钢筋混凝土系杆拱桥

钢筋混凝土系杆拱桥

钢筋混凝土系杆拱桥

摘要:钢筋混凝土拱肋与钢管拱相比体积和重量都很大,这就给吊装施工带来更大的难度,特别是拱肋分段吊装承重支架的设计、合拢时的线形控制等方面增加了大量的工作和风险性。本文根据射阳河特大桥主桥系杆拱钢筋混凝土拱肋吊装施工的实例从支架的设计和线形控制两方面与大家进行交流。

关键词:拱肋,吊装,施工技术

1工程概况

连盐高速公路LY-BH3标射阳河特大桥位于滨海县与射阳县交界处,主要跨越射阳河。本桥上部桥跨组合为725m(预应力连续梁)+71.48m(系杆拱)+2(525m)(预应力连续梁),其中主跨位于7#~8#墩之间。

主桥上部结构设计为71.6m单跨预应力混凝土系杆拱,为刚性系杆刚性拱,系杆计算跨径L=70m。拱轴线为二次抛物线,矢高14m,矢跨比0.2。拱肋截面正高1.4m,宽1.2m,断面为工字型截面。根据设计要求,拱肋采用预制场预制大型浮吊分三段吊装施工。半幅桥拱肋之间设风撑四道,采用外径D=500mm、壁厚=12mm的无缝钢管。

本桥共设中横梁26道,每半幅13道。中横梁高度1.32m~1.65m(桥面横向坡度根据中横梁高度变化调整),长15.7m,采用预制场预制浮吊吊装施工。

2拱肋支架搭设

钢筋混凝土拱桥施工组织设计

桥施工方案目录 1、编制依据及原则 2、工程概况 3、工程特点 4、施工总体布置 4.1 施工组织机构 4.2 质量控制 4.3 施工顺序: 4.4 阶段工期控制 4.5 施工准备 4.5.1 施工动员 4.5.2 人员、物资、设备上场4.5.3 技术准备 4.5.4 工地清理 4.5.5 创建良好的外部施工环境 4.5.6 施工总平面布置 5、工程测量控制 5.1 控制测量: 5.1.1 导线测量: 5.1.2 水准点复测: 5.2 施工测量: 5.2.1 中线恢复测量:

5.2.2 临时水准点: 5.2.3 桥梁的施工控制: 6、主要施工方法 6.1 主桥施工 6.1.1 拱桥推力墩施工 6.1.2 索道系统和扣索系统6.1.3 主拱圈施工 6.1.3 拱上建筑施工: 6.2 引桥施工 6.2.1 基础施工 6.2.2 墩、台施工 6.2.3 连续箱梁施工 6.2.4 桥面系施工 7.施工技术资料管理办法 8.施工技术管理责任制 9、工期确保措施 10、质量保证措施 11、安全保证措施 11.1 安全保证体系 11.2 安全管理 11.3 重点控制 12、现场文明施工

13、现场环境保护 14、现场防火规定 15、保安计划 16、卫生健康保护 ****市XX大桥施工方案 1、编制依据及原则 1.1 由XX县城乡建设委员会提供的XX大桥招标文件、《****市XX 大桥两阶段施工图设计文件》、《****市长寿大桥工程地质详勘报告》以及四川省地矿局****检测中心检测报告、XX县气象资料等。 1.2 现场多次实地踏勘和标前会议纪要精神和补遗书。 1.3 国家及有关部门颁布的现行设计规范,施工技术规程、规范、质量检验评定标准和验收办法,以及在施工安全、工地保安、人员健康、环境保护等方面的具体规定。 2、工程概况 1.1 桥梁概况: ****市XX大桥位于XX县城,跨越长江支流桃花溪,位于原有XX 大桥(桥名“新桥”)上游约50m,是三峡库区水位上涨,原XX大桥被淹后的新XX大桥,是XX县的交通要道。主桥设计为拱桥,主要考虑其作为城市桥梁,突出其美观性,在三峡水位上升后,有长虹卧波的效果。大桥全长224.556 米,主跨为100 米钢筋混凝土箱形拱,河街岸引桥为2×20 米钢筋混凝土连续梁桥,关口岸引桥为3×20 米钢筋混凝土连续梁桥,主桥及河街岸引桥位于直线内,关口岸引桥位于

桥梁工程毕业设计——钢筋砼拱桥

1 方案拟定与比选 1.1 工程背景介绍及使用要求 1.1.1 工程背景介绍 魏家寨至竹子公路工程(以下简称魏竹公路)是提高国道209线在保靖县迁陵镇地段通行能力、满足保靖县迁陵镇发展规划、解决保靖县酉水桥危桥问题、实现国家西部大开发战略所需要的重要工程。酉水二桥是魏竹公路的关键工程。 1.1.2 工程使用要求 保靖县魏竹公路酉水二桥,必须遵照“安全、使用、经济、美观”的基本原则进行设计,同时应充分考虑建造条件的先进性以及环境保护和可持续发展的要求。 (1)公路等级:山岭重丘区二级公路。计算行车速度:40Km/h; (2)桥梁全长:305m; (3)桥面宽的布置:净9m+2×(2.25人行道+0.25人性栏杆); (4)桥下通航等级:6级; (5)地震:不设防。 1.2设计依据及参考书: 《公路工程技术标准》JTG B01-2003 《公路桥涵设计通用规范》JTG D60-2004 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 《公路圬工桥涵设计规范》JTG D61-2005 《桥梁计算示例集》易建国,顾安邦编著. 人民交通出版社。 1.3施工方案的确定。 1.3.1方案拟定: 设计方案一:钢筋混凝土拱桥 设计方案二:单塔斜拉桥

设计方案三:连续梁桥 1.3.2方案比选 表1-1方案比选表 梁结构的经济性、实用性、安全性、美观性和施工的难易程度为考虑因素,综合个设计方案的优缺点,最终选定一个最优方案:钢筋混凝土拱桥。

2 毛截面几何特性计算 2.1 基本资料 2.1.1 主要技术指标 桥型布置:37m+2×126m+16m悬链线箱形拱桥 桥面净宽:0.25m(人行栏杆)+2.25m(人行道)+2×4.5m(双车道)+2.25m(人行道)+ 0.25m(人行栏杆) 设计荷载:公路—Ⅱ级 桥面纵坡:双向2 % 图2.1 拱脚横截面(单位:cm) 图2.2 拱顶截面(单位:cm) 2.1.2 材料规格

