(完整word版)北京林业大学2011-2012概率论与数理统计试卷
2012年秋季学期 概率论考题及答案

哈工大 2012年秋季学期概率论与数理统计 试题一、填空题(每小题3分,共5小题,满分15分)1.设事件A 、B 相互独立,事件B 、C 互不相容,事件A 与C 不能同时发生,且()()0.5P A P B ==,()0.2P C =,则事件A ,B 和C 中仅C 发生或仅C 不发生的概率为__________ .2.设随机变量X 服从参数为2的指数分布, 则21e X Y-=-的概率密度为()Y f y =______ ____.3.设随机变量X 的概率密度为21e ,0()20, 0xx x f x x -⎧>⎪=⎨⎪≤⎩,利用契比雪夫不等式估计概率≥<<)51(X P ______.4.已知铝的概率密度2~(,)X N μσ,测量了9次,得 2.705x =,0.029s =,在置信度0.95下,μ的置信区间为______ ____.5.设二维随机变量(,)X Y 服从区域{(,)|01,02}G x y x y =≤≤≤≤上的均匀分布,令),min(Y X Z =,),max(Y X W =, 则)1(≥+W Z P = .(0.0250.050.050.025(8)23060,(8)18595,(9) 1.8331,(9) 2.2622t t t t =⋅=⋅==()1.960.975Φ=,()1.6450.95Φ=)二、选择题(每小题3分,共5小题,满分15分)(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后的括号内)1.设0()1, 0()1, ()()P A P B P B A P B <<<<=,则与上式不等价的是(A )A 与B 不相容. (B )()()P B A P B A =.(C ))()(A P B A P =. (D ))()(A P B A P =. 【 】2.设总体X 服从参数为λ的泊松分布,12,,,n X X X 是来自X 的样本,X 为样本均值,则 (A )1EX λ=,21DX n λ=. (B ),λ=X E n X D λ=. (C ),nX E λ=2n X D λ=. (D ),λ=X E λn X D 1=. 【 】 3.设随机变量X 的概率密度为2, 01()0, x x f x <<⎧=⎨⎩其他,则)2(DX EX X P ≥-等于(A)99-. (B)69+. (C )928-6. (D)69-. 【 】 4.如下四个函数,能作为随机变量X 概率密度函数的是(A )⎪⎩⎪⎨⎧≤>+=0,00,11)(2x x x x f . (B )0,157(),1116160, 1x f x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩.(C )1()e ,.2xf x x -=∈R . (D )1e ,0()0,0x x f x x -⎧->=⎨≤⎩ . 【 】5.设12,,,n X X X 为来自总体2~(,)X N μσ的一个样本,统计量2)(1μ-=X Sn Y 其中X 为样本均值,2S 为样本方差,则 【 】 (A )2~(1)Y x n -(B )~(1)Y t n -(C )~(1,1)Y F n - (D )~(1,1)Y F n -.三、(8分)假设某段时间内来到百货公司的顾客数服从参数为λ的Poisson 分布,而在百货公司里每个顾客购买电视机的概率均为p ,且顾客之间是否购买电视机相互独立,试求=A “该段时间内百货公司售出k 台电视机”的概率(假设每顾客至多购买一台电视机)。
(完整word版)《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________。
答案:0.3解:3.0)(=+B A B A P即)(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+=所以1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P 。
2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.答案:161-e解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故161)3(-==e X P3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________。
答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在(0,2)上函数2y x=严格单调,反函数为()h y=所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量YX,相互独立,且均服从参数为λ的指数分布,2)1(-=>eXP,则=λ_________,}1),{min(≤YXP=_________。
(完整word版)概率论和数理统计考试试题和答案解析.doc

一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
概率论与数理统计试卷答案-内

2012概率论与数理统计试卷答案-内编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2012概率论与数理统计试卷答案-内)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2012概率论与数理统计试卷答案-内的全部内容。
(完整word版)2012概率论与数理统计试卷答案—内亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~暨南大学考试试卷答案1.设A 、B 、C 为三个事件,则事件“A 、B 、C 中恰有两个发生”可表示为( C ). A .AB AC BC ++; B. A B C ++; C. ABC ABC ABC ++; D 。
ABC2.。
设在 Bernoulli 试验中,每次试验成功的概率为)10(<<p p ,重复独立进行3 次试验, 至少失败一次的概率为 ( B ). A 。
3)1(p -; B. 31p -; C 。
3(1)p -; D 。
)1()1()1(223p p p p p -+-+-。
3. 设12,,,,n ηηη⋅⋅⋅⋅⋅⋅是相互独立且具有相同分布的随机变量序列, 若 1n E η=,方差存在,(1,2,),n =⋅⋅⋅ 则1lim ||3ni n i n P n η→∞=⎛⎫-<=⎪⎝⎭∑( B )。
A. 0; B 。
1; C 。
1;3 D. 12。
概率B(11-12)B卷答案

