《图论》图的着色(课堂PPT)
合集下载
图论课件第七章图的着色

顶点着色:给每个顶点分配一个 颜色,使得相邻顶点不同色
全着色:给每个顶点和每条边都 分配一个颜色,使得相邻顶点、 边都不同色
ቤተ መጻሕፍቲ ባይዱ
添加标题
添加标题
添加标题
添加标题
边着色:给每条边分配一个颜色, 使得相邻边不同色
部分着色:只给部分顶点和边分 配颜色,部分顶点和边不参与着 色
图的着色应用
图的着色概述
图的着色应用
旅行商问题
定义:旅行商问题是一个经典的组合优化问题,指的是给定一组城市和每 对城市之间的距离,要求找到访问每个城市一次并返回到原点的最短路径。
应用场景:旅行商问题在许多领域都有应用,如物流、运输、电路设计等。
图的着色在旅行商问题中的应用:通过给城市着色,可以将问题转化为图 的着色问题,从而利用图的着色算法来求解旅行商问题。
图的着色的应用案
06
例
地图着色问题
定义:地图着色问题是一个经典的组合优化问题,旨在为地图上的 国家或地区着色,使得相邻的国家或地区没有相同的颜色。
背景:地图着色问题在计算机科学、数学和地理学等领域都有广泛 的应用。
应用案例:地图着色问题可以应用于许多实际场景,如地图制作、 交通规划、网络设计等。
图的着色在排课问题中的应用:通过将排课问题转化为图的着色问题,可以运用图的着色算 法进行求解,从而得到最优的排课方案
图的着色算法在排课问题中的优势:通过将排课问题转化为图的着色问题,可以运用图的 着色算法进行求解,从而得到最优的排课方案,避免了传统排课方法的繁琐和主观性
图的着色在排课问题中的实际应用案例:以某高校为例,通过运用图的着色算法进行排课, 成功解决了该校的排课问题,提高了排课效率和教学质量
贪心策略:在图的着色问题中,贪心策略是选择与当前未着色顶点相邻的未使用颜色进行着色。
全着色:给每个顶点和每条边都 分配一个颜色,使得相邻顶点、 边都不同色
ቤተ መጻሕፍቲ ባይዱ
添加标题
添加标题
添加标题
添加标题
边着色:给每条边分配一个颜色, 使得相邻边不同色
部分着色:只给部分顶点和边分 配颜色,部分顶点和边不参与着 色
图的着色应用
图的着色概述
图的着色应用
旅行商问题
定义:旅行商问题是一个经典的组合优化问题,指的是给定一组城市和每 对城市之间的距离,要求找到访问每个城市一次并返回到原点的最短路径。
应用场景:旅行商问题在许多领域都有应用,如物流、运输、电路设计等。
图的着色在旅行商问题中的应用:通过给城市着色,可以将问题转化为图 的着色问题,从而利用图的着色算法来求解旅行商问题。
图的着色的应用案
06
例
地图着色问题
定义:地图着色问题是一个经典的组合优化问题,旨在为地图上的 国家或地区着色,使得相邻的国家或地区没有相同的颜色。
背景:地图着色问题在计算机科学、数学和地理学等领域都有广泛 的应用。
应用案例:地图着色问题可以应用于许多实际场景,如地图制作、 交通规划、网络设计等。
图的着色在排课问题中的应用:通过将排课问题转化为图的着色问题,可以运用图的着色算 法进行求解,从而得到最优的排课方案
图的着色算法在排课问题中的优势:通过将排课问题转化为图的着色问题,可以运用图的 着色算法进行求解,从而得到最优的排课方案,避免了传统排课方法的繁琐和主观性
图的着色在排课问题中的实际应用案例:以某高校为例,通过运用图的着色算法进行排课, 成功解决了该校的排课问题,提高了排课效率和教学质量
贪心策略:在图的着色问题中,贪心策略是选择与当前未着色顶点相邻的未使用颜色进行着色。
图的着色问题 ppt课件

PPT课件
3
顶点着色-基本概念
• 独立集:对图G=(V,E),设S是V的一个子集,若 中任意两个顶点在G中均不相邻,则称S为G的一 个独立集。
• 最大独立集:如果G不包含适合|S'|>|S|的独立 集S',则称S为G的最大独立集。
• 极大覆盖:设K是G的一个独立集,并且对于V-K 的任一顶点v,K+v都不是G的独立集,则称K是 G的一个极大覆盖。
先求图G的极小覆盖,
பைடு நூலகம்
化简得
(a bd)(b aceg)(c bdef )(d aceg)(e bcdf )( f ceg)(g bdf )
aceg bc deg bdef bdef bcdf
故G的极小覆盖为 {a,c,e, g},{b,c, d,e, g},{b, d,e, f },{b,c, d, f } 取其补集,得到G的所有 极大独立集: • Step2:求出一切若干极大独立集和所有{b,顶d,点f }的,{a子, f集},{a,c, g},{a,e, g}
