第一章 铁路电力供电系统概述
电气化铁路特点和发展概况

此外,在经济效益上,速度越快的高铁,其维 护、折旧成本越大,资金回收越困难。“可以 预见高铁将全面亏损。”董焰告诉记者,“不 仅是建设费过高,运营费用也是主要原因。时 速350公里的列车耗电量很厉害,是超比例增 长的。此外劳务费、折旧费、债务利息等,按 照现在的票价和载客量,肯定就是全面亏损。” 此外,众多二、三线城市需不需要建设大量高 铁,建设资金从哪里来,也是学者关注的话题。 赵坚对《华夏时报》表示:“高铁已经绑架了 国家财政。”
1985年京秦线; 20世纪90年代有10条线共计2795.76Km电气 化铁路建成交付运营。 2008年8月1日京津高速电气化铁路开通运营。 2009年4月1日合武高速电气化铁路开通运 营。 2009年12月26日武广高速电气化铁路开通运营。 2010年2月6日郑西高速电气化铁路开通运营。 2011年7月1日京泸高速电气化铁路开通运营。 我国电气化铁路进入了高速电气化时代。
电气化铁路的供电制式
电气化铁路的供电制式有工频单相交流 2 16 电(50HZ)、低频单相交流电( 3 HZ )、 三相工频交流电、直流电。 我国电气化铁路采用工频单相交流制式 (50HZ)电力牵引。 我国城市轨道交通供电系统采用直流制 式。
第一节 电力牵引的特点及发展概况
一.电力牵引的特点 使用的是二次能源,与国家电网连接, 能源有保障 。 不污染环境。 能综合利用能源。 安全性高。 一次性投资较大。
谢谢!!
和谐系列货运电力机车。分为每轴 1200KW的和谐1、2、3型(1、2型为 八轴,3型为六轴),总功率7200 kW。 可在线路坡度12‰以下的路段,牵引 5000吨至5500吨货物列车。 以及六轴,每轴1600KW的和谐1B、 2B、3B两代9600KW大功率机车。
铁路供电系统介绍

一次设备介绍
牵引变压器
牵引变压器是将三相电力系统的电能传输给二个各自带负载的单相牵引线 路。二个单相牵引线路分别给上下行机车供电。在理想的情况下,二个单相 负载相同。所以,牵引变压器就是用作三相变二相的变压器。 根据变压器绕组数量及接线方式,主要有: (1)单相变压器 (2)平衡变压器 (3)YN,d11变压器 (4)V/V变压器 (5) V/X变压器 (6)SCOTT变压器
不同运行状态下具有明显差异的电气量有:流过电力元件的相电流、序 电流、功率及其方向;元件的运行相电压幅值、序电压幅值;元件的电压与 电流的比值即“测量阻抗”等。 第二步: 通过比较,保护装置按一定的逻辑关系判定故障的类型和范围,最 后确定是否应该使断路器跳闸、发出信号或不动作,并将对应的指令传给执 行输出部分。 第三步:执行输出元件根据逻辑判断部分传来的指令,发出跳开断路器的跳 闸脉冲及相应的动作信息、发出警报或不动作。
(二)牵引供电系统简介
1 2
3
4 5
7
9
6
2 8
G1 2
3 10
牵引供电系统示意图
1—区域变电所或发电厂;2—高压输电线;3—牵引变电所; 4—馈电线;5—接触网;6—钢轨;7—回流线; 8—分区所;9—电力机车;10—开闭所
(二)牵引供电系统简介
牵引所亭分类 (1)牵引变电所 (2)分区所 (3)开闭所 (4)AT所
进线1
进线2
1QF
2QF
7QF
3QF
4QF
5QF
6QF
8QF
(4)AT所
采用AT供电方式时,在沿线间隔10km左右设置一个自耦变压器站(AT所)
1AT
2AT
接JD
接JD
电气化铁路牵引供电系统简介讲解