课程考试标准答案和评分标准(题目类型是指:填空、选择、判断、名词解释、简答、论述、案例分析等) 一、(填空题)(3721''⨯=): 1、 0.5 2、 0.2 3、164、 1-a5、 37.256、 23λ+7、 (0,1)N 二、(选择题)(3721''⨯=):1、B2、B3、C4、B5、C6、 C7、 D三、计算题(本大题共5小题,共计58分)1、(本小题分值10分)解:设从甲袋取到白球的事件为A ,从乙袋取到白球的事件为B ,则根据全概率公式有()()(|)()(|)P B P A P B A P A P B A =+ ……………………8分211150.417323412=⨯+⨯== ……………………10分 2、(本小题分值10分)解:设电子元件损坏的概率为p ,则{200}p P X =≤2002006001()600xf x dx e dx --∞==⎰⎰……………………4分 200600013|1xee--=-=- ……………………6分根据贝努力模型,至少有一个元件损坏的概率为:1331(1)1(1)p e ---=--(或者2113333ee e ----++) . ……………………10分3、(本小题分值12分) 解:(1)1221()()(2)E X xf x dx x dx x x dx +∞-∞==+-⎰⎰⎰ ………4分3312201|()|133x x x =+-= …………6分 (2) 因为122232017()()(2)6E X x f x dx x dx x x dx +∞-∞==+-=⎰⎰⎰……9分 所以2271()()[()]166D XE X E x =-=-= ………………………12分 4、(本小题分值 12分)(1)数学期望是一阶原点矩为110()2)E X μ===⎰ …………………………….3分其样本矩为X =所以22ˆ1x x θ-⎛⎫= ⎪-⎝⎭为θ的矩估计值。
北京林业大学数理统计期末考试历年真题及详细解答

北京林业大学 2007--2008学年第二学期考试试卷试卷名称: 数理统计II (B 卷) 课程所在院系: 理学院 考试班级: 学号: 姓名: 成绩:试卷说明:1. 本次考试为闭卷考试。
本试卷共4页,共八大部分,请勿漏答;2. 考试时间为120分钟,请掌握好答题时间;3. 答题之前,请将试卷上的考试班级、学号、姓名填写清楚;4. 所有试题答案写在试卷上;5. 答题完毕,请将试卷交回,不得带出考场;6. 考试中心提示:请你遵守考场纪律,参与公平竞争!答题中可能用到的数据:8944.0)25.1(=Φ,9599.0)75.1(=Φ,(0.4243)0.6228Φ=,(1.414)0.9213Φ=, 0.025 1.96z =,,.)(.7764240250=t ,.)(.14311402502=χ20.025(5)12.833χ=一、选择题(在每个小题四个备选答案中选出一个正确答案,每小题3分,总计21分) 1. 设A 、B 为任意两事件,且,()0,A B P B ⊂>则下列选择必然成立的是 (C) 。
()()()A P A P A B <; ()()()B P A P A B >;()()()C P A P A B ≤ ; ()()()D P A P A B ≥2. 对于事件A ,B ,下列命题正确的是 (D) (A )若A ,B 互不相容,则A 与B 也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D )若A ,B 相互独立,那么A 与B 也相互独立。
3.设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y = (C) .(A) 1. (B) 9. (C)10. (D )6.4.每次试验结果相互独立,设每次试验成功的概率为p 。
2011-概率论与数理统计B答案