拱桥转体法施工工艺

拱桥转体法施工工艺 9.1.1工艺概述 转体法施工它具有结构合理、受力明确、工艺简便、施工设备少、节约施工用料、安全可靠、合拢速度快等特点,特别适合于施工场地狭窄,地势陡峭的山谷、宽深河流、施工期水位变化频繁不宜水上作业及跨线的铁路拱桥。转体法施工可采用平面转体、竖向转体或平竖结合转体。 拱桥采用转体法施工主要是在山谷、河流的两岸或适当位置,利用地形或使用简便的支架先将半桥预制、拼装完成,然后以桥梁本身为转动体,使用一些机具设备,分别将两个半跨拱转动到桥的轴线位置合龙成桥的施工方法。转体系统由半跨钢管拱、交界墩索塔、扣索背索系统、上盘及平衡重;转台、环道、撑脚和基础、拽拉牵引系统等组成。 本工艺重点介绍拱桥转体施工,有关拱肋内混凝土压注施工的内容可参考本章其他工艺。 9.1.2作业内容 转体法施工内容主要是转体部分的施工、牵引转动体系的安装、线型测量及内力的监控、扣背索及预应力筋的张拉、半跨钢管拱转动到位及位置偏差的调整、转盘锁定及合拢段的临时锁定、主管合拢段的安装、拱脚及转盘间混凝土的封填、扣背索及预应力筋的交替拆除、拱座片石混凝土的回填。 9.1.3质量标准及检验方法 《铁路钢桥制造规范》(TB10212-2009) 《铁路混凝土工程施工质量验收标准》(TB10424-2010) 《铁路桥涵工程施工质量验收标准》(TB10415-2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 《铁路钢桥保护涂装及涂料供货技术条件》(TB/T 1527-2011) 《自密实混凝土应用技术规程》(JGJ/T283:2012) 《高性能混凝土应用技术规程》(CECS 207:2006) 9.1.4工艺流程图 以北盘江大桥为例转体法施工工艺流程图如下:

钢筋砼双曲拱桥加固维修

关于钢筋砼双曲拱桥加固维修的一些分析 【摘要】.基于钢筋砼双曲拱桥建设年代较久和跨度较大的情况下,对基础较牢固,只是主拱圈不满足现行交通及重车通行的钢筋砼双曲拱桥,通过实例对钢筋砼双曲拱桥进行结构受力分析,进而采取加固方案,使主拱圈提高承载力,继续发挥老桥的经济和社会效益。. 【关键词】.钢筋砼双曲拱;桥梁;加固;工程实例;分析;主拱圈 【abstract】.based on double reinforced concrete arch bridge during construction of a longer and larger span, on the basis of a strong, just not satisfied with the main arch of the existing traffic and heavy vehicles use the hyperbolic reinforced concrete arch bridge, for example through the reinforced concrete hyperbolic arch bridge structural analysis, and to take reinforcement, so that the main ring to increase capacity, continue to play an old bridge economic and social benefits.. 【key words】.reinforced concrete hyperbolic arch;bridge;reinforcement;project;analysis;main ring 1. 引言. 钢筋砼双曲拱桥,由于跨度较大和相对经济,作为七八十年代公路大中型桥梁而广泛存在。随着我国经济的快速发展,交通量快速增加和重车的大量通行,原来施工较为落后和设计桥梁荷载相对较

上承式拱桥施工方案

上承式拱桥施工方案 一、工程概况本合同段共有上承式钢筋砼拱桥4座,其一孔跨径为36.6m,桥梁全长54.08m,桥面总宽5.5m,组成:0.5m(防撞栏杆)+4.5m(行车道)+0.5m(防撞栏杆),其中K206+120为汽车天桥,桥面净宽为7m,总宽为8m;K211+400,K214+220,K218+841均为农机天桥,桥面总宽为5.5m。主体结构:基础、台身采用C20片石混凝土,桥台台帽、耳背墙、桥台搭板采用C30混凝土,上部构造及拱座采用C40砼,桥面铺装采用C30防水砼,防撞栏杆采用C30混凝土。 二、施工组织根据工程特点和工期要求,实行项目经理部、施工区、专业施工队三级管理,各工区所属天桥由其桥梁施工队负责。施工队行政和技术隶属于各施工区,总体安排和质量监督服从项目部。施工队配置专职队长、技术员、材料员和兼职安全员各一名。各施工队机械设备、工具、机具和专业技术工种配置满足施工要求,以高机械设备的利用率,缩短工期,加快进度。完成一道工序并达到标准后,再申请下道工序,依次循序推进。三、施工方案1、施工放样⑴、平面测量项目部测量组负责控制测量。当导线点与天桥间能直接通视时,用全站仪根据主导线点数据准确地放出天桥轴线控制桩。当不能通视时,应选择能与天桥通视且便于长久保存处布设支导点,在支导点成果得到监理工程师确认后,轴线控制桩的布设及放样方法同直接通视法。控制桩布置在天桥基坑开挖线外≥5m便于长期保存的地方,并用水泥混凝土加以保护,监理工程师复核签认后,作为细部放样的依据。施工队技术员负责构造物细部测量。根据测量组所交控制点,用经纬仪和钢尺在构造物台身两端沿轴线的法线方向放出细部放样控制桩,用水泥砼加固,以备基坑开挖、砼基础浇注、台身放样之用。项目部测量组应对每一构造物进行不少于四次控制测量检测,即基础砼施工前、台身砼施工前、砼拱圈浇注前及立墙施工前,检测施工技术员细部放样精度,确保天桥平面位置满足规范要求。⑵、高程测量施工临时水准点由测量组从四等水准点引入,并用水泥混凝土加以保护。临时水准点的闭合差应达到规范要求,进行总平差,并经监理工程师复核签认,作为临时基点高程。2、基坑开挖基础采用明挖扩大基础,基坑开挖范围为:底部为基础净尺寸每侧加0.5m工作道和0.3~0.5m的排水沟,上口为底部开挖对应边加H×M(H 为开挖深度,M为坡率,土边坡采用0.75~1坡率,石方为0.2~0.5坡率)。土质基坑用挖掘机配合人工开挖。开挖过程中,须加强排水,不使基坑泡水。开挖至距基底20cm时,由人工清理至设计标高。石质基坑采用松动控制爆破配合开挖,挖至设计标高后,凿出新鲜岩面,用砂浆找平。当基底基岩倾斜度大于150时,应将基底凿成多级台阶,台阶宽度不小于0.3m。开挖的土石方应堆放在基坑开挖线1m以外或运至指定位置。开挖完成后,要求地基承载力≥300KPa,基底摩擦系数≥0.3,各项指标符合要求即可进行基础砼施工。如承载力达不到设计要求,应按监理工程师批复方案处理。如基坑开挖过程中发现石芽、溶沟、溶洞等不良地质情况,应采取凿除石芽、清除换填等措施进行处理。3、基础施工⑴、模板安装及校验基础模板采用大平面钢模,模板使用前用磨光机将模板表面锈迹清除干净。为使砼表面光洁,棱角整齐,在砼浇注前模板表面应涂刷脱模剂。模板加强肋木用6×8cm或6×10cm两种,竖向中至中距80cm,横向上下端各一根,中间按1米间距加密。斜撑用木料以30~60度倾角支撑,并用缆风对拉。⑵、砼浇注混凝土采用JS500强制式搅拌机供料,在开盘前,应根据理论配合比和集料含水量计算施工配合比。集料采用称重法,施工中不得随意增减。上料顺序依次是石子、水泥、砂子。拌和时严格控制搅拌时间,保证拌和料混合均匀、颜色一致。施工过程中随时检查和校正混凝土的流动性,严格控制水灰比,不得任意增加用水量。为保证第二盘混凝土的质量,第一盘应拌制同等标号的砂浆。混凝土采用手推车运输,运输道路应平顺,防止混凝土产生离析、泌水和灰浆流失现象。在砼运输过程中造成离析或拌合时间不够的砼熟料不允许入模,应重新拌制后才能使用。砼倾落高度大于2m时应采用溜管、溜槽或串筒输送。摊铺时应注意分散倾倒时滚落于一处的骨料,靠模板

