智能电网输电线路状态在线监测系统方案

合集下载

智能电网在线监测系统的设计与实现

智能电网在线监测系统的设计与实现

智能电网在线监测系统的设计与实现一、智能电网在线监测系统概述智能电网作为现代电力系统的重要组成部分,其核心在于通过先进的信息技术、通信技术、控制技术等手段,实现电网的智能化管理和优化运行。

在线监测系统作为智能电网的关键技术之一,能够实时监测电网的运行状态,及时发现并处理电网中的异常情况,保障电网的安全、可靠、经济运行。

1.1 智能电网在线监测系统的核心特性智能电网在线监测系统的核心特性主要体现在以下几个方面:- 实时性:系统能够实时采集电网的运行数据,包括电压、电流、功率、频率等参数,为电网的运行状态提供准确的数据支持。

- 准确性:系统采用高精度的监测设备和先进的数据处理算法,确保监测数据的准确性和可靠性。

- 智能化:系统具备智能分析和决策能力,能够对采集到的数据进行深入分析,及时发现电网中的异常情况,并给出相应的处理建议。

- 集成性:系统能够与电网的其他管理系统(如调度系统、保护系统等)进行集成,实现数据共享和业务协同。

1.2 智能电网在线监测系统的应用场景智能电网在线监测系统的应用场景非常广泛,包括但不限于以下几个方面:- 电网运行监控:实时监测电网的运行状态,及时发现并处理电网中的异常情况,保障电网的安全稳定运行。

- 故障诊断与处理:通过对电网运行数据的分析,实现故障的快速定位和处理,减少故障对电网运行的影响。

- 负荷预测与管理:通过对电网负荷数据的分析,实现负荷的合理分配和调度,提高电网的运行效率。

- 电能质量监测:监测电网的电能质量,如电压波动、频率偏差等,保障电能的供应质量。

二、智能电网在线监测系统的设计与实现智能电网在线监测系统的设计与实现是一个复杂的过程,涉及到多个方面的技术和设备。

2.1 系统架构设计智能电网在线监测系统的架构设计是系统设计的基础,需要考虑系统的可扩展性、可靠性、安全性等因素。

一般来说,系统架构可以分为以下几个层次:- 数据采集层:负责采集电网的运行数据,包括电压、电流、功率、频率等参数。

输电线路在线监测系统的设计与实现

输电线路在线监测系统的设计与实现

输电线路在线监测系统的设计与实现一、引言随着电力系统的不断发展与扩张,输电线路的安全运行和可靠性显得尤为重要。

传统的线路监测方式往往需要人工巡检,工作效率低下且存在一定的安全隐患。

设计一套高效、精准的输电线路在线监测系统至关重要。

本文将针对这一问题展开详细的设计与实现方案。

二、系统设计1. 系统结构输电线路在线监测系统由传感器、数据采集装置、数据传输单元、数据分析处理单元和用户终端等组成。

传感器负责采集线路参数,数据采集装置将采集的数据进行处理和整合,然后传输到数据分析处理单元进行分析,最后通过数据传输单元将监测数据传输给用户终端,用户可以通过终端设备实时监测线路运行状态。