但上述子集的颜色数都不是X(G),正确的应 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的c涂颜色3。
由此可见,求色数其需要求极大独立集以
及一切若干极大独立集的和含所有顶点的子
集,对于大图,因为图计算量过大而成为实
际上难以凑效的算法,所以不是一个好算法,
(ii)若G为偶图,则X(G)=2 (iii)对任意图G,有X(G)≤Δ+1(这里Δ表示为顶点 数最大值)
PPT课件
5
顶点着色-求顶色数的算法设计
我们由“每个同色顶点集合中的两两顶点不相邻”可以看出,同色顶 点集实际上是一个独立集,当我们用第1种颜色上色时,为了尽可 能扩大颜色1的顶点个数,逼近所用颜色数最少的目的,事实上就 是找出图G的一个极大独立集并给它涂上颜色1。用第2种颜色上色 时,同样选择另一个极大独立集涂色,...,当所有顶点涂色完毕, 所用的颜色数即为所选的极大独立集的个数。
图论 图的着色

X(G(V1,V2))=
X(G)=2 G为二部图
Th5.1:如果图G的顶点次数≤ρ,则G是ρ+1可着色的。
Th5.2:如果G是一个简单连通的非完全图,如果它的最大顶点次 数为ρ(ρ≥3),则称G为ρ可着色的。
下面的讨论的图为平面图:
Th5.3:每个平面图都是6可着色的。 Th5.4:每个平面图都是5可着色的。 Th5.5:每个平面图都是4可着色的。
ρ ≤ X’(G)≤ ρ+1
对任意图判断X’(G)= ρ 或X’(G)= ρ+1没有解决,但对于一些特殊图, 答案是清楚的。
对于n个点圈图: 2 or 3
.13:对于n(n>1)的完全图,
X’(kn)=n (n为奇数)X’(kn)=n-1(n为偶数) Th5.15:如G为具有最大顶点次数ρ的二部图,则X’(G)= ρ。
Corollary 5.9:地图4色定理 平面图的4色定理。 Th5.10:设G为一张每个顶点都是3次的地图,则 G为3可面着色G的每个面皆被偶数条边所围 Th5.11:如果每个3正规的地图是4可面着色的,则4色定理成立。
5.3 边的着色
G是k可边着色的:如果图G的所有的边皆可用k种颜色着色,使得 任何两条相邻的边均具有不同的颜色,则称G是k边着色的。 k为G的边色数:如果G为k可边着色的,但不是k-1可边着色的,则 称k为G的边色数,记为:X’(G)。 Th5.12:如果G为简单图且它的最大顶点次数为ρ
第五章 图的着色
5.1 色数 5.2 地图的着色 5.3 边的着色
5.1 色数
G为k可着色的:设G是一个无自环图,如果对它的每个顶点可以用 k种颜色之一着色,使得没有两个相邻的顶点有相同的颜色,则称G 是k可着色的。
《图论》图的着色(课堂PPT)

PK3(3) = 6
19
6.2 色数多项式
a
a
a
b
cb
cb
c
a
a
a
b
cb
cb
c
PK3(3)=6
20
6.2 色数多项式
➢ 若干特殊图的 PG(k) 1) 零图: G=(V, E) ,n=|V|,|E|=0,PG(k)=kn 2) 树:根节点在 k 种颜色中任取,非根节点选取 与其父亲节点不同的颜色。 PG(k)=k(k-1)n-1 3) 完全图: PG(k)=k(k-1)(k-2)…(k-n+1) 4) 非连通图:设图G由不连通的G1和G2构成,则 由乘法原理:PG(k)=PG1(k)PG2(k)
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
① 在图G中任取一边 e; ② 在图G中去掉 e,得新图G1;
在图G中收缩 e 的两端点,得新图G2,由上述有 PG(k) = PG1(k) - PG2(k)
③ 继续分解G1和G2,直到最后全部为零图。 ④ 利用 n 阶零图的 P(k)=kn 构造图G的色数多项式。
① 若 n=2,则G为 K2,PG(k)=k(k1)=k2k。
② 若 n>2,则G除一个 K2 外其它为孤立点:
PG(k)=k(k1)kn-2=knkn-1。
19
6.2 色数多项式
a
a
a
b
cb
cb
c
a
a
a
b
cb
cb
c
PK3(3)=6
20
6.2 色数多项式