箱型拱桥

宜宾岷江大桥 主跨(Main Span):100米 设计单位(Designed by):四川省公路设计院 施工单位(Constructed by):四川桥梁工程公司 桥梁类型(Type of the Bridge):拱桥、箱形拱桥 所在地(Location):四川、宜宾、岷江 全长(Length):532.72米 建成时间(completed year):1973年 中文简介(Introduction in Chinese):岷江大桥位于四川省宜宾市,主桥为钢筋混凝土箱形拱桥,最大桥跨100m。分跨布置为55+2×100+55(m),另有8×20m石拱桥引孔,全长532.75m。桥面净宽:8+2×2(m)人行道。主拱箱高1.6m,矢跨比1/6。全拱横向分6箱室,纵向分5段预制,缆索吊装施工。中墩基础采用钢丝水泥薄壁浮运沉井施工。于1973年1月建成。四川省交通规划设计院设计,四川省桥梁公司施工。 英文简介(Introduction in English):Name: Yibin Bridge over Minjiang. Location: Yibin, Sichuan Prov. Main span: 100m. 55+2×100+55(m) multi-span box arch bridges. Box cross section with 6 cells transversely. Erected by cable crane. Completed in Jan. 1973. Designed by Highway Design Institute of Sichuan Prov. Constructed by Bridge Engineering Co. of Sichuan Prov.

拱桥施工方法 全(图文精选)

上承式拱桥的施工 一、有支架施工 二、缆索吊装施工 三、劲性骨架施工 四、转体施工 五、悬臂施工

满膛支架、拱架(圬工拱桥)就地砌筑简易排架+吊装设备预制安装就地浇筑拱架梁式支架(组合体系拱 )满膛支架 劲性骨架法有支架施工斜吊式悬浇法劲性骨架与塔架斜拉联合法悬臂桁架法 塔架斜拉索法悬拼法 悬浇法悬臂法缆索吊装法 有平衡重 无平衡重 平转 竖转 竖转和平转的组合 转体施工法 无支架施工拱 桥 的 施 工 方法

一、有支架施工 在事先设置的拱架上进行拱体的砌筑、浇注、安装,最后落架并完成余部分施工。 适用情况:砖石、混凝土块、混凝土拱桥 砖石拱圈及拱上建筑砌筑 钢筋混凝土拱圈就地浇注

(一)砖石拱圈及拱上建筑砌筑 1、拱架及拱石的准备 2、拱圈砌筑顺序 3、拱圈三分法砌筑 4、拱架预压 5、分段支撑砌筑 6、拱圈合拢 7、拱上建筑安装

1、拱架及拱石的准备-拱圈施工放样 拱圈或拱架的准确放样,是保证拱桥符合设计要求的基本条件之一。 石拱桥的拱石,要按照拱圈的设计尺寸进行加工,为了保证尺寸准确,需要制作拱石样板。 一般采用放出拱圈大样的办法来制作样板,即在样台上将拱圈按1:1的比例放出大样,然后用木板或锌铁皮在样台上按分块大小制成样板,并注明拱石编号,以利加工。 样台必须保证在施工期间不发生过大变形。 对于对称的拱圈,为节省场地,可只放出半孔大样。 常用的放样方法有直角坐标法、多圆心法等。拱弧分点越多,用这种方法放出的拱圈尺寸越精确。

1、拱架及拱石的准备-拱架构造及安装拱架要求: 结构简单,稳定性好,可重复使用。 拱架在各种施工荷载作用下,其内力须经计算确定。 拱架安装时,应预先设置预拱度,以抵抗施工过程中的各种变形和下沉。预拱度值采用二次抛物线分配。 拱架的卸落时间应严格掌握,卸落设备应简单可靠。 支架基础必须稳固,承重后应能保持均匀沉降且沉降值不得超过预计范围。

大跨度钢筋混凝土拱桥施工工法

大跨度钢筋混凝土拱桥施工工法 1、前言 随着我国公路事业的高速发展,箱形拱桥工量少、自重轻、截面合理,近年来在大跨度钢筋砼拱桥中被广泛应用。我公司先后承建了陕西省境内的包(头)—茂(名)高速公路毛坝至陕川界MC4合同段,渝(重庆)—昆(明)高速公路云南省境内的水富至麻柳湾23合同段等工程项目,均包括大跨度钢筋混凝土拱桥结构。其中水富至麻柳湾23合同段在施工中大力开展科技攻关,不断完善施工工艺,成功的解决了主拱圈下部原地面基础处理和下沉;扣件钢管拼装满堂式拱架的搭设方法和要求;支撑主拱圈底模的1-80 米弧形杆件的材料选择与制作;主拱圈加载程序和下部支撑卸载程序;主拱圈间隔槽的预留位置;合拢温度的选择;混凝土分段和浇注顺序;拱上运输系统的布置;消除拱架形、控制主拱圈变形等关键技术难题,本工法是在总结上述成功经验的基础上形成的。 2、工法特点 公路工程大跨度钢筋混凝土拱桥,近年来的桥跨已经发展到140m现代桥梁,它是集桥梁结构学、结构力学、地质结构学与材料科学等技术为一体,具有很高的技术含量和远景发展。大跨度钢筋混凝土拱桥具有以下特点: 2.1 对原地面进行处理后采用满堂支架系统克服了传统的土牛胎易产生不均匀沉降导致支架下沉引起主拱圈变形开裂及填筑挖出土牛胎增加工程量的弊端,有效防止了拱架下沉拱圈变形,保证了施工质量。 2. 2 支撑体系和模板系统位于稳固的地基上,安全系数高,不易下沉,结构受力合理,支架、模板安装拆卸方便,操作简单,支架和模板适用