1.1 电气化铁道与牵引供电系统 1.2 电力系统向电气化铁道的供电 1.3 牵引变电所向牵引网的供电 1.4 牵引网向电力机车的供电 1.5 牵引供电系统的特点及主要问题
1.1 电气化铁道与牵引供电系统
• 电气化铁道(Electric Railways) 使用外部输入的电力能源(electric power)来驱动列
• AT所(AT Post, ATP)
AT供电系统,除变电所、分区所和开闭所外,在牵引网上放置 自耦变压器的场所。
1.2 电力系统向电气化铁道的供电
• 电气化铁道属一级负荷,对供电可靠性要求高 • 牵引变电所一般设置两台变压器,要求有两回独立电源
独立电源:一回电源的故障停电,应不影响另一回电源的工作。 (1)引自不同的变电所(甚至不同地域的变电所) (2)引自同一变电所的不同母线(分别运行)
牵引供电系统示意图
电力系统 牵引变电所
YNd11接线 单相Ii接线 单相Vv接线 YN 接线 YN 接线 Scott接线 YNd11d1接线
直接供电方式 带回流线的直接供电方式 吸流变压器(BT)供电方式 自耦变压器(AT)供电方式
接触网
牵引网
钢轨
额定电压25kV,正常工作范围20~29kV。
牵引变电所(Traction Substation, SS)
F T
Us
I
R
• 防干扰效果不如BT供电方式; • 牵引网阻抗界于直接供电方式和BT供电方式之间; • 目前应用比较广泛。
(4)自耦变压器供电方式(AT方式)
自耦变压器 Auto-transformer
T
Us
R
F
• 防干扰效果与BT方式相当 • 牵引网阻抗小,输送容量大,供电臂长(可达40~50km) • 结构复杂,投资大,维护费用高
铁路供电系统介绍课件

供电系统为列车提供足够的牵引力, 使列车能够顺利地加速、减速和制动 ,提高运输效率。
供电系统的历史与发展
历史回顾
铁路供电系统的发展经历了从蒸汽机车到电力机车的变革,最早的铁路供电系 统出现在19世纪末的德国,随着技术的发展和进步,铁路供电系统的规模和性 能得到了不断提升。
发电厂是铁路供电系统的核心,负责将其他形式的能源 转化为电能。
变电所是铁路供电系统中的重要设施,负责将高压电转 化为适合电力机车使用的低压电。
输电线路
输电线路是铁路供电系统中的重要组成部分,负责将电能从发电厂输送到变电所。
输电线路通常采用架空线路或电缆线路,根据输电距离和电压等级的不同,选择合 适的输电线路类型。
的噪音对周边环境的影响。
电磁辐射防护
03
合理规划铁路供电系统的布局,减少电磁辐射对周边居民和环
境的影响。
可持续发展
资源循环利用
对供电系统中的废旧设备进行回收和再利用,减少资 源浪费。
绿色能源利用
积极探索和应用太阳能、风能等可再生能源,降低对 传统能源的依赖。
技术创新
鼓励供电系统的技术创新,提高系统的能效和环保性 能,推动铁路供电系统的可持续发展。
特点
铁路供电系统具有高可靠性、高安全 性和高稳定性,能够满足列车高速、 安全运行的需求,同时还要考虑节能 环保和经济性。
供电系统的重要性
保障列车运行安全
供电系统是铁路运输的重要组成部分 ,为列车提供稳定、可靠的电力供应 ,确保列车正常运行,避免因电力故 障导致的事故。
提高运输效率
促进铁路电气化发展
配电设备
配电设备是铁路供电系统中的重 要组成部分,负责将电能分配给
铁路电力供电基础知识