➢ 若干特殊图的 PG(k) 1) 零图: G=(V, E) ,n=|V|,|E|=0,PG(k)=kn 2) 树:根节点在 k 种颜色中任取,非根节点选取 与其父亲节点不同的颜色。 PG(k)=k(k-1)n-1 3) 完全图: PG(k)=k(k-1)(k-2)…(k-n+1) 4) 非连通图:设图G由不连通的G1和G2构成,则 由乘法原理:PG(k)=PG1(k)PG2(k)
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
① 在图G中任取一边 e; ② 在图G中去掉 e,得新图G1;
在图G中收缩 e 的两端点,得新图G2,由上述有 PG(k) = PG1(k) - PG2(k)
③ 继续分解G1和G2,直到最后全部为零图。 ④ 利用 n 阶零图的 P(k)=kn 构造图G的色数多项式。
① 若 n=2,则G为 K2,PG(k)=k(k1)=k2k。
② 若 n>2,则G除一个 K2 外其它为孤立点:
PG(k)=k(k1)kn-2=knkn-1。
图论课件--着色的计数与色多项式(精选)共34页

式(精选)
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
图论讲义第6章-图的着色问题

| c1 (ν ) | = 1 ,其中 ci (υ ) 表示 υ 阶第 i 类图的集合。这 v →∞ | c (ν ) ∪ c (ν ) | 1 2
vk
… v3 v2
i4 i3 i2
u
… H2
ik i0
…
im ik
i1
vm
v1
v
但是,因 vk 在 H 1 中的度为 2(恰与一条 i0 色边和一条 ik 色边相关联) ,故它在 H 2 中的 。这与 H 2 是奇圈矛盾。 (注意 vk 必在分支 H 2 中,因它与 度为 1(仅与一条 i0 色边相关联) 。由此可知反证法假设不能成立。证毕。 vk-1 有 i0、ik 交错路( H 1 的一段)相连) 对于有重边的图 G,设 μ (G ) 表示 G 中边的最大重数,Vizing 实际上证明了一个更一般 的结论: Δ (G ) ≤
(其中 v0 点的关联边有可能是同一种色) 。按这 样可得 G*的一个边 2-染色 c = ( E1 , E 2 ) , 种办法给 G*的边染色后,去掉 v0 及其关联的边,便得到 G 的一个边 2-染色。对于 G 中偶 度点,它关联的边及其颜色与 G*中相同;对 G 的任何奇度点 v,在 G 中比在 G*中少关联一 条边,但只要 d G ( v ) > 1 , 便有 d G ( v ) ≥ 3 , 故由染色的方法知,与 v 点关联的边中两种颜色 的都有。这说明 G 的边 2-染色 c = ( E1 ∩ E (G ), E 2 ∩ E (G )) 即为所求的边 2-染色。证毕。
… H1 vk-1
ikik i0
( Δ + 1) 边染色。由引理 6.1.2, G[ Ei′0 ∪ Ei′k ] 中含有 u 的那个分支 H 1 是个奇圈。
图论课件第七章图的着色

总结词
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
图论课件-图的顶点着色

AC
所以, (G) 4
7
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
注:对图的正常顶点着色,带来的是图的顶点集合的
一种划分方式。所以,对应的实际问题也是分类问题。 属于同一种颜色的顶点集合称为一个色组,它们彼此不 相邻接,所以又称为点独立集。用点色数种颜色对图G 正常着色,称为对图G的最优点着色。
若G1是非正则单图,则由数学归纳,G1是可Δ (G)顶点 正常着色的,从而,G是可Δ (G)正常顶点着色的。
(2) 容易证明:若G是1连通单图,最大度是Δ ,则
(G) (G)
15
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
(3) Δ (G)≥3
11
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
(1), (v3 )=3
v1
v6
v5
(2),C(v4)=3,C C(v4) 1, 2, 4,5, k 1
(1), (v4 )=1
v2
(2),C(v5)=1,C C(v5) 2,3, 4,5, k 2
v
块
块
块
G -v
17