范围广,可再利用。 2.3. 拱圈采用钢筋砼分段现浇,整体性强,结构轻盈,自重小,线性美观,减少了砼用量,节约了投资。 2.4. 施工工艺完善、简便,可操作性强,降低劳动强度,便于推广。 2.5.施工速度、施工质量容易得到保证。 3、适用范围 本工法适用于公路大跨度钢筋混凝土箱形拱桥采用现浇的主拱圈,适合拱圈下部为水流不大的山谷、沟壑、坑洼、平地、河流,跨度50~140m 的钢筋混凝土拱桥施工。 4.工艺原理 大跨度钢筋混凝土拱桥设计理念先进,施工技术成熟,具有广阔的市场前景。通过混凝土原材料把关、配合比选定、埋设循环水管、混凝土搅拌、运输、浇注过程的控制,以及后期通过混凝土养护、控制水温以降低混凝土内外温差,防止大体积混凝土出现裂缝,保证大体积混凝土施工质量。 5、施工工艺 5.1 拱架地基处理 将跨径范围左右共宽13m投影面下的沟槽表层植被、浮土与挖基倾倒土全部清除后,纵横方向挖成错台,横向靠近两桥台处尤其近1号台处的自然坡度大,依土质和风化岩石层的具体情况分别处理为不同宽度及外坡的错台,清除错台废方。顺桥向左侧拱架支承面的外缘,施作一浆砌片石挡土墙, 砂浆标号M7.5.基础处理深度依地质情况而定,但不宜小于0.5m。挡墙顶宽0.8m,外坡直立,内侧背坡依挡墙高度定为1:0.3。挡墙高度在2~4 m。

钢筋混凝土拱桥实例组织设计

钢筋混凝土拱桥实例组 织设计 Hessen was revised in January 2021

一百二十米跨现浇钢筋砼箱形拱桥主拱圈施工工 法 1.前言 余姚双溪口水库大桥为净跨径120m上承式悬链线箱形拱桥,该桥为集团公司同类桥的最大跨径,其支架部分及主拱圈施工不仅难度大,而且存在着很大的施工安全风险。 我公司结合以往施工经验,针对大跨上承式钢筋混凝土箱形拱桥技术进行了科技攻关,充分利用该型拱桥结构特点制定科学合理的施工工艺,解决了施工技术难题,经总结形成本工法。 以本工法为核心的“120m跨现浇钢筋砼箱形拱桥主拱圈施工技术”获得集团公司优秀论文一等奖。 2.工法特点 本桥主拱圈采用支架现浇施工法,其中支架部分为在两拱脚段根据原有的地形情况采用在硬化的地面上直接拼装碗扣式脚手架,中间段采用梁柱式复合体系:其结构构成为:明挖现浇混凝土基础;钢支架分三层,底层为置于混凝土基础上钢管立柱支墩;中层用万能杆件搭成框架结构形成纵梁;上层为满布式碗扣式脚手架。拱部利用碗扣式支架调整成拱型,拱架卸落利用碗扣式支架顶的可调托撑完成。而主拱圈混凝土则采用分环、分段的方法进行施工,即:整个拱圈根据支架的结构体系分为3个浇筑环;即底板环、腹板环及顶板环,每环浇筑时再分5段对应水平长度分别均为24m,先对称浇筑拱脚段,再从跨中段向两拱脚方向浇筑,拱顶段浇筑完后,再浇筑1/4段。段与段之间预设间隔槽(顶板不设间隔

槽),间隔槽宽,根据监控单位的施工加载计算,腹板和底板环两环同时合拢,使拱圈形成一个开口箱形结构,然后再进行顶板环的分段浇筑及合拢。 3.适用范围 本桥施工方法可适用于大跨径现浇钢筋砼拱桥的施工。 4.工艺原理 主拱圈施工技术 4.1.1主拱圈底模标高的确定 主拱圈的支架现浇过程中,立模标高的合理确定,是关系到主拱圈的线形是否平顺、是否符合设计的一个重要问题。如果在确定立模标高时考虑的因素比较符合实际,而且加以正确的控制,则最终主拱圈与桥面系线形较为良好;否则最终主拱圈线形会与设计线形有较大的偏差。 立模标高并不等于设计中桥梁建成后的标高,总要设一定的预抛高,以抵消施工中产生的各种变形(挠度)。其计算公式如下: 模板定位标高=设计标高+运营预抛高+施工预抛高+支架变形 其中支架变形值是根据支架加载试验,综合各项测试结果,最后绘出支架荷载—挠度曲线,进行内插而得。 根据以往上承式拱桥施工及监控经验,并结合本桥的具体情况,估计在施工过程中影响本桥结构内力和线形的因素主要有以下几方面:

组织设计钢筋混凝土拱桥实例组织设计

壹百二十米跨现浇钢筋砼箱形拱桥主拱圈 施工工法 1.前言 余姚双溪口水库大桥为净跨径120m上承式悬链线箱形拱桥,该桥为集团公司同类桥的最大跨径,其支架部分及主拱圈施工不仅难度大,而且存于着很大的施工安全风险。 我公司结合以往施工经验,针对大跨上承式钢筋混凝土箱形拱桥技术进行了科技攻关,充分利用该型拱桥结构特点制定科学合理的施工工艺,解决了施工技术难题,经总结形成本工法。 以本工法为核心的“120m跨现浇钢筋砼箱形拱桥主拱圈施工技术”获得集团公司优 秀论文壹等奖。 2.工法特点 本桥主拱圈采用支架现浇施工法,其中支架部分为于俩拱脚段根据原有的地形情况采用于硬化的地面上直接拼装碗扣式脚手架,中间段采用梁柱式复合体系:其结构构成为:明挖现浇混凝土基础;钢支架分三层,底层为置于混凝土基础上钢管立柱支墩;中层用万能杆件搭成框架结构形成纵梁;上层为满布式碗扣式脚手架。拱部利用碗扣式支架调整成拱型,拱架卸落利用碗扣式支架顶的可调托撑完成。而主拱圈混凝土则采用分环、分段的方法进行施工,即:整个拱圈根据支架的结构体系分为3个浇筑环;即底板环、腹板环及顶板环,每环浇筑时再分5段对应水平长度分别均为24m,先对称浇筑拱脚段,再从跨中段向俩拱脚方向浇筑,拱顶段浇筑完后,再浇筑1/4段。段和段之间预设间隔槽(顶板不设间隔槽),间隔槽宽1.5m,根据监控单位的施工加载计算,腹板和底板环俩环同时合拢,使拱圈形成壹个开口箱形结构,然后再进行顶板环的分段浇筑及合拢。

