湍流的数值模拟综述
SA湍流模型IDDES数值模拟方法

纳维—斯托克斯方程:()()D 2grad div 2grad div D 3b p t ρρμμ=-+-F S v v 当流体为均质不可压,即ρ=为常数时,div v =0,再若μ也为常数,可写成2D grad D b p tρρμ=-+∇F vv 涡粘性模型涡粘性模型是通过引用湍流粘度(turbulent viscosity),将湍流应力表示成湍流粘度的函数。
湍流粘度是源于Boussinesq 提出的假设,该假设建立Reynolds 应力与平均速度梯度的关系,即23j i i i j t t j i i u u u u u k x x x ρμρμ⎛⎫∂⎛⎫∂∂''-=+-+ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭ i j u u ρ''-表示的Reynolds 应力,t ν为湍流粘度,i u 为时均速度,k 为湍流动能(turbulent kinetic energy):()2221=++22i i u u k u v w '''''=湍流粘度并不是物性参数,它取决于流动状态,1t v f νν=式中1v f 是粘性阻尼函数,31331=+v v f Cχχ (1v C 为常数)=v vχSpalart-Allmaras(SA)模型Spalart-Allmaras(SA)模型又称为单方程模型,只需求解一个修正的涡粘性输运方程。
在SA 模型中,输运变量为v ,在非近壁面区域(忽略粘性影响),输运变量v 等于湍流运动粘度。
()()()221i v b v i jj j u G C Y S t x x x x ννννρνρνμρνρσ⎧⎫⎡⎤⎛⎫∂∂∂∂∂⎪⎪+=+++-+ ⎪⎢⎥⎨⎬ ⎪∂∂∂∂∂⎢⎥⎪⎪⎣⎦⎝⎭⎩⎭上式是输运变量ν的输运方程,式中,v G 是湍流粘度的增加项, v Y 是湍流粘度的减少项,νσ与2b C 为常数,ν 为分子运动粘度,S ν为自定义源项。
数值计算方法——湍流数值模拟(改)

4.1数值计算方法——湍流数值模拟在研究流体流动,除了理论解析和实验测试研究两类方法外,第三类方法是数值计算方法。
数值计算方法作为一种离散近似的计算方法,在计算机迅速发展、近似算法不断成熟的今天,已成为研究流体流动问题的重要工具。
如今,激光测速等先进测量技术的应用,使离心机中流体流动的研究,取得了很大进展。
但是由于实测研究耗值很大,测试周期长,测点相对较少以及受实验装置设计制作误差和模型相似律等因数的影响,实测研究成果的代表性和普遍性距实际应用仍有相当差距。
这就促使人们在进一步完善实测研究方法的同时,也在努力寻求通过数值计算的途径来弄清离心机的流动规律。
数值计算是采用数学模型来预测所需结果。
离心机内的流动为复杂的两相湍流运动,对其流动规律的精确描述,是一组三位椭圆型偏微分方程组,即Navior-Stokes方程。
由于N-S方程的解析解通常只有在少数简单的边界条件下获得,而对离心机这类具有复杂边界条件的流动问题的理论精确解却无法给出。
近年来,大容量、高速计算机,特别是微机的广泛应用和先进数值计算方法的采用,为N-S方程的数值求解创造了极好的条件,并使用湍流数学模型对离心机流场进行数值模拟成为可能。
湍流数学模型就是对经时间平均化的N-S方程,依靠理论与经验的结合,在引入一系列模型假设后,使之封闭而得出数学补充方程式(组)。
将封闭的雷诺方程进行数值求解,从而获得湍流运动规律的方法称之为湍流数值模拟。
近年来,随着湍流数学模型的不断改进,其数值模拟的准确度和可靠性不断提高,流场预报能力也大为增强。
与实测研究方法相比,湍流数值模拟方法有以下主要优点:一是花费少。
预测同样的物理现象,计算机运行费用通常比相应的实测研究费用少几个数量级,而且,随着计算机的发展,数值模拟的成本还将降低,相反实验测试研究的成本则会上升。
二是设计计算速度快、周期短。
只要准备工作完毕,其模拟每一个工况的时间之短是实验无法相比的,这使得数值模拟能在短时间内进行多个工况的模拟计算,并通过比较确定优化工况。
湍流模型介绍

湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种:直接模拟(direct numerical simulation, DNS)直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。
