱动方式:恒压驱动、恒流驱动 7)驱动电源的寿命要与LED的寿命相适配 8)考虑电磁兼容

半导体光电子学第五章第九章-PPT

半导体光电子学第五章第九章-PPT

大家好 15
J th
4.5 103
i
d
20
i
d
[
(1
)
out
1 ln L
1 R
fc ]
GaAlAs/GaAs特征温度120-180℃ InGaAsP/InP T0=65K
大家好 16
四、阈值特性关系小结
1、低维量子材料 2、增益介质 3、侧向折射率波导
大家好 17
作业: 教材181页第1、2题
大家好 13
Ith e(WdL)Nth / s
大家好 14
三、温度对阈值电流的影响
J th
(T
)
J
th
(Tr
)
T exp(
Tr T0
)
T0为一个表征半导体激 光器温度稳定性的重要
参数称为特征温度,T0
与材料和结构相关,由 式看出T0越高LD的温度 稳定性越高,T0趋于无 穷则Jth不随温度而变化
1、名词解释:
功率效率、內量子效率、外量子效率、外微分量子效率
2、写出外微分量子效率的表达式,并指出哪些具体措施能提 高半导体激光器的微分量子效率。
大家好 27
5.3 半导体激光器的远场特性
大家好 28
LD输出光场分近场与远场。近场分布是指光强在解
理面上或解理面一个光波长范围内的分布(与横模,
侧模有关)。远场是指距输出这常常与光束的发散
12分钟→数十万小时
对LD可靠性研究包括其长期工作后性能退化和突然 失效的机理和提高可靠性的方法、途径,以提高工作寿命。 LD的可靠性与工作方式(连续或脉冲),有源区的材料, 有源区与限制层材料的晶格匹配、热沉,腔面情况等多种 因素有关,高可靠性的激光器是上述诸因素的综合效果。

半导体激光器LD

半导体激光器LD

应用场合:短距离传输
同质pn结
同质pn结: 两边采用相同的半导体材料进行不同的参杂构成的pn结 特点: - 同质结两边具有相同的带隙结构和光学性能 - pn结区的完全由载流子的扩散形成 存在的问题: 1. 增益区太厚(1~10 m),很难把载流子约束在相对小的区域, 无法形成较高的载流子密度 2. 无法对产生的光进行约束
多数载流子:n型半导体中的电子或者p型半导体中的空穴 少数载流子:n型半导体中的空穴或者p型半导体中的电子 在热平衡的条件下,对于(非)本征半导体,两种载流子的 乘积总等于一个常数:
pn n 2 i
pn结
n型 电势
U
n型
耗尽层
p型
p型
n 1. 浓度的差别导致载流子的扩散运动
p
2. 内建电场的驱动导致载流子做反向漂移运动
问题: 如何得到粒子数反转分布的状态?

本征半导体材料 Si
硅的晶格结构 (平面图)
E 硅的晶格结构 电子和空穴是成对出现的
Si电子受到激励跃迁到导带,导致电子和空穴成对出现 此时外加电场,发生电子/空穴移动导电
本征半导体的能带图
电子
导带 EC
电子浓度 分布 电子态数量
电子跃迁
带隙 Eg = 1.1 eV 空穴态数量
辐射性复合速率 辐射性复合速率 hint 总复合速率 辐射性复合速率 非辐射性复合速率
辐射性复合时间 辐射性复合时间 非辐射性复合时间
1 1
1
r1 1 1 r nr
那么LED的内部发光功率为:
Pint 内量子效率 每秒钟内总的载流子复 合数量 h 注入 LED的电流强度 内量子效率 h 电子电量 I Ihc hint h hint q q