3.适用范围 本桥施工方法可适用于大跨径现浇钢筋砼拱桥的施工。 4.工艺原理 4.1主拱圈施工技术 4.1.1主拱圈底模标高的确定 主拱圈的支架现浇过程中,立模标高的合理确定,是关系到主拱圈的线形是否平顺、是否符合设计的壹个重要问题。如果于确定立模标高时考虑的因素比较符合实际,而且加以正确的控制,则最终主拱圈和桥面系线形较为良好;否则最终主拱圈线形会和设计线形有较大的偏差。 立模标高且 不等于设计中桥梁建成后的标高,总要设壹定的预抛高,以抵消施工中产生的各种变形(挠度)。其计算公式如下: 模板定位标高=设计标高+运营预抛高+施工预抛高+支架变形 其中支架变形值是根据支架加载试验,综合各项测试结果,最后绘出支架荷载—挠度曲线,进行内插而得。 根据以往上承式拱桥施工及监控经验,且 结合本桥的具体情况,估计于施工过程中影响本桥结构内力和线形的因素主要有以下几方面: (1)施工临时荷载。 (2)支架变形。 (3)日照影响。 (4)主拱圈混凝土浇筑顺序和主梁的安装顺序。

最新整理钢筋混凝土钢架拱桥施工技术(一).docx

最新整理钢筋混凝土钢架拱桥施工技术(一) 钢筋混凝土刚架拱桥是在双曲拱桥、桁架拱桥和斜腿刚架拱桥的基础上发展起来的,主拱腿、实腹段、腹孔弦杆、斜撑和横系梁等构件拼组而成裸肋,然后在其上安装带有加劲肋的微弯板和悬臂板,并通过现浇混凝土桥面与裸肋结成整体组合结构。该桥型具有自重轻、材料省、整体性能好、外形美观、装配化程度高等优点。 327国道k164+kxxx处利沟大桥原为4m~30m双曲拱桥,桥宽仅7.94m。1999年加宽7.06m,列入山东省公路局养护改建工程。加宽部分下部为扩大式基础,重力式石砌墩台,上部为4m~30m钢筋混凝土刚架拱,该桥全长xxx.12m。利沟大桥加宽每孔采用三片拱肋,为卧式三片叠放浇筑,每拱片为实腹段一段、拱腿、斜撑、弦杆各二段共分七段预制,两台汽车吊(25t)同时起吊、翻身,炮车、挂车运输,有支架安装。实腹段与拱腿、弦杆与拱腿接头以及裸肋与横系梁接头采用钢板焊接接头(称干接头),以保证快速成拱;其余构件采用现浇混凝土接头(简称湿接头),以较大调节接头误差范围,节省钢材。同时,干接头钢板周侧缝采用环氧水泥砂浆,有效防止钢板锈蚀。 ①拱腿;②实腹段;③斜撑;④弦杆; ⑤现浇混凝土接头;⑥钢板焊接头;⑦横系梁 主拱片构造示意刚架拱桥受地形、跨径等限制,常规规划、建设采用较少。且现行桥涵施工技术规范及有关桥梁资料对该桥型施工技术介绍较少,缺乏施工

经验,特别是拱片预制、吊装施工难度较大,现就利沟大桥加宽施工,构件预制、起吊、运输、安装等工艺要求及方法作简要介绍。 1构件预制 327国道利沟大桥刚架拱桥的预制构件有:拱片12片,每片共计84根构件,横系梁112块,微弯板104块,悬臂板52块,全桥总计预制构件352块。为保证拼缝尺寸的精确度,预制构件采用放全桥大样进行预制。拱片预制采用卧浇且在竖向三片叠浇的方法,以节省预制场地,减少模板放样的工作量,并保证连接横系梁的预埋铁件位置的正确和避免放样差错,模板采用木制包白铁皮模板,方便加工。 1.1构件预制场地 构件的预制在固定的混凝土预制场内进行。场地的铺筑,按如下程序进行: (拳石) C15混凝土,厚6cm石砌地膜浇低标号混凝土,可充分利用当地砂石资源,又保证底模的强度和平整度。 1.2拱片放样 采用坐标法放样,先放跨径尺寸,再分段放出纵横坐标,将坐标点连接到拱片下缘线。据设计尺寸定出拱片、斜撑、弦杆轴线,画出构件轮廓线及交角圆弧线,定出各吊点位置、横系梁联结点位置及大小结点位置。放样后总工校核,临理工程师验收合格。 1.3拱片模板 拱片为条弧形预制件,为制作方便、降低造价,可采用红松板材制作,用

现浇钢筋混凝土箱形拱桥主拱圈施工技术

120m 跨现浇钢筋砼箱形拱桥主拱圈施工技术 1.工程概况 xx 市xx 大桥位于xx 市xx 镇内,为xx 水库建成后原有道路改建工程。该桥位于xx 水库上游,跨越库区,终点与上大线连接。该桥桥长192.8m ,其中桥梁主跨为净跨径120m 上承式悬链线箱形拱桥,其矢跨比1/6,拱轴系数m =1.756;拱上结构为全空式三柱排架结构,采用7.8m 先张法预应力空心板作桥面结构,主箱为高2m 的等截面单箱双室,三腹板支承拱上排架柱;拱上结构根据高度分为横墙和排架两种形式;拱座采用8根φ130cm 桩承台基础。桥梁设计荷载为公路Ⅱ级,桥面宽度9.5m (0.25m 栏杆+1.0m 人行道+7.0m 行车道+1.0m 人行道+0.25m 栏杆)。桥面总体布置图见图1。 附加墩5 43J7'J6'J5'J4'J3'J2'J1'J0J1J2J3J4J5J6J712 0L0=12000GZO GZ1 3*120040019280 16*780 2*1200400中心桩号 K16+294.00 起点K 16+191.60 终点K 16+384.4 图1 桥梁总体布置图 2.支架施工 2.1.支架布置 本桥根据施工条件采用有支架施工。在两拱脚段根据原有的地形情况采用在硬化的地面上直接拼装碗扣式脚手架,中间段采用梁柱式复合体系:其结构构成为:明挖现浇混凝土基础;钢支架分三层,底层为置于混凝土基础上钢管立柱支墩,中层用万能杆件搭成框架结构形成纵梁,上层为满布式碗扣式脚手架。拱部利用碗扣式支架调整成拱型,拱架卸落利用碗扣式支架顶的可调托撑完成。 钢管立柱支墩用φ325×8㎜钢管作为主要支撑柱,在N 型万能杆件高度变化处采用双立柱,其余采用单立柱,各钢管立柱水平用I12工字钢连接,且在纵横设置剪刀撑;其上用万能杆件搭成2m 框架结构,通过横向[28a 槽钢分配梁与立柱连接,在N 型万能杆件两侧设置缆风绳;在万能杆件上布设纵横向工字钢分配梁,其上搭设碗扣件式脚手架。全桥钢管立柱布置成11跨形式,跨度为8 m 、9m 、10m 。支架两拱脚段根据原有的地形情况采用在硬化的地面上直接拼装碗扣式脚手架。具体布置见图2。