这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。
基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。
另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。
大涡模拟(large eddy simulation, LES)大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。
大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。
大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。
这些对涡旋的认识基础就导致了大涡模拟方法的产生。
Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。
大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。
LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。
应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。
湍流的几种数值模拟方法

LES特点
抓大不放小 非常有利,有力的工具 是最近,可预见未来流体 力学研究和应用的热点 近来又出现了VLES, DES等在LES上发展而 来的工具
Will RANS survive LES? Hanjalic自问自答
会。Journal of Fluids Engineering -V127, 5, pp. 831-839 (Will RANS
Prandtl(1925)混合长度模型
也被称作零方程模型 还在被广泛应用 廉价,易收敛 基本在流场比较简单,或者对计算结果 精度要求不高或者流场形状比较复杂的 行业中,比如暖通空调,流体机械等。
Prandtl混合长度模型 缺点
最明显的缺点是:当速度梯度 为零的 时候, 消失, 这与事实不符
Launder and Li(1994), Craft and Launder (1995)
目前有很多学者在继续此方面的工作
Brian E. Launder
本科Imperial College, London 硕博 MIT 实验流体力学 1964-1976 Imperial College 讲师
涡流粘度
Eddy viscosity or turbulent viscosity
二维流场分子粘性力
为描述雷诺应力,Boussinesq 1887 定义了与之相对应的
RANS模型的核心在于给出 的数 学表达式,要求精度高,适用范围广
涡流粘度,
Prandtl 1925 Prandtl 1945 Bradshaw 1968 Kolmogorov, 1942 Hanjalic 1970 Rotta 1951 Chou 1945 Davidov 1961
湍流的数值模拟方法进展

3 大涡模拟(LES )湍流大涡数值模拟(LES )是有别于直接数值模拟和雷诺平均模式的一种数值模拟手段.利用次网格尺度模型模拟小尺度湍流运动对大尺度湍流运动的影响即直接数值模拟大尺度湍流运动, 将N —S 方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。
3。
1 基本思想很多尺度不同的旋涡一起组成了湍流运动平均流动主要取决于大漩涡的流动,大尺度运动则受到小旋涡的影响。
流动中的大涡实现了动量、能量质量、热量的交换,耗散主要是由于小涡作用的。
大旋涡中受到流场形状、阻碍物的影响,,使大漩涡的各向异性更加明显。
然而小漩涡之间各项同性,相互没有太大的区别,所以建立统一的模型比较容易一些.综上所述,大涡模拟将湍流瞬时运动量通过滤波将运动分成小尺度和大尺度.大尺度的运动受到小尺度的运动的影响可以通过应力项(类似于雷诺应力项)来表示,即为亚格子雷诺应力,以建立这种模型的方法来模拟。
而大尺度则是求解运动微分方程而计算出来的,也就是说大涡模拟,要先过滤掉小尺度的脉动,然后再推出小尺度的运动封闭方程以及大尺度的运动控制方程。
3。