2. 传感器选择为了实现对输电线路的全面监测,需要选择合适的传感器进行数据采集。

常用的传感器包括温度传感器、湿度传感器、振动传感器、电流传感器等。

这些传感器可以监测线路的温度变化、湿度、振动情况以及电流变化,对线路的运行状态进行全方位的监测。

3. 数据采集装置数据采集装置是将传感器采集到的原始数据进行处理和整合的关键环节。

通过数据采集装置可以将采集到的数据进行实时传输,并且对采集到的数据进行初步的处理和存储,为数据分析处理单元提供清晰的数据图表。

4. 数据传输单元数据传输单元负责将经过处理的数据传输至数据分析处理单元。

可以选择有线或者无线传输方式,保证数据得以及时准确的传输。

5. 数据分析处理单元数据分析处理单元是整个系统的核心,通过对采集到的数据进行深入的分析和处理,可以根据实际情况提供合理的建议和预警。

对温度数据的分析可以判断输电线路是否存在过载情况,对振动传感器的数据分析可以判断线路是否存在异常振动从而导致安全隐患。

6. 用户终端用户终端是系统的展示与交互部分,通过用户终端可以实时监测线路的运行状态,接收数据分析处理单元的预警信息和建议,为用户提供实时、全面的线路监测服务。

三、系统实现在系统实现过程中,需要重点考虑传感器的选择、数据采集装置的设计和数据传输单元的选择与搭建:传感器是系统监测的基础,因此对于传感器的选择必须慎重。

输电线路在线监测系统的设计与实现

输电线路在线监测系统的设计与实现

输电线路在线监测系统的设计与实现随着电力系统的不断发展和社会对电能质量的要求越来越高,输电线路的安全运行以及故障及时处理成为了十分重要的问题。

传统的电力线路监测方法主要依靠人工巡检,工作效率低、监测覆盖面窄以及存在漏检等问题。

开发一种可靠、高效的输电线路在线监测系统变得尤为重要。

本文将结合目前的技术水平,设计一种在线监测系统,并讨论其实现方案。

一、系统设计方案1.1 监测参数输电线路运行中存在多种可能的故障和隐患,因此在线监测系统需要监测的参数也较多,主要包括:电流、电压、温度、湿度、风速、线路振动以及机械应力等。

这些参数的监测可以有效地发现输电线路的异常情况,为及时排除故障提供数据支持。

1.2 数据传输在线监测系统需要将采集到的数据传输至监控中心或者云端服务器进行实时处理和存储。

为了保证数据传输的稳定和可靠,可以采用有线或者无线的通信方式,比如使用光纤、微波通信等技术。

1.3 数据处理传输过来的监测数据需要进行处理和分析,以便及时发现线路的异常情况。

数据处理可以采用机器学习算法、故障模式识别算法等技术,通过建立合理的数学模型,提高线路异常情况的识别精度。

1.4 报警系统当在线监测系统发现线路出现异常情况时,需要及时向操作人员发出警报。

报警系统可以采用声音、光纤、短信等多种方式,以确保相关人员在第一时间能够了解到故障情况。

1.5 动作控制在线监测系统还需要具备一定的动作控制功能,当监测到线路出现异常情况时,可以自动执行相关的控制命令,以减小事故对系统的影响。

2.1 传感器在线监测系统的核心是数据的采集,而数据的采集需要依靠各类传感器。

对输电线路来说,可以选择电流传感器、电压传感器、温度传感器、湿度传感器、风速传感器等多种传感器。

这些传感器需要具备高精度、高可靠性、抗干扰能力强等特点。

三、系统性能评估为了验证设计和实现的在线监测系统的有效性,需要对其进行性能评估。

性能评估主要包括以下几个方面:3.1 系统稳定性在线监测系统需要具备较高的稳定性,能够稳定地运行在各种环境条件下。

智能电网输电线路在线监测系统的设计与实现

智能电网输电线路在线监测系统的设计与实现
在特定输电线路区域内需要针对气候环境来进行监测装置的分类使其在整体系统中形成一个传感器的连接矩阵另外还要实现对防汛监测雷电检测覆冰监测等子系统发送监测的预警信息利用传感器来传输监测数据与信息最后根据关键矩阵以及关联度来对监测的数据进行横向的校验与核对评估智能电网输电线路在线监测的信息与数据判断其是否准确
对智能 电网的安全、 稳定、 可靠运行提供一些借鉴与指导 , 保证智能 电网可 以快速并健康的发展 。 关键词 : 智能电网: 输电线路; 在线监测系统; 设计; 实现
中图分类号 : T M7 6 文 献标 识 码 : A 文章 编 号 : 1 6 7 2 — 1 6 7 5 ( 2 0 1 7) 2 3 - 0 3 3 6 - 0 2
统获取输 电线路在智能电网中运行的状态信息, 从而根据这些信息为智能 电网能量管理系统、 生产管理系统等提供参考与依据, 也为其他层面的系 统 开 发应 用 提供 了服 务保 障 以及 数 据支 持 , 促进 了智 能 电 网的 安 全运 行 。 智能电网输 电线路在 线监测 系统 的基础平 台主要具备的功能为 : ( 1 ) 在线监测系统基础平台的系统管理功能: 系统管理主要为异步管 理、 任务分担 、 冗余机制、 应用管理、 安全管理、 网络 管理 、 进程管理等提供 技术支撑, 同时结合安全可靠的监护手段促进监测系统的稳定运行 。
水利 ・ 电力
建材 发 展 导 向 2 0 1 7年 1 2月
智能电网输电线路在线监测系统的设计与实现
李 克黎 王毅凡 赵 东平
河南 洛阳 4 7 1 0 0 0 ) ( 国网河南省 电力公司洛 阳供 电公司
摘 耍: 输 电线 路是智能电网的关键 组成, 因而 电网的运 行会 受到输 电线路 的影响。想要提 高智 能电网输电线路的运行质量与运行 效率, 我们还需要加强对输 电线路系统运行的实时监测力度 。本文主要对研究智能 电网输 电线路在线监测系统的应用实现与设计 , 以便