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
由于G本身2连通,所以G-xn的每个仅含有一个割点的块 中均有点与xn邻接。设分属于H1与H2中的点x1与x2,它们与 xn邻接。由于x1与x2分属于不同块,所以x1与x2不邻接。又 因为Δ ≥3,所以G-{x1, x2}连通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[四色猜想] 任何平面图都是 4-可着色的。 ➢ 由于存在着不可3-着色的平面图K4,4色问题若可
证明,将是平面图色数问题的最佳结果。
11
6.1 色数
[定理6-1-2] 如果平面图G有Hamilton回路,则G的域是 4-可着色的。
[证明] 平面图G的一条Hamilton回路将G的域分割成两 部分:被封闭的H-回路包围部分和在H-回路之外 部分。每一部分中只能出现两域相邻的情况,否 则同一部分内三个域的交点将不在H-回路上,引 起矛盾。将两部分的域分别以2着色,得到G的一 种4着色方案。
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
G1为G的真子图,与临界图的定义矛盾。
7
6.1 色数
[定理6-1-1] k-临界图G=(V, E), =min{deg(vi)|viV}, 则 k-1。
[证明]反证法:设G是一个 k-临界图且 <k-1。又设 v0V,deg(v0)= 。由 k-临界图的定义,Gv0 是
(k1)可着色的,在一种 k1着色方案下,Gv0 的 顶点可按照颜色划分成 V1,V2, …, Vk-1 共 k1块, 块Vi中的顶点被涂以颜色 ci。由于deg(v0)< k1,v0 至少与其中一块Vj不邻接即与Vj中的任何顶点不邻 接。此时可将 v0 涂以颜色 cj,从而获得对G的一种 k1着色方案,与G的色数是 k 矛盾。
8
6.1 色数
[推论1] k 色图至少有 k 个度不小于 k-1 的顶点。 [证明] 设 k 色图G的 k-临界子图为G,由定理G 的最
小度 k-1,故G的最小度 k-1,即G的
任何顶点的度不小于 k-1。又G为 k 色图,其中至 少有 k 个顶点。
9
6.1 色数
[推论2] 对G=(V, E), =max{deg(vi)|viV},则 (G) +1。
5
6.1 色数
⑤ (G)=2的充要条件是: (a) |E|1;(b) G中不存在边数为奇 数的回路。(此时G为二部图)
[证明] 必要性显然。充分性: 由 (a) |E|1知 (G)2。 对G中的某一连通分支,找到其一棵生成树,对顶点做二 染色。加上任意一条余树枝,得到对应的唯一回路。由 (b) 知该回路长度为偶数, 该余树枝两个端点染的是不同颜色, 添加该余树枝后仍然可以保持原来的二染色。加上所有余 树枝,得到图G,二染色仍得到保持,即(G)=2。
0 1
f
0
abcd e f
1
第六章 图的着色
a 0 1 0 1 0 1
b
0
1
1
1
0
c
0 1 0 1
d
0
1
1
e
0 1
f
0
abcd e f
a
f
b
e
c
d
[解]以该矩阵为邻接矩阵构造图如上所示。给图的顶
点染色使得相邻点具有不同颜色,最少需要3种颜
色。
2
6.1 色数
[着色] 图 G=(V,E) 的一个 k 顶点着色指用 k 种颜色对G 的各顶点的一种分配方案。若着色使得相邻顶点 的颜色都不同,则称该着色正常,或称G存在一个 正常的 k 顶点着色(或称一个 k 着色)。此时称G 为 k-可着色的。
[色数] 使 G=(V, E) k-可着色的最小 k 值称为G的色数, 记为 (G)。若 (G)=k,称G图
4
6.1 色数
[特殊图的色数] ① 零图:(G)=1 ② 完全图 Kn:(G)=n ③ G是一条回路:(G)=2 若|V|是偶数 (G)=3 若|V|是奇数 ④ G是一棵非平凡树: (G)=2 ⑤ (G)=2的充要条件是: (a) |E|1;(b) G中不存在边数为奇 数的回路。(此时G为二部图) ⑥ 若G1、G2为G的两个连通分支,则 (G)=max{(G1), (G2)}
第六章 图的着色
➢ 图的着色包括对边、顶点和平面区域的着色。本 章主要讨论简单图的顶点着色。
[例] 6种化学制品,某些不能 放在同一仓库。用矩阵表 示,例如(a , b)=1表示a和b 不能放在同一仓库。 问:最少需要几个仓库?