2 滤波函数正如上面提到,大涡模拟要先将流动变量分解成小尺度量和大尺度量,我们把这个作用叫做滤波.滤波运算就是在一区域内按照一定的条件对函数进行加权平均,作用是将高波数滤掉,使低波数保留,滤波函数的特征尺度决定了截断波数的最大波长,下面三种滤波函数是最为常用的主要有以下三种:盒式、富氏截断以及高斯滤波函数.不可压常粘性系数的湍流运动控制方程为N-S 方程:j ij i j j i i x S x P x u u t u ∂⋅∂+∂∂-=∂∂+∂∂)2(1γρ式中:S 拉伸率张量,表达式为:2/)//(i j j i ij x u x u S ∂∂+∂∂=;γ分子粘性系数;ρ流体密度。
设将变量i u 分解为方程(11)中i u 和次网格变量(模化变量)'i u ,即'+=i i i u u u ,i u 可以采用Leonard 提出的算式表示为:(11)式中)(x x G '-称为过滤函数,显然G(x)满足x d x u x x G x u i i '''-=⎰+∞∞-)()()(⎰+∞∞-=1)(dx x G3.3 控制方程将过滤函数作用与N —S 方程的各项,得到过滤后的湍流控制方程组:由于无法同时求解出变量i u 和j i u u ,所以将j i u u 分解成i j i j ij u u u u τ=⋅+,ij τ即称为次网格剪切应力张量(亦称为亚格子应力)。
大气湍流运动数值模拟仿真方法综述

大气湍流运动数值模拟仿真方法综述大气湍流是指大气中流体的无序运动,常常出现在多尺度、多层次的大气环流中。
了解和研究大气湍流运动具有重要的科学和应用价值,可以为天气预报、气候模拟以及空气污染等方面的研究提供有力支持。
数值模拟仿真成为研究大气湍流运动的重要手段之一,本文将对大气湍流运动数值模拟仿真方法进行综述。
一、拉格朗日方法:拉格朗日方法是一种经典的描述流体运动的方法,通过跟踪流体的质点运动来模拟流体的流动。
在大气湍流运动数值模拟中,拉格朗日方法常常用于描述物质的运动轨迹,例如云的形成和演变过程等。
拉格朗日方法的优点是能够准确地模拟微观尺度的湍流过程,但其计算量较大,难以用于大尺度的湍流模拟。
二、欧拉方法:欧拉方法是一种描述流体运动的方法,它通过对流体流动的宏观性质进行求解来模拟流体的流动。
在大气湍流运动数值模拟中,欧拉方法常常用于求解流体的运动方程,例如质量守恒方程、动量守恒方程和能量守恒方程等。
欧拉方法的优点是计算量相对较小,可以用于大尺度的湍流模拟,但其无法精确地模拟湍流的微观尺度特征。
三、雷诺平均方法(RANS):雷诺平均方法是一种常用的湍流模拟方法,其基本思想是将流场分解为平均分量和脉动分量,并通过对脉动分量进行平均,来模拟湍流过程。
在大气湍流运动数值模拟中,雷诺平均方法常常用于求解雷诺平均动量方程和湍流能量方程等,以模拟湍流的宏观尺度特征。
雷诺平均方法的优点是计算效率高,适用于中尺度和大尺度的湍流模拟,但其无法准确地模拟湍流的细节特征。
四、大涡模拟方法(LES):大涡模拟方法是一种适用于直接模拟湍流的方法,其基本思想是将湍流流场分解为大尺度涡旋和小尺度涡旋,并通过求解小尺度涡旋的方程来模拟湍流过程。
在大气湍流运动数值模拟中,大涡模拟方法常常用于模拟中尺度和小尺度的湍流,以获取湍流的细节特征。
大涡模拟方法的优点是能够较好地模拟湍流的细节特征,但其计算量较大,难以用于大尺度湍流的模拟。
五、直接数值模拟方法(DNS):直接数值模拟方法是一种用于准确模拟湍流的方法,其基本思想是通过求解流场的基本方程,直接模拟湍流中所有的尺度下的流动特征。
湍流模型简述ppt课件

湍流模型比较
模型
SpalartAllmaras
标准 k-ε
优点
计算量小,对一定复杂程度的 边界层问题有较好效果
应用多,计算量合适,有较多 数据积累和相当精度
缺点
计算结果没有被广泛测试,缺少 子模型,如考虑燃烧或浮力问题
对于流向有曲率变化,较强压力 梯度有旋问题等复杂流动模拟效 果欠缺
RNG k-ε 能模拟射流撞击,分离流,二 次流,旋流等中等复杂流动
t C/ k1/ 2l
零方程模型和单方程模型适用于简单的流动;对于复杂流
动,系数很难给定,无通用性,故应用较少。
10
两方程模型
由求解湍流特征参数的微分方程来确定湍流粘性。包括k-ε 、 k-ω、 kτ、 k-l 模型等 。其中,应用最普遍的是 k-ε模型。
湍流粘性系数 表达式为:
11
模型参数
RANS-based models
Increase in Computational
Cost Per Iteration
Available in FLUENT 6.2
Direct Numerical Simulation
17
Fluent中湍流模型面板
Define Models Viscous...