2011 至 2012 学年第 1 学期 考试时间: 120 分钟 课程名称: 概率论与数理统计 (B )卷 考试形式:(闭卷)年级: 10 专业: 全校相关专业 ;层次:(本)一、填空题(每小题2分,共20分) 1、0.7; 2、)16,1(N ; 3、10; 4、1,1==B A ; 5、44; 6、2720;7、 8、32,9、75,10、111-∑=n i i X n 。
二、选择题(每题2分,共20分)11、(B ); 12、(D ); 13、(D ); 14、(B ); 15、(C );16、(B );17、(A );18、(B ); 19、(A ); 20、(B ). 三、计算题(共60分)21、(8分) 解: 设 i A ={第i 次取得新球},i=1,2. (1) 设C={第二次才取得新球},有12C A A =12121464()()()(|)10915P C P A A P A P A A ===⨯=, ………2分 (2) 设事件 D = {发现其中之一是新球},E = {其中之一是新球,另一个也是新球}12121651()()()(|)1093P ED P A A P A P A A ===⨯= ………4分 121212121121()()()()1()(|)()(|)31644613310910915P D P A A P A A P A A P A P A A P A P A A =++=++=+⨯+⨯= ………6分 ()1/35(|)()13/1513P E D P E D P D ===. ………8分22、(10分)解设随机变量X 与Y 相互独立,且均服从[]0,2上的均匀分布,令U X Y =-,试求()D U 。
解:易知X 与Y 的联合密度函数为()1,,,(,)40,x y D f x y ⎧∈⎪=⎨⎪⎩其他,其中(){},02,02D x y x y =≤≤≤≤(2分)12E(U)=E X-Y 43Dx y dxdy ⎡⎤=-⋅=⎣⎦⎰⎰,(3分) ()()222212E(U )=E X-Y E X-Y 43Dx y dxdy ⎡⎤⎡⎤==-⋅=⎣⎦⎣⎦⎰⎰,(3分) ()()()2229D UE U E U =-=。
2011-2012年1月4月7月10月全国自考概率论与数理统计(经管类)试题及答案