a 0 1 0 1 0 1
b
0
1
1
1
0
c
0 1 0 1
d
0
1
1
e
12
6.1 色数
[五色定理] (1890, Heaword) 任何简单平面图都是 5-可着色的。 [证明]设简单平面图G=(V, E),对 n=|V| 作归纳。
n 5时容易讨论结论成立。 设 n = k1时,结论成立。 当 n = k 时,由[定理5-1-8]简单平面图G至少有一个顶点 的度小于6。故可设 v0V,deg(v0) 5。设G=Gv0,由归 纳假设,G是5-可着色的。给G固定一种5-着色方案,再将 v0 加回G得到G,在此情况下讨论 v0 的着色。 (1) 若deg(v0) 4,则 v0 最多邻接4种颜色的顶点,给 v0 着以第 5 种颜色得到G 的一种5-着色方案。 (2) 否则deg(v0) = 5,设 v0 的邻接点按逆时针排列为v1, v2, v3, v4, v5, 如图所示。
[证明] 设 (G)=k,由推论1,有vV,使得 deg(v) k-1
又: deg(v) 故: k-1 或 (G)-1 即: (G) +1 ➢ 推论2给出了色数的一个上限,但很不精确。 [例] 二部图可二染色,但是可以相当大。
10
6.1 色数
[Hajós猜想] 若G是 k 色图, 则G包含 Kk 的一个同胚图。 (1961)
13
6.1 色数
① 若v1~ v5 的着色数 4,则 v0 最多邻接4
种颜色的顶点,给 v0 着以第5 种颜色得 到G 的一种5-着色方案。
② 否则 v1~ v5 分别被着以颜色 c1~c5 ,则
v5
v0
v1
V-{v0}按着色可被划分成V13(着色c1或 v4 c3的顶点) 、V24 (着色c2或c4的顶点) 和V5 (着色c5的顶点)。设G13和G24分
证明,将是平面图色数问题的最佳结果。
11
6.1 色数
[定理6-1-2] 如果平面图G有Hamilton回路,则G的域是 4-可着色的。
[证明] 平面图G的一条Hamilton回路将G的域分割成两 部分:被封闭的H-回路包围部分和在H-回路之外 部分。每一部分中只能出现两域相邻的情况,否 则同一部分内三个域的交点将不在H-回路上,引 起矛盾。将两部分的域分别以2着色,得到G的一 种4着色方案。
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
G1为G的真子图,与临界图的定义矛盾。
7
6.1 色数
[定理6-1-1] k-临界图G=(V, E), =min{deg(vi)|viV}, 则 k-1。
[证明]反证法:设G是一个 k-临界图且 <k-1。又设 v0V,deg(v0)= 。由 k-临界图的定义,Gv0 是
(k1)可着色的,在一种 k1着色方案下,Gv0 的 顶点可按照颜色划分成 V1,V2, …, Vk-1 共 k1块, 块Vi中的顶点被涂以颜色 ci。由于deg(v0)< k1,v0 至少与其中一块Vj不邻接即与Vj中的任何顶点不邻 接。此时可将 v0 涂以颜色 cj,从而获得对G的一种 k1着色方案,与G的色数是 k 矛盾。
8
6.1 色数
[推论1] k 色图至少有 k 个度不小于 k-1 的顶点。 [证明] 设 k 色图G的 k-临界子图为G,由定理G 的最
小度 k-1,故G的最小度 k-1,即G的
任何顶点的度不小于 k-1。又G为 k 色图,其中至 少有 k 个顶点。
9
6.1 色数
[推论2] 对G=(V, E), =max{deg(vi)|viV},则 (G) +1。
5
6.1 色数
⑤ (G)=2的充要条件是: (a) |E|1;(b) G中不存在边数为奇 数的回路。(此时G为二部图)