半导体光电子学

半导体光电子学

1.半导体中与光有关的3种量子现象 : 自发发射(半导体发光二极管LED的工作原理),受激吸收(光电导,光探测器的工作原理),受激发射(半导体激光器LD,半导体光放大器SOA的工作原理). 填空2.半导体在光电子学中独有的特点: ①半导体能带中存在高的电子态密度,因而在半导体中有可能具有很高的量子跃迁速率②在半导体同一能带内,处在不同激励状态的电子态之间存在相当大的互作用(或大的公有化运动),这种互作用碰撞过程的时间常数与辐射过程的时间常数相比是很短的,因而能维持每个激励态之间的准平衡.③半导体中的电子态可以通过扩散或传导在材料中传播,可以将载流子直接注入发光二极管或激光器的有源区中,因而有很高的能量转换效率.④在两能级的激光系统中,每一处于激发态的电子有它唯一返回的基态(即某一特定的原子态) 理解3.爱因斯坦关系说明什么问题: 爱因斯坦关系B12=B21;A21=8πn3ℎv3c3B21爱因斯坦关系表示了热平衡条件下自发发射,受激发射与受激吸收三种跃迁几率之间的关系4.粒子数反转条件(伯纳德-杜拉福格条件)f c>f v(导带电子占据几率大于价带电子占据几率); F c−F v>ℎv (准费米能级之差大于作用在该系统的光子能量);ΔF≥E g (准费米能级之差大于等于禁带宽度)5.异质结能带图:Pn能带图6. 弗伽定律:7. 异质结对载流子和光子的限制:NpP 结构异质结中①由N 型限制层注入p 型有源层的电子将受到pP 同型异质结的势垒的限制,阻挡它们向P 型限制层内扩散.②pN 型异质结的空穴势垒限制着有源层中的多数载流子空穴向N 型限制层的运动. ③由于能产生光波导效应,从而限制有源区中的光子从该区向宽带隙限制层逸出而损失掉。

n 1 < n 2 > n 38. 激光器的构成:①激光工作介质②激励源③光学谐振腔9. 光子和费米子的差别:光子属于玻色子,服从玻色爱因斯坦分布.电子属于费米子服10.K选择定则的定义:不管是竖直跃迁还是非竖直跃迁,也不论是吸收光子还是发射光子,量子系统总的动量和能量必须守恒,这就是跃迁的k选择定则11.同质结和异质结或同型异质结和异型异质结空间电荷区的差别:①同质结:当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。

半导体激光器

半导体激光器

导带组成,如图(5-24)。
图(5-24) 本征半导体的能带
图(5-23) 固体的能带
同质结和异质结半导体激光器
• 同质结砷化镓(GaAs)激光器的特性
伏安特性: 与二极管相同,也具有单向导电性,如图(5-29)所示。 阈值电流密度: 影响阈值的因素很多 方向性: 图(5-30)给出了半导体激光束的空间分布示意图。
半导体的能带和产生受激辐射的条件
在一个具有N个粒子相互作用的晶体中, 纯净(本征)半导体材料,如单晶硅、 每一个能级会分裂成为N个能级, 锗等,在绝对温度为零的理想 因此这彼此十分接近的N个能级好 状态下,能带由一个充满电子 象形成一个连续的带,称之为能带, 的价带和一个完全没有电子的 见图(5-23)。
p( E ) 1 exp(
1 E Ef kT
式中,k为波兹
)
曼常数,T为热
力 学 温 度 。 Ef 称为费米能级, 用来描述半导体
中各能级被电子
占据的状态。
PN结的特性
当P型半导体和N型半导体结合后,在它们之间就出 现了电子和空穴的浓度差别,电子和空穴都要从 浓度高的地方向浓度底的地方扩散,扩散的结果 破坏了原来P区和N区的电中性,P区失去空穴留下 带负电的杂质离子,N区失去电子留下带正电的杂 质离子,由于物质结构的原因,它们不能任意移 动,形成一个很薄的空间电荷区,称为PN结。其 电场的方向由N指向P,称为内电场。该电场的方 向与多数载流子(P区的空穴和N区的电子)扩散 的方向相反,因而它对多数载流子的扩散有阻挡 作用,称为势垒。
在光纤通讯与光纤传感技术中,激光器方向 性的好坏影响到它与光纤耦合的效率。单模 光纤芯径小,数值孔于半导体的导带,价带都有一定的宽 度,所以复合发光的光子有较宽的能 量范围,因而产导体激光器的发射光 谱比固体激光器和气体激光器要宽。 半导体激光器的光谱随激励电流 而变化,当激励电流低于域值电流时, 发出的光是荧光。这时的光谱很宽, 其宽度常达百分之几微米。如图 (a) 所示。当电流增大到阈值时,发出的 光谱突然变窄,谱线中心强度急剧增 加。这表明出现了 激光。其光谱