选择了能反映湍流各向异性的代数应力模型(ASM),用数值计 算与实验研究相结合的方法对旋流器内的湍流场进行了模拟
采用RNG k-ε模型分析了旋流场内部湍流度及相对湍流度对湍流 场流动分布、湍流脉动和分离介质所产生的影响,其预报结果是有 限的。
从文献报道来看,LES大涡模型模拟的结果更可靠,更相信。 但RSM目前是工程应用中比较有效的湍流模型。
Spalart-Allmaras
弯曲管道内湍流流动的数值模拟

弯曲管道内湍流流动的数值模拟*摘要:*本文旨在通过数值模拟来研究弯曲管道内湍流流动的性质。
对流动特性进行预测可以为工程设计提供理论基础,其中包括流体运动的影响因素、涡旋比例及流量的变化情况等。
本文采用Direct Numerical Simulation 方法,应用 k-和 k-ω 湍流模型来探究弯曲管道内湍流的性质。
结果表明,随着弯道半径的减小,流体的瞬时速度、压力和温度都会受到一定程度的影响,而涡旋比例和流量也发生变化;此外,发现湍流模型的选择会影响研究结果的准确性,k-ω 模型相比 k-ε模型更准确。
*关键词:*弯曲管道,湍流模拟,Direct Numerical Simulation,k-ε 模型,k-ω 模型数值模拟对于研究弯曲管道内湍流的性质具有重要的意义。
本文应用了Direct Numerical Simulation(DNS)方法,使用k-ε和k-ω湍流模型来研究弯曲管道内湍流流动的性质。
首先,将弯曲管道分割为若干网格,求解Navier-Stokes方程,以解释流体运动的影响因素。
然后,通过比较k-ε和k-ω模型的模拟结果,结合实验数据和理论计算,发现随着弯道半径的减小,流体的瞬时速度、压力和温度都会受到一定程度的影响,而涡旋比例和流量也发生变化。
最后,比较发现k-ω模型的模拟结果更加准确。
应用DNS方法对弯曲管道内湍流流动的性质进行数值模拟,能够更好地解释流动特性,提供设计工程所需的理论基础。
此外,本文使用了k-ε和k-ω湍流模型,比较发现k-ω模型的模拟结果更加准确,被证明可以更好地描述气体流动现象。
未来,可以继续研究其他影响因素(例如管道内壁的材料类型),以及不同湍流模型在不同参数场景下的性能变化,来更好地理解弯曲管道内湍流的性质。
此外,本文的研究也为今后相关研究开辟了新的思路。
例如,可以结合模拟结果和实验数据,运用统计学方法,利用概率和数理统计等技术来优化设计。
此外,在继续探究时,可以考虑更大尺度和更复杂流场,并使用更先进的数值模拟技术,比如Large eddy simulation 和Reynolds-averaged Navier-Stokes方程,以更加准确地预测实际情形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湍流的数值模拟一、引语流体的流动形态分为湍流与层流。
而层流是流体的最简单的一种流动状态。
流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。
此种流动称为层流或滞流,亦有称为直线流动的。
流体的流速在管中心处最大,其近壁处最小。
管内流体的平均流速与最大流速之比等于0.5,根据雷诺实验,当雷诺准数引Re<2320时,流体的流动状态为层流。