全国2011年4月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B ,C 为随机事件,则事件“A ,B ,C 都不发生”可表示为( ) A .B.BC C .ABC D.2.设随机事件A 与B 相互独立,且P(A)=,P(B)=,则P(A B)=( )A . B.C . D.3.设随机变量X ~B(3,0.4),则P{X≥1}=( ) A.0.352 B.0.432 C.0.784 D.0.9364.已知随机变量X 的分布律为 ,则P{-2<X≤4 }=( )A.0.2B.0.35C.0.55D.0.8 5.设随机变量X 的概率密度为f(x)=,则E(X),D(X)分别为 ( )A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=( )X -1 2 5 P 0.2 0.35 0.45A. B.C.2D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~( )A.N(-3,-5)B.N(-3,13)C.N (1,)D.N(1,13)8.设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY=( )A. B.C. D.9.设随机变量X~2(2),Y~2(3),且X与Y相互独立,则( )A.2(5)B.t(5)C.F(2,3)D.F(3,2)10.在假设检验中,H0为原假设,则显著性水平的意义是( )A.P{拒绝H0| H0为真}B. P {接受H0| H0为真}C.P {接受H0| H0不真}D. P {拒绝H0| H0不真}二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京林业大学20 11--2012学年第一学期考试试卷
课程名称: 数理统计B (A 卷) 课程所在学院: 理学院 考试班级 学号 姓名 成绩 试卷说明:
1. 本次考试为闭卷考试。
本试卷共计 4 页,共 十 大部分,请勿漏答;
2. 考试时间为 120 分钟,请掌握好答题时间;
3. 答题之前,请将试卷和答题纸上的考试班级、学号、姓名填写清楚;
4. 答案写在本试卷上;
5. 答题完毕,请将试卷和答题纸正面向外对叠交回,不得带出考场; 考试中心提示:请你遵守考场纪律,诚信考试、公平竞争!
一、填空(每题2分,共10分) 1.袋中有红球4只,黑球3只,不放回地从中任取2只,则这2只球的颜色不相同的概率等于 。
2.若事件A 、B 满足P AB P A B ()()= 且3/1)(=A P ,则P B ()= 。
3.已知()2
21
2
1
2
(,)~X Y N
r μμσσ,,,,,如果X 和Y 独立, 那么r = 。
4.已知X 的概率密度函数||
1()2
x X f x e -=,则3Y X =的概率密度函数()Y f y = 。
5.设总体X 服从参数为2的泊松(Poisson)分布,),,(81X X 是来自总体X 的容量为8的样本,X
是样本均值,那么()2
E X
= 。
二、单项选择题(每题2分,共10分)
1. 设连续型随机变量X 的分布函数⎪⎩
⎪
⎨⎧>≤≤+<=ππx x b kx x x F ,10,0
,0)(,则以下正确的答案是 。
A .1,b k π== ;
B .1/,0b k π==;
C .0,1/b k π==;
D .,1b k π==
2.设2
~(3,) X N σ,{34}0.4P X <<=,则{2}P X ≤= 。
A . 0.1 ;
B .0.2 ;
C .0.3;
D .0.9
3.设X 的方差4DX =, Y 的方差1DY =,X 和Y 相关系数,6.0=XY ρ则32X Y -的方差
(32)D X Y -= 。
A .40;
B . 24;
C .17.6;
D .25.6
4. 样本(X 1,X 2,X 3)来自总体X ,X 的期望EX =μ, X 的方差DX =σ2, 则有 。
A . X 1+X 2+X 3是μ的无偏估计;
B .
()1231
3
X X X ++是μ的无偏估计; C .222123X X X ++是σ2的无偏估计; D . 2
1233X X X ++⎛⎫ ⎪⎝⎭是σ2
的无偏估计
5.设123,,X X X 相互独立,~(0,1)i X N ,1,2,3i =.
服从 分布。
A . (3)t ;
B .(2)t ;
C .2
(3)χ;D .(1,2)F
三、(8分)一个车间由甲、乙两台机床加工同种零件。
甲机床加工的零件出现废品的概率为0.03,乙机床加工的零件出现废品的概率为0.02,已知甲机床加工的零件数量是乙机床加工的零件数量的两倍,加工出来的零件放在一起。
现从该车间任抽取一个零件,(1)求该零件为废品的概率; (2)若已知抽取到的该零件为废品,求该零件为乙机床加工的概率。
四、(12分)设二维随机变量(X ,Y )的分布律如下表所示。
(1)求X 和Y 各自的边缘分布律; (2)求 , ,()EX EY E XY ,以及X 和Y 的协方差cov(,)X Y ,并且判断X 和Y 是否相关; (3)求X Y +的分布律。
五、(10分) 设随机变量X 的概率密度函数为2,01
()0X Cx x f x ⎧≤≤=⎨⎩其它。
(1)求常数C ;(2)求X 的分布函数)(x F ;(3)求常数m ,使{}{}P X m P X m >=<。
六、(12分)设二维连续型随机变量(,)X Y 的联合密度函数为
2,01,0(,)0,x y x
f x y <<<<⎧=⎨
⎩
其它,(1)求X 和Y 各自的边缘密度函数(),()X Y f x f y ; (2)判断X Y 与是否独立;(3)计算概率2
{}P Y X >。
七、(8分)某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,随机抽查100户。
利用中心极限定理求被盗索赔户不少于10户且不多于30户的概率。
((2.5)0.9938)Φ=
八、(10分)设12,,
,n X X X 为来自总体X 的一个样本,且X 的密度函数, 0
()0, x e x f x θθ-⎧>=⎨⎩其它
,
其中未知参数0θ>。
(1)求参数θ的矩估计量;(2)求参数θ的极大似然估计量。
九、(10分)某工厂生产一批滚珠, 其直径 X 服从正态分布2
(,)N μσ, 现从某天的产品中随机抽取 6 件, 测得直径(单位:厘米)为15.1 , 14.8 , 15.2 , 14.9 , 14.6 , 15.1 。
(1)求μ的置信度为0.95的置信区间;(2)求2
σ的置信度为0.95的置信区间。
(2
2
0.0250.0250975(5) 2.5706, (5)12.833,(5)0.831t χχ===)
十、(10分)分别用甲、乙两个不同的计算机系统检索10个资料, 12,x x 分别是甲系统和乙系统检索时间(单位:秒)的样本均值,2
2
12,s s 分别为甲系统和乙系统检索时间的样本方差。
测量得
22
12123.097, 3.179, 2.67, 1.21x x s s ====,假定检索时间服从正态分布。
在显著水平0.05
α=下,(1)检验甲、乙两系统检索时间的方差是否有显著差别;(2)检验甲、乙两系统检索时间的均值是否有显著差别。
(0.975(9,9)0.248,F = 0.025(9,9) 4.03F =,0.025(18) 2.101t =)。