放射式配电网络 放射式配电网络由铁路地区变、配电所 引出单独的回路,直接送至各室内、外变 电所或直接对高压设备供电。放射式配电 网络适用与向一级负荷或负荷功率较大的 设备供电。配电网络故障时,互相影响不 大,控制也方便,但基建投资较高,线路 通道站地多,较大的站场采用架空配电线 路通过时往往有困难。
第一章 电力供电系统概述
电力供电系统是整个铁路运输系统的重要组成部分, 是确保调度指挥、信号、通信、旅客服务等系统重 要负荷安全、可靠、不间断运行的基础设施,担负 着铁路指挥系统、自动化系统、牵引系统及铁路各 行各业的供电任务,因此其供电质量的好坏直接影 响到高速列车运行的正常与否,乃至直接危及到铁 路工作人员及乘客的生命安全。
第一章 电力供电系统概述
第一章 电力供电系统概述
两端供电式配电网络 两端供电式配电网络是铁路自动闭塞信号供电均采用此 种配电方式,即铁路沿线两相邻自动闭塞配电所(相距约 40~60km)向自动闭塞信号变压器供电。两个相邻自动 闭塞配电所的电源可互为备用,并装设自动闸及备用自动 投入装置。同时信号变压器二次侧还采用了低压联络线, 保证了对自动闭塞一级负荷的供电。 专为自动闭塞用的高压电力线路,在保证所供信号用电 安全的前提下,可供给通信设备及无电源地区的中间站与 行车有关房屋照明用电。
第二章 电力线路基础知识
独立电源应具备的条件 两路电源之间无联系,如取自两发电厂或不同电源的两个变电所, 其中一个厂或所发生故障时,另一个厂或所应继续供电。 两路电源之间有联系,但发生任何一种故障时,两路电源的任何 部分应不致受到损坏。 电压选择 电压等级选择 受电电压根据用电容量、可靠性和输电距离,可采用35(63)kV、 10(6)kV和0.38/o.22kV。自备发电所的发电机电压,可采用400V 和6.3kV。
电气化铁路牵引供电系统简介讲解

牵引网(Traction Network)
• 由馈电线、接触网、轨道、回流线等设施构成的输电网络 • 馈电线(Feeder,引出线:Lead Wire)
外桥接线
双T接线
单母线分段
1.3 牵引变电所向牵引网的供电
• 单线
电分相
SS1
SP
SS2
单边供电
SS1
SS2
双边供电
复线
SS1
SP
单边分开供电
SS1
SP
单边并联供电
SS1
SP
单边全并联供电
SS1
SS2双边纽结供电源自.4 牵引网向电力机车的供电(1)直接供电方式(T-R方式, Trolley-Rail)
连接牵引变电所和接触网的导线
• 接触网
沿线路露天敷设,通过和受电弓的滑动接触把电能输送给电力机 车的供电设施。由接触线、承力索以及支持、悬挂和定位等装置组成。 从牵引网角度关注的是接触线、承力索和加强线等载流导线。
• 轨道
牵引电流的回流导线;支撑与导向;信号专业轨道电路
• 回流线
指连接轨道和牵引变电所的导线
牵引供电系统示意图
电力系统 牵引变电所
YNd11接线 单相Ii接线 单相Vv接线 YN 接线 YN 接线 Scott接线 YNd11d1接线
直接供电方式 带回流线的直接供电方式 吸流变压器(BT)供电方式 自耦变压器(AT)供电方式
接触网
牵引网
钢轨
额定电压25kV,正常工作范围20~29kV。
电气化铁道供电系统2011教学要点