当雷诺数Re>2320时,流体流动状态开始向湍流态转变,湍流是一种很复杂的流动状态,是流体力学中公认的难题。
自从19世纪末O.Reynolds提出湍流的统计理论以来,已经有一个多世纪了,经过几代科学家的努力,湍流研究取得很大进展,但是仍然不能满足工程应用的需要,以至于经常有悲观的论调侵袭湍流研究。
为什么湍流问题没有圆满地解决会受到如此关注呢?因为湍流是自然界和工程中十分普遍的流动现豫,对于湍流问题的正确认识和模化直接影响到对自然环境的预测和工程的质量。
例如,当前影响航天器气动力和气动热预测准确度的主要障碍是缺乏可靠的湍流模型。
和其他一些自然科学的准题不同,解决湍流问题具有迫切性。
湍流运动的最主要特征是不规则性,这是大家公认的。
对于湍流不规则性的深入认识,是一百多年来湍流研究的上要成就之一。
早期的科学家认为,像分子运动一样,湍流是完全不规则运动。
类似于分子运动产生黏性,湍流的耗散可以用涡黏系数来表述。
20世纪初,一些杰出的流体力学家,相继对涡黏系数提出各种流体力学的模型,如Taylor(1921年)的涡模型,Praudtl(1925年)的混合长模型和von Karman(1930年)相似模型等。
当科学家用流体力学观念(不是分子观念)来建立湍流耗散的涡黏模型时,就开始考虑连续介质不规则运动的特点,其中有别于气体分子不规则运动的最主要特点是运动的多尺度性。
第一个提出流体湍流运动中多尺度输运特性的科学家mchardson(1922年)曾描述湍动能的多尺度传输过程如下:“大涡包含小涡,并喂予速度;小涡包含更小的涡,如此继续直到黏性耗散”。
多尺度的思想导致产生描述多尺度的谱概念和谱分析方法,并最终产生了Kolmogorov(1941年)的局部各向同性的通用谱(即5/3谱)。
湍流不仅是多尺度的而且是有结构的运动。
20世纪中叶,大量的湍流实验(包括测量和显示)发现多尺度的湍流运动存在某种特殊的运动状态。
Townsend(1951年),Corrsin(1955年)和Lumley(1965年)等从脉动序列的间歇性和空间相关相继推测湍流结构的可能形态。
理论上也提出过各种湍涡的模型:球涡模型,柱涡模型等。
早期的湍流结构主要是从运动学上考虑,把旋涡结构作为湍流统计的样本。
我国的周培源教授是近代湍流模式的奠基人之一,他首先提出先解方程后平均的统计方法,就是说湍涡必须满足Navier—Stokes方程(Chou and Chou,1995年)。
真实的、可以观察到的湍流结构通过流动显示,以及稍后湍流直接数值模拟所证实。
典型的例子是混合层的Brown—Roshko涡(1976年),图1明显地展示了混合层中存在规则的大涡和分布在大涡周围的细小湍涡。
在边界层、槽道和圆管湍流中也存在各式各样的大涡结构。
例如,用激光诱导荧光的显示方法,我们可以在圆管湍流中观察到周向(图2a)和流向大涡(图2b)。
值得提出的是,不仅在剪切湍流中有大涡结构,简单的均匀各向同性湍流中也存在涡结构。
图3展示的是各向同性湍流的直接数值模拟中强涡量等值面,它们是管状结构。
仔细分析还可以确定管状涡的平均长度约等于各向同性湍流的积分尺度,它们的平均直径约等于湍流TayLor微尺度,更进一步分析可以算出管状涡内部的平均速度场,它们接近于Burgers涡,即有轴向拉伸的柱状涡,在管状涡之间错综复杂地分布着各种尺度的树叉结构。