[证明] 必要性显然。充分性: 由 (a) |E|1知 (G)2。 对G中的某一连通分支,找到其一棵生成树,对顶点做二 染色。加上任意一条余树枝,得到对应的唯一回路。由 (b) 知该回路长度为偶数, 该余树枝两个端点染的是不同颜色, 添加该余树枝后仍然可以保持原来的二染色。加上所有余 树枝,得到图G,二染色仍得到保持,即(G)=2。
0 1
f
0
abcd e f
1
第六章 图的着色
a 0 1 0 1 0 1
b
0
1
1
1
0
c
0 1 0 1
d
0
1
1
e
0 1
f
0
abcd e f
a
f
b
e
c
d
[解]以该矩阵为邻接矩阵构造图如上所示。给图的顶
点染色使得相邻点具有不同颜色,最少需要3种颜
色。
2
6.1 色数
[着色] 图 G=(V,E) 的一个 k 顶点着色指用 k 种颜色对G 的各顶点的一种分配方案。若着色使得相邻顶点 的颜色都不同,则称该着色正常,或称G存在一个 正常的 k 顶点着色(或称一个 k 着色)。此时称G 为 k-可着色的。
[色数] 使 G=(V, E) k-可着色的最小 k 值称为G的色数, 记为 (G)。若 (G)=k,称G图
4
6.1 色数
[特殊图的色数] ① 零图:(G)=1 ② 完全图 Kn:(G)=n ③ G是一条回路:(G)=2 若|V|是偶数 (G)=3 若|V|是奇数 ④ G是一棵非平凡树: (G)=2 ⑤ (G)=2的充要条件是: (a) |E|1;(b) G中不存在边数为奇 数的回路。(此时G为二部图) ⑥ 若G1、G2为G的两个连通分支,则 (G)=max{(G1), (G2)}
第六章 图的着色
➢ 图的着色包括对边、顶点和平面区域的着色。本 章主要讨论简单图的顶点着色。
[例] 6种化学制品,某些不能 放在同一仓库。用矩阵表 示,例如(a , b)=1表示a和b 不能放在同一仓库。 问:最少需要几个仓库?
a 0 1 0 1 0 1
b
0
1
1
1
0
c
0 1 0 1
d
0
1
1
e
12
6.1 色数
[五色定理] (1890, Heaword) 任何简单平面图都是 5-可着色的。 [证明]设简单平面图G=(V, E),对 n=|V| 作归纳。
n 5时容易讨论结论成立。 设 n = k1时,结论成立。 当 n = k 时,由[定理5-1-8]简单平面图G至少有一个顶点 的度小于6。故可设 v0V,deg(v0) 5。设G=Gv0,由归 纳假设,G是5-可着色的。给G固定一种5-着色方案,再将 v0 加回G得到G,在此情况下讨论 v0 的着色。 (1) 若deg(v0) 4,则 v0 最多邻接4种颜色的顶点,给 v0 着以第 5 种颜色得到G 的一种5-着色方案。 (2) 否则deg(v0) = 5,设 v0 的邻接点按逆时针排列为v1, v2, v3, v4, v5, 如图所示。
[证明] 设 (G)=k,由推论1,有vV,使得 deg(v) k-1
又: deg(v) 故: k-1 或 (G)-1 即: (G) +1 ➢ 推论2给出了色数的一个上限,但很不精确。 [例] 二部图可二染色,但是可以相当大。
10
6.1 色数
[Hajós猜想] 若G是 k 色图, 则G包含 Kk 的一个同胚图。 (1961)
13
6.1 色数
① 若v1~ v5 的着色数 4,则 v0 最多邻接4
种颜色的顶点,给 v0 着以第5 种颜色得 到G 的一种5-着色方案。
② 否则 v1~ v5 分别被着以颜色 c1~c5 ,则
v5
v0
v1
V-{v0}按着色可被划分成V13(着色c1或 v4 c3的顶点) 、V24 (着色c2或c4的顶点) 和V5 (着色c5的顶点)。设G13和G24分