压缩感知图像重构中矩阵互相关性的研究
压缩感知在图像处理中的应用

压缩感知在图像处理中的应用随着数字技术和通信技术的迅速发展,大量的数字图像数据如雨后春笋般地涌现出来。
这些数据的产生和处理,需要消耗大量的存储和传输资源,给计算机硬件和通信网络造成了巨大的负担。
为了解决这一问题,人们研究出了一种新的数据压缩方法——压缩感知。
压缩感知是一种基于信息稀疏性的数据压缩方法,通过采用采样、稀疏表示和重构三个步骤,将原始数据进行压缩,从而实现高效的存储和传输。
压缩感知在图像处理中的应用已经得到广泛的关注和研究,下面将详细介绍压缩感知在图像处理中的应用。
一、图像压缩图像压缩是压缩感知技术在图像处理中的一种应用,主要用于将大体积、高精度的图像数据转换成体积小、精度适中的图像数据。
一般来说,图像压缩技术有两种方法:无损压缩和有损压缩。
无损压缩是指在压缩图像数据的同时,不改变原始图像数据的信息量。
而有损压缩则是通过抛弃部分图像信息,从而实现压缩的目的。
在图像压缩中,压缩感知可以根据图像的稀疏性和低维性质,选择部分图像数据进行采样,并将采样到的数据用稀疏基函数进行表示,从而减少了重构过程中需要处理的数据量,实现了对图像的压缩处理。
二、图像恢复图像恢复是指在压缩感知处理后,恢复图像的过程。
恢复图像的过程需要经过重构或者解压的过程,并将压缩后的数据重新映射成原始的位图信息。
在图像恢复中,压缩感知通过利用低秩矩阵理论和稀疏基表示技术,实现了对压缩图像的有效重构。
压缩感知恢复图像的过程主要包含两个步骤:第一步,利用稀疏基矩阵对采样后的数据进行表示。
通过对采样后的数据进行处理,可以选择出最重要的数据进行保留,另一方面也可以通过稀疏基矩阵进行高效的表示。
第二步,通过重构算法对稀疏基矩阵进行逆变换,实现对原始图像数据的恢复。
总之,图像的恢复过程是依赖于稀疏性的,如果压缩后的图像数据具有比较高的稀疏性,那么在恢复的过程中就可以用较少的数据量来实现较好的恢复效果。
三、应用场景压缩感知技术受到广泛关注,不仅在图像处理领域有着应用,还在语音、视频、遥感图像等领域也得到了应用。
图像压缩感知中常用测量矩阵的性能比较

比较 了不 同的分块 大小对 重构 的影 响。
【 关键词】压缩感知; 测量矩阵; 重构 【 中图分类号】T N 9 1 1 . 7 3
【 文献标志码】A
P e r f o r ma n c e Co mp a r i s o n o f Co mm o n l y Us e d Me a s u r e me n t Ma t r i x i n I ma g e Co mp r e s s e d S e n s i n g
_秘 教 簟
id ̄ o ̄n g int er i ng
D
湖
【 本文献信息】詹可军, 宋建新 .图像压缩感知中常用测量矩阵的性能比较[ J ] . 电视技术, 2 0 1 4 , 3 8 ( 5 )
图像压缩感知中常用测量矩阵的性能比较
詹 可军 , 宋: 建新
( 南京邮电大学 图像处理与图像通信 实验 室, 江苏 南京 2 1 0 0 0 3 )
Z H AN K e j u n , S O NG J i a n x i n
( I m a g e P r o c e s s i n g a n d I m a g e C o m m u n i c a t i o n l a b , N a n j i n g U n i v e r s i t y o f P o s t s a d n T e l e c o m m u n i c a t o i n s , N a n j i n g 2 1 0 0 0 3 , C h i n a ) 【 A b s t r a c t 】M e a s u r e m e n t m a t r i x i s a l l i n t e g r a l p a r t o f t h e e n c o d i n g s i d e i n c o m p r e s s i v e s e n s i n g . I t h s a a ir d e c t i m p a c t o n t h e r e c o n s t r u c t e d s i g n l’ a S q u l a —
基于压缩感知的信号重构算法研究共3篇

基于压缩感知的信号重构算法研究共3篇基于压缩感知的信号重构算法研究1基于压缩感知的信号重构算法研究随着信息技术的发展以及现代通信系统的广泛应用,人们对于信号重构算法的研究也越来越深入。
其中,基于压缩感知的信号重构算法受到了广泛关注。
本文将从以下四个方面来探讨该算法的研究。
一、压缩感知的基本原理压缩感知的核心思想是将一个高维信号(如图像、音频等)映射到一个较低维的空间中,然后再通过一个线性投影方式将数据压缩。
利用测量矩阵可以将压缩后的数据重构到原来的高维空间中,并且能够利用未知信号的稀疏性完成恢复过程。
这种低维的表示方式可以使数据占用的空间大大减小,因此压缩感知成为了高效的信号采样方式。
二、常见的压缩感知算法常见的压缩感知算法包括OMP算法、CoSaMP算法、MPCP算法等。
其中OMP算法是一种迭代算法,用于寻找稀疏表示向量。
CoSaMP算法考虑到了噪声的影响,能够更准确地进行稀疏重构。
MPCP算法则是多向量压缩感知的拓展,用于处理多个信号的联合稀疏性问题。
三、压缩感知在图像压缩方面的应用基于压缩感知的信号重构算法在图像压缩方面的应用也是较为广泛的。
传统的JPEG和PNG等图像压缩算法虽然能够将图像进行压缩,但是重构后的图像质量较差,并且对于稀疏性较强的图像处理能力有限。
基于压缩感知的算法能够更好地处理稀疏性强的图像,同时也能够提高图像的显示效果。
四、压缩感知在音频处理方面的应用除了在图像处理方面的应用,基于压缩感知的信号重构算法在音频处理方面也具有广泛的应用前景。
例如在音频采样、去噪、提取声音等方面都有着极为广泛的应用。
此外,利用压缩感知的技术,人们还可以用较小的存储空间存储大量音乐等高质量音频数据。
综上所述,基于压缩感知的信号重构算法是一种高效且优越的信号处理方法,具有较广泛的应用前景。
在未来的研究中,我们可以结合更多的数据处理技术来提高算法的效率和精度基于压缩感知的信号重构算法在信号处理中具有广泛应用前景,能够更好地处理稀疏性较强的信号,并提高信号质量。
压缩感知重构算法研究