有关拱桥施工论文:简述拱桥平面转体施工法

桥 梁 施 工 案 例 论 文 专业:土木工程浅析拱桥平面转体施工技术

一、概述 转体施工法一般使用于单孔或三孔拱桥的施工。其基本原理是:将拱圈或整个 上部结构分为两个半跨,分别在河流两岸利用地形或简单支架现浇或预制装配半拱 , 然后利用一些机具设备和动力装置将其两半跨拱体转动至桥轴线位置(或设计标高) 合龙成拱。它的关键技术问题是转动设备与转动能力,施工过程中的结构稳定和强度保证,结构的合龙与体系的转换。 转体施工法与传统施工方法想比,具有的优点: (1)施工所需要的机具设备少、工艺简单,操作安全; (2)结构合理,受力明确,力学性能好; (3)能较好地克服在高山峡谷、水深流急或经常通航的河道上架设大跨度构造 物的困难,尤其是对修建处于交通运输繁忙的城市立交桥和铁路跨线桥,其优势更加明显; (4)施工速度快,造价低,节约投资。在同等条件下,拱桥采用转体法与传统的悬吊拼装法、衍架伸臂法,搭架法相比,经济效益和社会效益十分明显,如用转体法修建的湖南资兴市游垅桥,与应悬吊拼装法和搭架法相比,造价降低了11.5%?12.4%。二、平面转体法的适用范围及特点 平面转体法适用于深谷、河岸较陡峭、预制场地狭窄或无法采用现浇或吊装的施工现场。在桥墩台的上、下游两侧利用山坡地形的拱脚向河岸方向与桥轴线形成一定角度塔设拱架,在拱架上现浇拱(肋)箱或组拼箱段以完成二分之一跨拱,其拱顶高程与设计高程相等(应设置预留高度),利用转动体系,将两岸拱箱相继旋转合拢就位,要使得拱箱稳定旋转就位,拱箱的平衡是平转法的关键。 这种施工方法特点是:将主拱圈分为两个半跨,分别在两岸利用地形作简单支架(或土牛拱胎),现浇或者拼装拱肋,再安装拱肋间横向联系(横隔板、横系梁等),把扣索的一端锚固在拱肋的端部(靠拱顶)附近,经引桥桥墩延伸至埋入岩体内的锚锭中,最 后用液压千斤顶收紧扣索,使拱肋脱模,借助环形滑道和手摇卷扬机牵引,慢速地将拱肋转体180° (或小于180° ),最后再进行主拱圈合龙段和拱上建筑的施工。

箱型拱桥

箱型拱桥,桁架拱桥和刚架拱桥。钢筋混凝土箱型拱桥具有刚度大、材料省的优点。中国第一座大跨径的箱型拱桥为一九七二年建成的四川省攀枝花市跨越金沙江的6号桥。该桥主跨146米,全长327米。拱箱系单箱3室,在钢拱架上进行浇筑施工。该桥在设计上为了节省拱架的用钢量,虽然也考虑了拱圈与钢拱架共同受力,而钢拱架仍达740吨。为了节省钢筋混凝土箱型拱桥的施工支架材料,四川省公路部门在修桥老工人甘师傅的建议下,吸取双曲拱桥集零为整、逐步组合成拱的工艺优点,提出钢筋混凝土箱型拱圈缆索吊装的施工方法。他们建议在设计时,把主拱圈改由多个U形截面拱肋组成。吊装就位后,再加预制盖板和现浇混凝土顶板,使之成为闭合的单室多箱截面。这样就比双曲拱桥更能适应无支架施工。按此建议进行模型试验后,于一九七〇年七月,在川藏公路上建成了一座跨径30米的无支架施工的箱型拱试验桥。在其吊装过程中,这种改进了的箱型主拱圈截面充分显示出它的优越性,避免了双曲拱桥在吊装中所出现的一些困难问题。随后,四川省陆续修建多座,都取得成功。由于这种改进的箱型主拱圈截面吊装安全、方便,所以在中国公路上得到广泛的应用。据不完全统计,截至一九八七年,已修建的大、中型箱型拱桥有70余座,其中有大桥、特大桥60座,总长约1.6万米。跨径在100米以上的有14座,其中跨径最大的是攀枝花市规划设计研究院设计、攀枝花市桥梁工程处施工修建的四川省攀枝花市的7号桥,主桥为单孔跨径170米。另外,还有云南省金沙江上的继红桥和金安桥,四川省攀枝花市的5号桥和宜宾市的马鸣溪桥,以及青海省的尖扎马克塘黄河大桥和甘肃省的玛曲黄河大桥。 大多数箱型拱桥都采用缆索吊装法施工,但随着跨径的增大,箱型拱桥吊装设备的用钢量剧增,吊装难度也增大,所以对大跨径桥梁的桥型和施工方案必须进行多方周密比较,不可忽视。一九八〇年,浙江省用桁架式悬臂拼装法建成单孔跨径60米、单室箱型截面的兰江大桥中洲支桥和两孔跨径各92米、单室箱型截面的曹娥江清风大桥,显示出这种主拱圈截面型式和悬臂拼装法对修建大跨径拱桥不失为一种比较成熟的、经济的设计、施工方案。 拱桥结构自身的重量偏大,在一定程度上限制了它的使用范围。为了进一步减轻拱桥结构体系的自重,实现在软弱地基上建拱的设想,中国公路桥梁工程技术人员在总结圬工(砖、石和混凝土)拱桥、双曲拱桥及钢筋混凝土拱桥的基础上,着重从改革拱桥结构型式入手,进行探索,取得了明显的成绩。从六十年代后期至八十年代中期,已创建了两种适应于这一目的的钢筋混凝土拱桥桥型,即桁架拱桥和刚架拱桥。 桁架拱是由桁架和拱组合而成的一种混合结构体系。它兼具两者的性能、优点,能充分发挥各个构件的潜力。桁架拱桥的拱上构造和拱肋组成的桁架片,既是传力结构,也是受力结构,因而用料较省,自重较轻,对软弱地基的适应性也较双曲拱桥、肋拱桥、箱型拱桥为好。 六十年代中期,上海市嘉定、金山等县修建了一些不同型式的试验性的轻型农村道路桥,并创建成功一种把主拱圈的拱肋和拱上构造联成为桁架式拱片的桁架拱。一九七〇年,第一座跨径26米的桁架拱公路桥(在上海市金山县)建成。同年,浙江省修建了多座跨径30至50米的桁架拱公路桥。由此,逐步积累了桁架拱桥在设计、施工方面的经验。随后,各省、市相继修建。到一九七九年,在全国干线公路和县乡公路上修建的大、中型桁架拱桥达140座以上,同类的小桥和农村道路桥则为数更多,其中最长的公路桁架拱桥是江苏省的墩尚沭河桥(全长684米)。经过十多年的运营考验,虽然有些桥的受拉构件出现一些裂缝,但总的来看,桁架拱桥是一种成功的桥型。预应力的引入,更使这种桥型在设计和施工工艺上有更新的发展,其整体性与耐久性都有所提高。 七十年代中期修建的预应力混凝土桁架拱公路桥,有浙江省宁海县的越溪桥和河南省的嵩县大桥。越溪桥单孔跨径75米,全长138米。嵩县大桥是9孔,跨径各50米,全长489米。这种桥在四川、江西、贵州等省也有修建。而贵州省在八十年代所修建的长岩桥、白果沱桥(跨径100米)和剑河桥(跨径150米),则是预应力混凝土悬臂桁架拱桥采用桁架悬