所有以上发现充分说明:无论是简单还是复杂湍流,都存在一定的涡结构.大尺度结构的发生是不规则的,就是说,在长时间和大范围来观察,大尺度运动结构发生的地点和时划是不确定的.因此在大样本统计中我们不可能发现这种结构,这就是为什么经典的长时间统计未能察觉它们的原因。
另一方面,大尺度运动结构一旦生成,它以一定的动力学规律演化,因此湍流大尺度结构又称拟序结构,或相干结构。
举例来说,在湍流边界层、槽道或圆管湍流的近壁区(5<Y+<100),间歇地发生猝发过程,它们是如下的拟序运动:有一股高速流动冲向壁面(称为下扫过程),它导致近壁区(y+~10)产生流向涡(长度和直径比很大的涡管);流向涡生成的初期,它缓缓升起,形成和壁面有一定倾角的管状涡(称为上抛过程);当升至(y+~30~50)时,流向涡发生剧烈抖动直至破碎,在流向涡破碎的很短时间内,瞬时的脉动动量通量(-u'v')很大,可以达到平均脉动动量通量,即雷诺应力-(u'v')的100倍以上。
以上从流向涡的出现到破碎的全过程称为猝发,只要在近壁区触发流向涡,它就以“下扫-上抛-抖动-破碎”的序列演化,这就是大尺度运动的拟序性或相干性。
湍流中大涡拟序结构对于湍流生成和发展有主宰作用,因此抑制或消除大涡结构可能抑制整体的湍流强度,甚至使流动层流化。
这是近代湍流减阻和降噪的思想(Bushnell等,1989)。
湍流是多尺度有结构的不规则流体运动.它指出湍流运动的主要特征,同时也指出了研究湍流的困难所在.单纯的不规则运动,例如气体分子运动,是不规则粒子群的运动,比较容易用统计力学的方法来分析,因为宏观上它只有一个特征尺度—分子平均自由程.湍流的第一个困难是它的多尺度(理论上是无穷多尺度)如果无穷多尺度之间存在简单的关系,例如相似关系,这种多尺度系统也不难处理,但是湍流的多尺度不规则运动是有结构的,也就是说,不同尺度的运动之间的动力学关系足复杂的。
二、湍流数值模拟方法及其特点一个多世纪以来,尽管在湍流本质认识和实际应用方面,湍流研究都取得了很大的进步,但是随着计算流体力学及计算空气动力学方法的不断完善,计算机性能的不断提高,湍流的数值模拟方法已成为阻碍人们应用N—S方程进行水流运动特性分析、管道螺旋流水力输送研究、飞机设计等的瓶颈之一。
对湍流基础研究的进展,可以直接促进许多实际工程及科学应用的进步。
目前,湍流数值模拟的方法有:直接数值模拟(Direct Numerical simulation,DNS)、雷诺平均模拟(Reynolds Avemged Navier—Stokes,RANS)和大涡数值模拟(Large Eddy simulation,LES)。
1直接数值模拟(DNS)DNS依据非稳态的N—S方程对湍流进行直接模拟,计算包括脉动在内的湍流所有瞬时运动量在三维空间中的演变。
1.1控制方程用非稳态的N—S方程对紊流进行直接计算,控制方程以张量形式给出:(1)(2)1.2主要方法1.2.1谱方法或伪谱方法所谓谱方法或伪谱方法,粗略地说,就是将各未知函数对空间变量展开,成为以下形式:(3)式中与,都是已知的完备正交的特征函数族,它们可能已满足了连续方程或有关的边界条件,如未满足,则以后还要加上相应的约束条件。
将式(3)代人N—S方程,设法把原来物理空间的偏微分方程转化为一组关于展开系数的常微分方程组,然后用常规的有限差分法作时间推进,解出,再代回到展开式(3)中去,从而得到解。