半导体的光学性质

半导体的光学性质

半导体的光学性质如果用适当波长的光照射半导体,那么电子在吸收了光子后将由价带跃迁到导带,而在价带上留下一个空穴,这种现象称为光吸收。

半导体材料吸收光子能量转换成电能是光电器件的工作基础。

光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律:()01x x I I r e α-=-式中,x I 表示距离表面x 远处的光强;0I 为入射光强;r 为材料表面的反射率;α为材料吸收系数,与材料、入射光波长等因素有关.1 本征吸收半导体吸收光子的能量使价带中的电子激发到导带,在价带中留下空穴,产生等量的电子与空穴,这种吸收过程叫本征吸收.要发生本征光吸收必须满足能量守恒定律,也就是被吸收光子的能量要大于禁带宽度g E ,即g h E ν≥,从而有:00 1.24g g g E h hc E m eV E νλμ≥⇒≤=⋅其中h 是普朗克常量,ν是光的频率.c 是光速,ν0:材料的频率阈值,λ0:材料的波长阈值,下表列出了常见半导体材料的波长阀值。

几种重要半导体材料的波长阈值电子被光激发到导带而在价带中留下一个空穴,这种状态是不稳定的,由此产生的电子、空穴称为非平衡载流子。

隔了一定时间后,电子将会从导带跃迁回价带,同时发射出一个光子,光子的能量也由上式决定,这种现象称为光发射。

光发射现象有许多的应用,如半导体发光管、半导体激光器都是利用光发射原理制成的,只不过其中非平衡载流子不是由光激发产生,而是由电注入产生的。

发光管、激光器发射光的波长主要由所用材料的禁带宽度决定,如半导体红色发光管是由GaP 晶体制成,而光纤通讯用的长波长(1。

5μm )激光器则是由Ga x In 1-x As 或Ga x In 1-x As y P 1—y 合金制成的。

2非本征吸收非本征吸收包括杂质吸收、自由载流子吸收、激子吸收和晶格吸收等.2.1杂质吸收杂质能级上的电子(或空穴)吸收光子能量从杂质能级跃迁到导带(空穴跃迁到价带),这种吸收称为杂质吸收。

《半导体光电子学》课件

《半导体光电子学》课件

探测器性能测试
演示光电探测器的响应度、速度和线性范围 等测试方法。
实验四:光子集成回路的制备与性能测试
总结词
掌握光子集成回路的基本原理、制备工艺和性能测试方法
光子集成回路基本原理
介绍光子晶体、光波导和光子器件等基本概念。
光子集成回路制备工艺
介绍微纳加工、耦合和封装等关键工艺流程。
回路性能测试
演示光子集成回路的传输损耗、器件特性和系统性能等测试方法。
发展历程与现状
发展历程
从20世纪初的初步研究到现在的广 泛应用,经历了基础研究、技术突破 和应用拓展等阶段。
现状
随着光电子器件的快速发展,半导体 光电子学在通信、能源、医疗等领域 发挥着越来越重要的作用。
半导体光电子学的应用领域
通信领域
利用半导体光电子器件实现高 速、大容量的信息传输,如光 纤通信系统中的激光器、调制
太阳能电池
提高太阳能电池的光电转换效率和稳 定性,降低成本,推动其在可再生能 源领域的应用。
光子集成回路的研究
光子晶体
研究新型光子晶体结构和材料,实现光 子器件的小型化、集技术,制作高性能的光子器 件,推动光子集成回路的发展。
半导体光电子学的未来展望
新材料、新结构的研究
导带是电子填充的能级, 价带是空穴填充的能级, 禁带是导带和价带之间的 能量间隙。
不同类型和性质的半导体 具有不同的能带结构。
半导体的光学性质
半导体的光学性质与材料的能带结构和光学常 数有关。
光电效应是太阳能电池等光电器件工作的基础。
半导体对光的吸收、反射、折射和散射等行为 具有特定的规律。
半导体的光电效应是指光子照射在半导体表面时 ,半导体吸收光子能量并产生电子-空穴对的现 象。