钢筋混凝土钢架拱桥施工技术(一)(正式版)

文件编号:TP-AR-L9522 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 钢筋混凝土钢架拱桥施工技术(一)(正式版)

钢筋混凝土钢架拱桥施工技术 (一)(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 钢筋混凝土刚架拱桥是在双曲拱桥、桁架拱桥和 斜腿刚架拱桥的基础上发展起来的,由主拱腿、实腹 段、腹孔弦杆、斜撑和横系梁等构件拼组而成裸肋, 然后在其上安装带有加劲肋的微弯板和悬臂板,并通 过现浇混凝土桥面与裸肋结成整体组合结构。该桥型 具有自重轻、材料省、整体性能好、外形美观、装配 化程度高等优点。 327国道k164+k177处利沟大桥原为4m~30m双 曲拱桥,桥宽仅7.94m。1999年加宽7.06m,列入山

东省公路局养护改建工程。加宽部分下部为扩大式基础,重力式石砌墩台,上部为4m~30m钢筋混凝土刚架拱,该桥全长152.12m。利沟大桥加宽每孔采用三片拱肋,为卧式三片叠放浇筑,每拱片为实腹段一段、拱腿、斜撑、弦杆各二段共分七段预制,两台汽车吊(25t)同时起吊、翻身,炮车、挂车运输,有支架安装。实腹段与拱腿、弦杆与拱腿接头以及裸肋与横系梁接头采用钢板焊接接头(称干接头),以保证快速成拱;其余构件采用现浇混凝土接头(简称湿接头),以较大调节接头误差范围,节省钢材。同时,干接头钢板周侧缝采用环氧水泥砂浆,有效防止钢板锈蚀。 ①拱腿;②实腹段;③斜撑;④弦杆;

中小跨径钢筋混凝土拱桥现浇支架设计指南

中、小跨径钢筋混凝土拱桥 现浇支架(拱架)设计指南 1前言 拱桥在桥梁设计中应用广泛,钢筋混凝土拱桥主要适用于中、小跨径的桥梁,拱桥的主要受力结构是主拱圈,在竖向荷载作用下,主拱圈主要承受轴向压力,但也承受弯剪,拱座支承反力不仅有竖向反力,也承受较大的水平推力。 中、小跨径钢筋混凝土拱桥现浇,需要搭设支架(拱架),进行浇注施工,具体作法是:在支架(拱架)上立模、绑扎钢筋、浇注混凝土拱圈。 2支架(拱架)材料分类及有关资料 支架(拱架)的种类很多,按结构形式可以分为:满堂式、排架式、撑架式、扇形式、桁架式、组合式、叠桁式、斜拉式等,其常用材料有木材、万能杆件、贝雷梁、扣件式钢管脚手架、碗扣支架、门式支架、型钢组合桁架。 3各型支架适用范围 满堂式支架主要采用扣件式钢管脚手架或碗扣支架,钢管直径一般为Φ48mm,壁厚为3.5mm。满堂式支架对地基处理的要求比较高,原地面要求地形地势相对比较平整,适合旱桥施工。 排架式、撑架式、桁架式主要采用木材、万能杆件、门式支架、型钢组合桁架结构,这些方式支座不采用满堂布置,支架支点较少,支点数量和距离根据实际跨度和计算后得出。跨河、跨较小的山沟都可以采用这些支架方式。 扇形式只在拱两端支座位置有两个支点,桁架采用贝雷梁、拼装梁或型钢连接成拱弧线形状。这种支架和主拱圈一样,主要承受轴向压力,同时承受弯剪。跨深沟,地形条件比较差的拱桥比较适合用这种支架。 斜拉式贝雷梁拱架一般应用在几跨连续施工的情况,在距边墩一定距离处设置临时墩,在中间墩墩顶各设一个塔柱,塔柱顶端伸出斜拉杆拉住贝雷梁,贝雷梁上设拱盔,形成几孔连续斜拉式贝雷梁拱架结构。其主要构件均由常备式贝雷桁架、支撑架、加强弦杆等组成,结构构件处理方便。由于整体拱架体系柔性多变,施工中应严格掌握和控制对称加载及塔柱、平梁的挠度变形,控制平梁、斜拉杆、塔柱的受力不得超过容许值。 组合式、叠桁式主要是支架组合的多样性,根据计算受力的需要,支架由不同类型的桁架组成。 4支架(拱架)结构设计 支架(拱架)设计的原则为:必须使支架(拱架)上部接近合理拱轴线,能承受施工过程中产生的竖向力与水平力,确保支架(拱架)的稳定,尽量减少非弹性压缩,注意对局部受力不利杆件进行加固。假设某大桥为现浇混凝土箱拱桥,根据不同地形条件,采用不同支架(拱架)形式进行现浇施工。 4.1 支架(拱架)受力分析 箱形截面拱圈一般采用分环、分段进行浇注施工,分环的方法一般是分成二环或三环。分二环时,先分段浇注底板(第一环),然后分段浇注腹板、横隔板和顶板(第二环)。分三环时,先分段