1.2.2差分法其基本思想是利用离散点上函数值上的线性组合来逼近离散点上的导数值。
设,为函数的差分逼近式,则(4)式中系数由差分逼近式的精度确定。
将导数的逼近式代入控制流动的N—S方程,就得到流动数值模拟的差分方程。
差分离散方程必须满足相容性和稳定性。
1.3 特点分析DNS方法的主要特点:1)它是精确数值模拟湍流的方法,因而可以获得湍流场的全部信息,而试验测量则不可能完全实现。
2)由于直接对N—S方程模拟,故不存在封闭性问题,原则上可以求解所有湍流问题。
3)据Kim,Moin & Moser研究,即使模拟Re仅为3300的槽流,所用的网点数N就约达到了2×106,在向量计算机上进行了250 h。
所以,在现有的计算机能力限制下,只能模拟计算中低Re和简单几何边界湍流运动。
4)应用领域主要是湍流的探索性基础研究。
2 雷诺平均模拟(RANS)RANS是应用湍流统计理论,将非稳态的N—S方程对时间作平均,求解工程中需要的时均量。
该法是工程中常用的复杂湍流数值模拟方法。
2.1 控制方程对非稳态的N—S方程作时间演算,并采用Boussinesp假设,得到Reynolds方程(5)(6)式中,附加应力可记为,并称为雷诺应力。
这种方法只计算大尺度平均流动,而所有湍流脉动对平均流动的影响,体现到雷诺应力中。
正因为雷诺应力在控制方程中的出现,造成了方程不封闭。
为使方程组封闭,必须建立模型。
2.2 主要方法在RANS的发展过程中,人们根据不同的思想和理论,提出了各种各样的湍流模型。
面对越来越多自称“更新更好”的封闭模型,人们也越来越难分清它们之间的区别,对于使用模型的人来说,则困惑于究竟哪一模型最适合于他所研究的特定流动。
综观封闭雷诺应力的湍流模型,目前文献中广泛应用的是、RSM 和ASM。
2.2.1 模型标准模型采用各向同性和广义Boussinesq假设,将雷诺应力项变成速度对位移的协变导数项,使得方程封闭。
封闭方程为(7)(8)式中为涡粘系数,模型常数,,平均变形率张量:由于标准模型不能反映雷诺应力的各向异性、沿流向的松弛效应及平均涡量的影响,故在很多情况下,其计算结果均存在一定缺陷。
目前,文献中应用较多的是源于标准模型的模型(renormalization group,RNG)、非线性模型等各种修正模型。
非线性模型解决了常规模型不能正确地计算Reynolds正应力的问题,叶孟琪等人把一种非线性模型较好地应用于槽道流动和方截面管流中,但在平均剪切力很大的流场中有可能满足不了真实性条件。
2.2.2 雷诺应力模型(RSM)雷诺应力模型(RSM)完全抛弃了湍流粘性的概念,直接建立以,为因变量的偏微分方程,并通过模化封闭。
封闭目标是雷诺应力输运方程:(9) 式中是雷诺应力再分配项,是雷诺应力扩散项,是雷诺应力耗散项。
2.2.3 代数应力模型(ASM)代数应力模型(ASM)是一种忽略雷诺应力沿平均轨迹的变化和雷诺应力扩散项的简化雷诺应力模型(RSM),它把各向异性融入到模型中,并把雷诺应力偏微分方程组变成代数方程组,使得方程封闭。
其代数方程为(10)式中为常数,为雷诺应力生成项,为湍动能生成项,和分别由湍动能和湍动能耗散方程算出。
2.3 特点分析雷诺平均模拟原理是先将紊流中的物理量如速度、浓度等分成扰动量及平均量,再对控制方程作时间平均,同时采用紊流模型仿真紊流的效应。