输电线路在线监测系统的设计与实现

输电线路在线监测系统的设计与实现

输电线路在线监测系统的设计与实现输电线路在线监测系统是一种可以实时监测输电线路运行状态,提供安全警报、故障诊断等功能的系统。

本文将介绍该系统的设计和实现。

一、需求分析1. 实时监测输电线路的电压、电流、功率等参数。

2. 提供安全警报功能,如过载、短路等异常情况。

3. 能够实现故障诊断功能,包括故障类型、故障位置等信息。

4. 方便用户查看和分析数据,提供报表分析功能。

二、设计方案1. 系统架构系统由三大部分组成:监测节点、通信网络和控制中心。

监测节点负责采集输电线路的参数,通过通信网络将数据传输到控制中心。

控制中心负责对数据进行处理和分析,并提供报表分析功能。

2. 监测节点设计监测节点需要具备以下功能:(1)采集输电线路的电压、电流、功率等参数,并将数据存储到本地存储器中。

(2)对数据进行预处理,如滤波、数据校正等操作。

(3)当发生异常情况时,通过控制中心发送警报信息。

(4)支持多种通信协议,如Modbus、TCP/IP等。

(5)具有自主诊断能力,当节点自身存在故障时,能够向控制中心报告故障信息。

3. 通信网络设计(1)能够实现监测节点和控制中心之间的通信。

(2)具有良好的稳定性和实时性。

(4)支持数据加密和身份验证等安全措施。

4. 控制中心设计(1)接收监测节点传输的数据,并进行分析和处理。

(2)能够实时监测输电线路的运行状态,发现异常情况时及时发出警报信息。

(5)具有数据备份和恢复功能,保证数据的长期存储及数据的安全性。

三、系统实现监测节点采用STC89C52单片机作为主控芯片,采用RS485通信协议与控制中心通信。

监测节点采集的数据通过AD转换器转换成数字信号,经过滤波和数据校正之后存储到本地EEPROM中,当发生异常情况时,通过RS485通信向控制中心报警。

监测节点具有良好的可靠性和稳定性。

通信网络采用GPRS无线通信方式,实现远距离和高速传输数据。

通过物联网技术和云计算技术,控制中心能够实时监测输电线路,发现异常情况时及时发出警报信息。

智能电网设备在线监测方案

智能电网设备在线监测方案

智能电网设备在线监测方案智能电网设备在线监测方案智能电网设备在现代社会中起着至关重要的作用。

它们不仅保障着电力供应的稳定性,还为人们的日常生活提供了便利。

然而,由于设备的长时间运行和环境的不稳定性,设备故障和事故时有发生,给电力系统的稳定运行带来了很大的挑战。

为了解决这一问题,智能电网设备在线监测方案应运而生。

智能电网设备在线监测方案利用先进的传感技术和物联网技术,实现对电网设备的实时监测和数据采集。

通过安装传感器设备,能够对设备的工作状态、温度、压力等关键指标进行实时监控,并将数据传输到云端服务器进行分析和处理。

同时,也可以通过远程控制终端对设备进行远程操作和维护。

这种在线监测方案具有以下几个优势。

首先,它能够实时监测设备的运行状态,及时发现设备存----宋停云与您分享----在的问题和隐患,避免因设备故障而导致的电力中断。

其次,通过对数据的分析和处理,可以提前预测设备的故障或事故,及时采取相应的措施进行修复,大大减少了设备维修的成本和时间。

再次,通过远程控制终端,可以对设备进行远程操作和维护,减少了人力投入和工作风险。

然而,智能电网设备在线监测方案也存在一些挑战和问题。

首先,由于设备的复杂性和多样性,监测系统的一致性和兼容性需要得到保证。

其次,大量的数据需要进行高效的存储、传输和处理,对云端服务器的计算能力和网络带宽提出了更高的要求。