《电气化铁道供电系统》2011教学要点第一章电力系统与牵引供电系统电力系统:电能的生产、输送、分配和使用组成了一个系统,称为电力系统,主要由发电厂、电力网、电能用户组成。
电力网的任务是将电能从发电厂输送和分配到电能用户。
电力网由各种电压等级的输、配电线路和变(配)电站(所)组成。
按其功能常分为输电网和配电网两大部分。
国家规定的电网额定电压分别为(KV):750、500、330、220、110、60、35、10、6等9个电压等级。
牵引变电所进线电源电压等级主要为110kV,少量采用220kV。
牵引供电系统具有哪些主要特点?由哪几个子系统组成?答:牵引供电系统与一般供电系统相比,具有以下明显特点:(1) 所供负载是一个单相、移动而且是直流的负载。
(2) 供电额定电压为27.5kV(BT)和55kV(AT),不同于国家电网规定的额定电压。
(3) 供电网不同于电力网,它是通过与电力机车接触而供电,因此又叫接触网。
(4) 具有独特的回流通路(架空回流、轨回流和地回流)。
广义牵引供电系统由:电力系统、牵引变电所、牵引网(接触网、供电线、吸回装置)、电力机车。
狭义的牵引供电系统通常只指牵引变电所和牵引网2大部分。
牵引供电系统的4种电流制:(1)直流制(1500V),主要用于地铁、矿山等。
(2)低频单相交流制(3)三相交流制(4)工频单相交流制(27.5KV),我国电气化铁路均采用这种制式。
牵引变电所的4种一次供电方式:(1)一边供电(2)两边供电(3)环形供电(4)辐射供电。
单侧供电方式的可靠性一般比双侧供电方式和环形供电方式要差。
牵引变电所向接触网供电的供电方式:单边供电与双边供电。
第二章牵引变压器及其结线第二章牵引变压器及其结线序号变压器类型输出电压容量利用率对称与否1 单相接线(纯单相单相VV,三相VV量等,60°100%不对称系数1,0.52 三相YN/d11量等,60°75.6%不对称系数0.53 三相不等容量量等,60°94.5%不对称系数0.54 斯科特接线量等,90°92.8%对称5 阻抗匹配平衡型(非阻抗匹配平衡型)量等,90°100%对称三相牵引变压器容量利用率是75.6%,当考虑温度系数kt=0.9时容量利用率可提高到84%容量利用率=定额输出容量/额定容量单相结线在电力系统的电流不对称系数为1,VV结线和三相Y/d结线变压器的不对称系数为0.5。
铁道概论之铁路供电与动力系统

铁道概论之铁路供电与动力系统铁路供电与动力系统是铁路运输中不可或缺的重要组成部分,为铁路列车提供动力和电力支持。
本文将对铁路供电与动力系统进行详细的介绍和论述。
一、铁路供电系统铁路供电系统是铁路列车提供电力动力的重要设施,主要包括接触网、牵引变电设备和配电设备三个组成部分。
1.接触网接触网是铁路供电系统中的核心部分,由支柱、接触线和悬挂装置等构成。
它负责将电力从电源站传输到列车上,为列车提供所需的电力。
接触网需要考虑线路精度、安全性和环境友好性等因素,以确保列车在行驶过程中能够获得稳定的电力供应。
2.牵引变电设备牵引变电设备是将来自电源站的高压交流电转换为适合列车牵引的直流电的设备。
它主要由变电所、变电设备和随动装置组成。
牵引变电设备通过将高压电流降压、整流和平滑处理,将电能传递给列车进行牵引。
3.配电设备配电设备负责将电力从牵引变电设备传送到列车上的各个部位,如车厢照明、空调等。
它主要包括配电变压器、开关设备和保护装置等,确保电力供应的稳定性和安全性。
二、动力系统动力系统为铁路列车提供动力,使其能够正常运行。
动力系统主要分为内燃机车和电力机车两种形式。
1.内燃机车内燃机车运用内燃机产生动力,通过传动装置将动力传递到车轮上,推动列车行驶。
内燃机车具有结构简单、动力强劲、灵活性高等优点,适用于一些短途和非电气化铁路线路。
2.电力机车电力机车是利用电力进行运行的机车,其动力由电机提供。
电力机车分为交流电力机车和直流电力机车两种类型,根据不同的电力供应方式进行分类。
电力机车具有动力稳定、速度可调、对环境友好等优点,适用于电气化铁路线路。
三、铁路供电与动力系统的发展铁路供电与动力系统在长期的发展过程中取得了巨大的进步和创新。
随着科技的不断进步,铁路供电与动力系统也不断更新换代。
1.高速铁路供电与动力系统随着高速铁路建设的飞速发展,铁路供电与动力系统也得到了极大的改进和提升。
对于高速列车来说,电力的稳定供应和动力的高效传输非常重要。