系杆拱桥拱部施工方法

兰渝铁路接驾咀宛川河特大桥采用1孔96m钢管混凝土系杆拱跨越高速公路,拱轴线采用二次抛物线,矢高f=19.2m,理论计算跨度L=96.0m,理论拱轴线方程为:Y=0.8X-0.00833333X2。横桥向设置两道拱肋,拱肋中心间距12.15m。箱梁采用预应力混凝土简支箱梁,横截面为单箱三室截面。 结构设计为刚性箱梁刚性拱,设两道拱肋,拱肋采用外径φ110cm,壁厚=24mm的钢管混凝土哑铃型截面,上下弦管中心距2.1m,拱肋截面高3.2m,拱肋上下弦管之间连接缀板=24mm,缀板间距70cm,缀板间除拱脚面以外4.52m范围及吊杆纵向1.5m范围灌注混凝土外其余均不灌注混凝土。 拱肋之间共设5道横撑、2组K撑,横撑及K撑均为空钢管组成的桁式结构。两片拱肋共设26对吊杆,第一根吊杆距离支点12m,其余吊杆中心间距均为6.0m。 1方案概述 钢管拱安装采用支架法进行安装,支架体系由钢管、型钢组拼,型钢组拼成桁架作为钢管立柱的纵、横向连接。钢管立柱底面钢板与梁面上的预先埋设的钢筋连结牢固并浇注混凝土基础,支架顶面安装拱肋调整设施,支架顶部设置操作平台,以方便拱肋安装。 支架拼装完成并检收合格后方可进行钢管拱节段的吊装,钢管拱节段由汽车吊将吊至钢管支架上,通过支架顶安放的50t手动千斤顶,将拱肋节段的水平位置和标高调整到设计值后,用临时固结措施将该拱肋节段与上一节段临时焊接固定后,方可进行下一节段的安装,钢管拱各节段的安装应对称进行,同时安装相应横撑及焊接。 2施工流程 钢管拱施工按以下施工流程进行: 图1钢管拱施工施工流程图 3架拱支架的安装 架拱支架共设16根立柱,其中Φ800×10mm螺旋钢管立柱8根,Φ1020×10mm螺旋钢管立柱8根,管钢质材为Q235B。支架安装前应先施工支架混凝土基础,基础钢筋同钢板进行焊接,为确保立柱钢板下的混凝土密实,在钢板中间开设振捣孔。 在主梁整体成型张拉完毕后,根据主梁上预留的基础位置进行架设,为确保钢管支架的稳定,支架钢管吊装到位后与封底钢板满焊,钢管立柱每两根安装到位后,立即安装连接系。 4钢管拱节段吊装 支架全部拼装完成并验收合格后,方可进行钢管拱的吊装。 4.1吊装顺序 每个拱肋分段按照制作方案分为8节(不含拱脚及合拢段),拱肋最大吊装重量为27.5t,横撑最大吊装重量10.2t,K撑重量2.7t。拱肋及横撑安装遵循先两端后中间的对称原则。 4.2吊装设备的选择 选用2台50t汽车吊抬吊;吊车站位详见附图。 4.3吊装前的准备 拱肋、横撑吊装前必须做好以下几点: 1)汽车吊到位,并且工作状态良好; 2)将拱肋节段和横撑按吊装顺序对称摆放于系梁主跨两侧的桥面上(每个拱肋节段上都有安装吊点); 3)根据附后的汽车吊站位图在桥面确定吊机的站位点; 4)根据拱肋节段和横撑重心位置,在拱肋上焊临时吊耳、吊装完毕后清除,并确定吊装每节拱肋、横撑的起吊钢丝绳的长度,确保拱肋、横撑垂直起吊,不偏斜; 5)钢管立柱顶的圆弧托板必须定位准确,安装牢固; 6)用于调整拱肋标高的50t手摇螺旋千斤顶必须有效可靠。 5钢管拱节段焊接 5.1临时连接 每安装一节,均采用临时固定,每节拱肋临时焊接固定完成后方可进行下一段拱肋的安装。 5.2永久性焊接 为保证安装钢管拱的结构稳定,钢管拱每安装一节临时固定后,立即进行永久性焊接,并将相应位置的横撑同时进行焊接,直至合拢,永久性焊接,接头施焊应拱脚向拱顶对称进行,每个拱管接口均采用2个电焊工同时对称焊接,避免拱肋移位或变形。拱肋和横撑现场所有焊接均采用手工焊,全熔透。焊接时先焊对接环缝,每节拱肋的对接环焊缝至少焊三道,焊接完成后割掉临时连接的码板,焊接完成后将焊缝打磨平整,并进行无损探伤合格后,再安装瓦管并进行焊接。 钢管拱拱焊接完成后,对所有现场焊缝进行超声波探伤。对于探伤不合格的焊缝采用碳弧气刨,将不合格的焊缝刨开,重新进行焊接,焊接后再次进行探伤,确保焊缝合格为止。 图2节段接头焊接前固定示意图 5.3拱顶合拢焊接 钢管拱合拢节段,在吊装合拢节段时,先在前一天的相同温度条件下,测量出合拢口的精确长度,然后对合拢节进行精确切割,并按图纸要求将切割端打磨出坡口,以上工作完成后,在第二天相同温度条件下进行合拢节段的安装。 6钢管拱节的验收 钢管拱合龙段安装完成后,应对钢管拱进行竣工测量,测量内容包括钢管拱各节段里程,标高,横轴偏位,拱高及拱肋跨距等进行检查 系杆拱桥拱部施工方法简述 王雷 (中铁十局集团有限公司西北工程有限公司,陕西西安710065) 【摘要】本文以兰渝铁路接驾咀宛川河特大桥1孔96米系杆拱桥拱部施工为背景,简要探讨系杆拱桥钢管拱部施工的方法。【关键词】系杆拱桥;拱部; 施工方法 381

相关文档
最新文档