此外,在保障数据的安全性和隐私性方面,也需要加强相应的防护和措施。

为了解决上述问题,可以采取以下措施。

首先,建立一个统一的监测系统标准,确保各种设备能够无缝连接和协同工作。

其次,采用大数据分析和人工智能技术,实现对数据的高效处理和智能分析,提高监测系统的效能和准确性。

此外,还----宋停云与您分享----应加强对数据的加密和隐私保护,确保用户的信息安全。

总之,智能电网设备在线监测方案是解决电力系统稳定运行和设备故障问题的重要途径。

通过实时监测和数据分析,及时发现和预测设备的故障和事故,提高了设备的稳定性和可靠性。

输电线路在线监控系统方案研究和应用

输电线路在线监控系统方案研究和应用

输电线路在线监控系统方案研究和应用输电线路在线监控系统包括了四个方面,线路运行参数的实时监测,施工现场安全施工远程监控,巡线到位实时检查以及视频远程监控,从而使线路外破管控困难和日常运维成本比较高,运维质量达不到要求等情况得到有效解决,能够使输电线路运行维护的形成扁平化管理,使管理效率更高。

标签:输电线路;在线监控;方案研究;应用前言:目前,大部分输电线路存在着运维压力较大的情况,主要由于我国的输电线路着点比较多,覆盖面也比较广,输电线路的运维成本也不足,同时也造成了运维质量得不到有效的监督,运维方式也比较少,后方人员不能够给前方运维人员足够的支持。

1输电线路在线监控系统方案通过对输电线路在线监控方案的落实,使集外破视频远程监控和巡线到位实时检查,以及线路运行实时参数监测和大型施工现场安全施工远程监控等监测方式有效运行,使外破在线监控等方面的工作能够有效运行。

使线路运维的管理水平更高。

外破视频监控点的设置要根据施工现场的工作情况以及施工时间的安排建立,监控点的安置要具有科学依据,避免有人为操作的随意性,使监控情况受到影响。

对监控点的建立和撤销需要提交相应的外破监控需求和拆除申请,使现场情况得到有效地管理,运维人员能够对施工现场进行查验,使外破的隐患得到更加明确的管理,输电运检人员经过确认盖章后才能够进行相应的监控点的安装和拆除工作。

应该建立微信群对相关部门进行管理,从而可以使监控活动的情况得到更为实时的反馈。

同时应该对在线监控设备的安装和拆除步骤进行管控,设定相应的流程,使设备的安装和拆卸符合相关规范,能够在流程中对可能的漏洞情况进管控。

使在线监控设备能够得到精确管理,避免设备的重复性购买,或者造车监控设备的错误拆除。

监控中心需要根据外破点的需求进行分时段监控,从而可以使监控效率得到提高,当外破点消除之后,需要对相应位置的在线监控设备进行拆除,拆除后的设备应该进行初始化重置,并且需要进行相关维护,以备进行重复使用,避免监控设备使用的浪费,使设备的购置成本得到控制。

输电线路在线监测系统的设计与实现

输电线路在线监测系统的设计与实现

输电线路在线监测系统的设计与实现
输电线路在线监测系统是指利用现代通信、计算机、传感器技术等手段,对输电线路的绝缘状态、温度、振动等参数进行实时监测和数据采集,并通过无线通信技术将数据传输到监测中心进行分析和处理的一种系统。

该系统的设计与实现需要考虑以下几个方面:
1. 传感器选择与布置:选择合适的传感器对线路的各个参数进行实时监测,如绝缘状态可以使用电容传感器,温度可以使用温度传感器,振动可以使用加速度传感器等。

在布置传感器时要考虑线路的特性以及安全因素。

2. 数据采集与处理:利用数据采集卡或者嵌入式计算机等设备对传感器采集到的数据进行处理和存储,可以采用实时数据库对数据进行管理,并设置合适的数据采样间隔和存储容量。