半导体光电子学半导体中的光吸收和光

半导体光电子学半导体中的光吸收和光
值;当h<Eg,也可观察到由激子得高激发态引起得吸收,如图7、1-3中得 点线所示。
上述允许得直接带隙跃迁
发生在价带与导带分别为
半导体得s带与p带构成得
材料中。作为对d值大小 得粗略估计,可me= mh= m0,n=4,fif1,则
d 6.7 104 h Eg 1 2 cm1
(7、19)
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
2、间接吸收得吸收系数
在图7、1-4所表示得间接带隙跃迁中,两种从初态至终态得跃迁方式 都必将伴随有声子得发射与吸收,在不考虑多声子吸收时,则有
h Eg Es h Eg Es
吸收声子 发射声子
式中Es为声子能量,尽管Es与Eg相比
h Eg Es
(7、1-24)
以横上 波只声就 学是声考子虑、了纵一波种光类学型 声得 子声 、子 横。 波深 光入 学得 声分 子析 各还 自应 得区 贡分献,纵不波同声类学型声得子声、子
能量就是不同得,因而i应该就是各种类型声子所引起得吸收系数之与。
在前面得讨论中,我们只 考虑单声子过程,所作得 i1/2~h关系曲线图如图 7、1-7所示。对应每一 温度得吸收曲线在横轴 (h轴)上得截距分别为 Eg-Es与Eg+Es,即分别对 应于吸收声子与发射声子 得情况。显然在低温下发 射声子就是主要得。
e2 B21 m02 0n 2
h
2j
V
1
exp
j2
1
t
exp
j
kp kc kv
r
u2
r
jkv
u1 r
2
(1、2-25)
当光辐射场与半导体中电子发生共振相互作用时,即满=2=1,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
间接带隙
❖ 在1450℃下用CVD技术可以生长出质量优 良的薄膜生长速度慢 ,几μm/h 只能室内 显示。目前液相外延(LPE)有可能替代CVD , 它可以将生长速率提高到每小时150 μm/h。
2. Ⅲ族氮化物 InN,AlN,GaN 直接带隙材料
InN: Eg 2ev
AlN Eg =6.2ev 用缓冲层 GaN Eg =3.4ev InGaN 400~580nm,p~6mw,η=10%
§4.5 可见光LD
❖ 目的:条形码扫描器,激光扫描,Laser印刷, 高密度光盘存储,水下通信。
一.红光LD
1. Ga1x Alx / GaAs
波长 780nm
670nm为理论极限
① x↑Al含量↓ 直接带隙→间接带隙
不参加振荡的载流子比例↑,内 量子↓,
J th↑
② Al含量↑ Al分凝系数大,
差便小,载流子溢出,因而:
①高掺杂P型包层能抑止载流子溢出; ②多量子阱结构对高能电子有很高反射率→ 改善高功率下温度特性,减小载流子溢出;
③采用张应变量子阱有源层;
④增加Al含量,使 Eg↑
二.兰绿光LD / LED
1. SiC - LED
Eg 2.9ev ~ 3.3ev
量子 ~ 0.05%(473 nm处)
结晶质量↓
热应力↑,
③ 要求有一定电导率,包层须掺杂,工艺难。
2. GaInP / GaAs or GaInP / GaAsP 工作波长 600~730nm
缺点:生长缺陷大,寿命短。
3. InGaAlP / GaAs
理论激射波长 580~650nm;在Ⅲ- Ⅴ族材料中能提供最大直接带隙,并与 GaAs衬底晶格匹配。
FWHM=2nm
①缺乏与GaN材料在晶格常数及热膨胀系数 匹配的衬底 ②缺乏获得高P型掺杂的方法 ③外延生长会形成高的缺陷Байду номын сангаас度
3. Ⅱ-Ⅳ族LD ZnSe、ZnS 直接带隙材料 480~510nm ZnSe与GaAs晶格失配仅为0.27,易在GaAs衬底上生长高质量ZnSe 薄模,以实现光电子集成。
增益导引型激光器
脊型双异质结
异质结势垒锁定激光器
条形耦合波导结构
问题: ①电流从有源区向包层“溢出” ② InGaAsP / GaAs 结构的价带不连续值大 ③在Al含量增大之时,给结晶外延层带来困难,使 解理面破坏阈值↓
④热阻率大,对器件性能影响大, J th ↑
❖ 缩短波长的方法: 在加大有源层 Eg时,有源层和包层之间的带隙
相关文档
最新文档