3. 无线通信技术:选用合适的无线通信技术将采集到的线路数据传输到监测中心进行分析和处理。

可以选择基于GPRS、3G、4G、LoRa等通信技术,并考虑通信距离、通信速率、功耗等因素。

4. 监测中心建设:监测中心是系统的核心部分,需要建立完善的数据库,利用数据分析和处理算法对传感器采集到的数据进行实时分析和判断。

可以设计用户界面用于数据展示和报警处理,并实现与其他系统的数据交互。

5. 安全性与可靠性保障:由于输电线路是国家重要的基础设施,监测系统需要具备一定的安全性和可靠性。

可以采用多级权限管理,数据加密传输,备份和灾备机制等手段进行保护。

在实际应用中,可以通过搭建小型试验线路和实际线路进行测试和验证,逐步完善和改进系统的设计和功能。

还应根据实际需要考虑系统成本、维护、升级等方面的因素,从而设计出高效、稳定、可靠的输电线路在线监测系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能电网·高压输电线路状态在线监测系统一系统简介随着国家电力建设的发展,电网规模不断扩大,在复杂地形条件下的电网建设和设备维护工作也越来越多,输电线路的巡检和维护越来越表现出分散性大、距离长、难度高等特点。

因此对输电线路本体、周边环境以及气象参数的智能化远程监测成为智能电网改造的重要工作。

输电线路在线监测系统是智能电网输电环节的重要组成部分,是实现输电线路状态运行、检修管理、提升生产运行管理精益化水平的重要技术手段。

STC_OLMS系列输电线路状态在线监测系统电子测量、无线通讯、太阳能新能源技术及软件技术等实现对导线覆冰、导线温度、导线弧垂、导线微风振动、导线舞动、次档距震荡、导线力、绝缘子串风偏(倾斜)、杆塔应力分布、杆塔倾斜、杆塔振动、杆塔基础滑移、绝缘子污秽、环境气象、图像(视频)、杆塔塔材被盗等状况的实时在线监测,预防电力线路重大事故灾害的发生。

系统采用模块化设计,可以独立使用,也可自由组合,功能模块组合如下图所示:二技术标准1、Q/GDW 242-2010《输电线路状态监测装置通用技术规》2、Q/GDW 243-2010《输电线路气象监测装置技术规》3、Q/GDW 244-2010《输电线路导线温度监测装置技术规》4、Q/GDW 245-2010《输电线路微风振动监测装置技术规》5、Q/GDW 554-2010《输电线路等值覆冰厚度监测装置技术规》6、Q/GDW 555-2010《输电线路导线舞动监测装置技术规》7、Q/GDW 556-2010《输电线路导线弧垂监测装置技术规》8、Q/GDW 557-2010《输电线路风偏监测装置技术规》9、Q/GDW 558-2010《输电线路现场污秽度监测装置技术规》10、Q/GDW 559-2010《输电线路杆塔倾斜监测装置技术规》11、Q/GDW 560-2010《输电线路图像视频监测装置技术规》12、Q/GDW 561-2010《输变电设备状态监测系统技术导则》13、Q/GDW 562-2010《输变电状态监测主站系统数据通信协议》14、Q/GDW 562-2010《输电线路状态监测代理技术规》15、GB 191 包装储运图示标志16、GB 2314 电力金具通用技术条件17、GB 2887—2000 电子计算机场地通用规18、GB 4208—93 外壳防护等级(IP代码)19、GB 6388 运输包装图示标志20、GB 9361 计算站场地安全要求21、GB 9969.1 工业产品使用说明书总则22、GB 11463—89 电子测量仪器可靠性试验23、GB 12632—1990 单晶硅太阳电池总规24、GB 50545-2010 110kV~750kV架空输电线路设计规25、GB/T 2317.2—2000 电力金具电晕和无线电干扰试验26、GB/T 2423.1—2001 电工电子产品环境试验第2部分:试验方法试验A:低温27、GB/T 2423.2—2001 电工电子产品环境试验第2部分:试验方法试验A:高温28、GB/T 2423.4—1993 电工电子产品基本环境试验规程试验Db:交变湿热试验方法29、GB/T 2423.10—1995 电工电子产品环境试验第二部分:试验方法试验Fc和导则:振动(正弦)30、GB/T 3797-2005 电气控制设备31、GB/T 3859.2-1993 半导体变流器应用导则32、GB/T 3873-1983 通信设备产品包装通用技术条件33、GB/T 6587.6—86 电子测量仪器运输试验34、GB/T 6593 电子测量仪器质量检验规则35、GB/T 7027-2002 信息分类和编码的基本原则与方法36、GB/T 9535-1998 地面用晶体硅光伏组件设计鉴定和定型37、GB/T 14436 工业产品保证文件总则38、GB/T 15464 仪器仪表包装通用技术规39、GB/T 16611—1996 数传电台通用规40、GB/T 16723-1996 信息技术提供OSI无连接方式运输服务的协议41、GB/T 16927.1 高电压试验技术第一部分:一般试验要求42、GB/T 17179.1-2008 提供无连接方式网络服务的协议第1部分:协议规43、GB/T 17626.2—1998 电磁兼容试验和测量技术静电放电抗扰度试验44、GB/T 17626.3—1998 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验45、GB/T 17626.8—1998 电磁兼容试验和测量技术工频磁场抗扰度试验46、GB/T 17626.9—1998 电磁兼容试验和测量技术脉冲磁场抗扰度试验47、GB/T 19064-2003 家用太阳能光伏电源系统技术条件和实验方法48、QX/T 1—2000 Ⅱ型自动气象站49、YD/T 799—1996 通信用阀控式密封铅酸蓄电池技术要求和检验方法50、DL/T 548 电力系统通信站防雷运行管理规程51、DL/T 741—2010 架空送电线路运行规程52、DL/T 5154—2002 架空送电线路杆塔结构设计技术规定53、DL/T 5219—2005 架空送电线路基础设计技术规定54、QJ/T 815.2-1994 产品公路运输加速模拟试验方法三、系统电源及通讯1、监测装置电源实现(1)监测装置采用太阳能对蓄电池浮充的方式进行供电,对日照照射相对较弱地区也可同时采用太阳能及风能对蓄电池进行充电的方式进行供电。

监测装置安装于铁塔上,安装较为困难,因此减小设备体积及重量成为监测装置设计首要考虑的因素。

监测装置采用超低功耗技术,装置待机电流保持在20mA(12V)以,因此在同等容量电源条件下,装置可连续运行时间比其他产品长30%以上。

正常情况下数据采集装置配置12V 33AH 电池即可连续运行30天以上,且具备体积小、重量轻的特点,有利于现场安装。

监测装置选用硅能绿色环保电池作为储能系统,该电池相比铅酸及其他类型电池系统具备以下优点:●储备容量高,达到国际要求的2倍。

●充电接受能力强,达到国际要求的3倍。

●大电流放电效率高,可高倍率放电,30C放电8S电池不损伤。

●自放电小,年自放电率小于2%。

●充放电无记忆(次数)。

●能耐高温及高寒,可以在-50~+70℃围使用。

●绿色环保,该产品采用复合硅盐电解质取代硫酸,无污染,电池极板亦可再生使用。

●循环使用寿命长,户外监测装置可使用5~10年。

(2)安装在导线上的监测装置采用以下两种方式进行供电:A、特种高能电池:采用进口特种高能电池进行供电,体积小、重量轻、耐高低温,使用寿命达8年以上。

B、感应取能对蓄电池充电:采用高能感应线圈取电及对蓄电池进行浮充的方式进行供电,取电效率高、通讯模块可实时在线。

2、监测装置通讯技术(1)数据采集单元(导线温度、导线舞动、导线力、导线弧垂等)与塔上监测装置之间采用RF、Zigbee、WIFI等方式进行通讯,通讯距离1~3KM。

(2)塔上监测装置与CMA(状态监测代理)之间采用RJ45、RF、Zigbee、WIFI等方式进行通讯。

(3)CMA或集成有CMA功能的监测装置与CAG(状态信息接入网关机)之间采用OPGW、WIFI、GPRS/CDMA/3G、卫星等方式进行通讯。

具备光纤接入条件杆塔上的监测装置,采用光端机将杆塔上的的数据传输至中心CAG,实现数据落地;不具备光纤接入条件杆塔上的监测装置通过无线(WIFI)网络将各监测装置数据汇总至有光纤接入杆塔上的监测装置,利用光交换机将无线监测装置数据传输至中心CAG;3、监测装置工作条件(1)工作温度:-40℃~+70℃;(2) 环境温度:-40℃~+50℃;(3)相对湿度:5%RH~100%RH;(4)海拔高度:≤4000m;(5) 大气压力:500hPa~1100hPa;(6) 风速:≤75米/秒;(7)防护等级:IP66;(8) 振动峰值加速度:10m/s2(9)电池电压:DC 12V;四、主要功能模块1、输电线路微气象监测复杂地形的输电线路,往往几百千米甚至几百千米,山岭纵横、海拔高程悬殊,气象变化显著,小气候特点十分突出,邻近气象台站的观测记录,不能满足微地形地段线路的设计、维护需求。

对微地形、微气象的认识不足,对沿线风口、峡谷、分水岭等高山局部特殊地段的气象资料掌握不够, 是近年来我国电网主干线500(330、220、110)kV线路频频发生倒塔、断线事故的主要原因。

微气象监测系装置主要监测电力通道的环境温、湿度、风向等气象参数,经过大量的数据积累,可应用采集气象参数为线路规划设计提供依据,为线路维修、维护提供参考。

监测参数:温度、湿度、风速、风向、雨量和大气压、日照;参数技术指标:●温度监测围:-50~120℃;精度:±0.2℃;分辨率:0.1℃●湿度监测围:1%~100%,精度:±4%RH;分辨率:1%RH●风速测量围:0m/s~60m/s;精度:±(0.5+0.03V)m/s,V 为标准风速值;分辨率:0.1 m/s;起动风速:<0.2m/s;抗风强度:75m/s。

●风向测量围:0°~360°;测量精度:±2°;分辨率:0.1°;启动风速:<0.2m/s;抗风强度:75m/s。

●雨量测量围:0~4mm/min;分辨力:0.2mm;准确度:±0.4mm(≤10mm时);±4%(>10mm时)。

2、输电线路覆冰预警监测覆冰事故在世界围都是冬季输电线路常见事故,事故破坏力大、波及面广、损失惨重。

轻则导致绝缘子串冰闪跳闸、相间闪络跳闸和导线大幅舞动等可恢复供电周期较短的重大事故,重则导致杆塔倾斜甚至倒塌、线路金具严重损坏和导线脆断接地等可恢复供电周期较长的特大事故。

输电线路覆冰在线监测通过全天候采集运行状态下输电线路的绝缘子串拉力、绝缘子串风偏角、绝缘子串倾斜角、风速、风向、温度、湿度等特征参数,将数据信息实时传输到分析处理中心,通过智能分析计算导线覆冰厚度。

相关部门根据线路荷载、覆冰厚度及周边气象环境,结合视频监测系统拍回的现场图片,直观地了解线路的覆冰状况,决定是否需要实施预防措施。

监测参数:绝缘子串拉力、绝缘子串风偏角、绝缘子串倾斜角、环境温度、湿度、风速、风向、图像等;参数技术指标:拉力传感器量程:7t、10t、16t、21t、32t、42t、55t(根据实际需要定制);●拉力传感器测量围:2%~100%FS(线性工作区间);●拉力传感器准确度级别(FS):0.2及以上;●拉力传感器技术指标:分度数n≥500;回零误差'r Z(%FS):≤±0.1;示值误差' (%FS):≤±0.2;重复性'R(%FS):≤±0.2;滞后'H(%FS):≤±0.3;长期稳定性'b S(%FS):≤±0.2;●倾角测量角度围:双轴≤±90°;●倾角测量精度:≤±0.1°;●倾角测量分辨率:±0.01°;●温度监测围:-50~120℃;精度:±0.3℃;分辨率:0.1℃;●湿度监测围:1%~100%,精度:±4%RH;分辨率:1%RH;●风速测量围:0m/s~60m/s;精度:±(0.5+0.03V)m/s,V 为标准风速值;分辨率:0.1 m/s;起动风速:<0.2m/s;抗风强度:75m/s;●风向测量围:0°~360°;测量精度:±2°;分辨率:0.1°;启动风速:<0.2m/s;抗风强度:75m/s。

相关文档
最新文档