【 Ab s t r a c t 】A n e w r e c o n s t r u c t i o n me t h o d n a m e d I Y — T V i s p r o p o s e d i n t h i s a r t i c l e w h i c h i s o n t h e b a s i s o f t h e t r a d i t i o n a l
压缩感 知理论突破 了这一局 限 , 此理论 证 明在一定 条件 “ 噪” 而恢 复原信 号 , 从 而为 以全 变差算法 作为重构 算法
【 关键 词】压缩感知 ; 测量; 重构算法 ; T v算法
【 中图分 类号 】 T N 9 1 9 ; T P 3 9 1
【 文献标志码】A
Re s e a r c h o n Co mp r e s s e d S e n s i n g Re c 0 n s t r u c t i o n Al g o r i t h m
me t h o d s .T h e T V a l g o i r t h m i s c o n d u c i v e t o t h e r e mo v a l o f s i g n a l n o i s e a n d t h e o i r g i n a l s i g n a l c a n b e c o n s t r u c t e d t h r o u g h mu l t i p l e i t e r a t i o n s .T h e i n i t i a l v a l u e o f t h e TV d i r e c t l y a f f e c t s t h e r e c o n s t r u c t e d i ma g e q u a l i t y a n d t h e r e c o n s t r u c t i o n t i me .T V
基于压缩感知的图像重构算法

基于压缩感知的图像重构算法李春晓;李静辉;石翠萍;周仕坤;那与晶;刘欢欢;关硕【摘要】奈奎斯特定理具有一定的局限性,在奈奎斯特采样定理中指出采样过程需要满足一个条件,其采样频率不得低于模拟信号最高频率两倍.然而在过去十几年时间里,随着信息需求量的高速增长导致信号带宽也必须随之增长.这就导致了对技术以及设备要求越来越高,无法有效处理海量的数据.为了提高处理效率,我们利用图像信号的稀疏性对图片处理,通过压缩感知重建算法将图片精准的恢复出来.因为图像有一定的相似性,所以在处理图像的过程中,导致了图像数据的计算复杂度高,恢复图像的精度低.对于这个问题,可以通过压缩感知算法分析图像数据处理.【期刊名称】《科技视界》【年(卷),期】2019(000)001【总页数】2页(P65-66)【关键词】压缩感知;稀疏;图像重建;采样【作者】李春晓;李静辉;石翠萍;周仕坤;那与晶;刘欢欢;关硕【作者单位】齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161000;齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161000;齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161000;齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161000;齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161000;齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161000;齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161000【正文语种】中文【中图分类】TN911.70 引言随着信息的高速发展,在生活中需要与图像相关的应用越来越多。
面对海量的图像数据,奈奎斯特采样定律显得力不从心。
近年来,基于压缩感知框架下的图像重构得到广大学者研究 [1-3]。
图像处理便是社会和生活不可或缺的一部分。
在最近的十多年,人们对于信息的需求量剧增,图像信号中包含很多数据,尤其是超分辨图像 [4-6],因此这也导致了处理信息的精度问题和效率问题。
基于压缩感知的图像处理是通过信号的稀疏来表示的,对信号进行采样压缩,信号重构。
基于向量稀疏和矩阵低秩的压缩感知核磁共振图像重建算法

基于向量稀疏和矩阵低秩的压缩感知核磁共振图像重建算法张红雨【摘要】当前基于压缩感知理论的核磁共振图像重建算法大多仅利用图像数据的稀疏性或者低秩性,并没有同时利用图像的这两个性质.本文提出了一种基于向量稀疏性和矩阵低秩性的压缩感知核磁共振图像重建方法.该方法利用核磁共振图像中图像块的非局部相似性对求解优化模型的经典非线性共轭梯度算法进行改进.主要是在共轭梯度算法的迭代过程中对每一图像块寻找其相似块,由于相似块的像素组成的矩阵具有低秩性,因此利用矩阵低秩恢复算法对每一图像块进行更新.改进后的方法同时利用了图像数据的稀疏性和低秩性.实验结果表明,该方法相对于现有的具有代表性的图像重建算法相比,提升了重建图像的质量,具有较高的信噪比.%Most of the Magnetic Resonance Image (MRI) reconstruction algorithms that based on compressed sensing theory were only used the sparsity or low-rank of the image data,they did not use the two properties at the same time.In this paper,we propose a new kind of MR image reconstructed algorithm for utilizing sparse vector and low-rank matrix based on compressed sensing theory.This method utilizes the non-local similarity of the image blocks in the MRI to improve the classical nonlinear conjugate gradient method for sloving the optimization model.In the iterative process of conjugate gradient algorithm for each image block to find the similar blocks,due to the matrix that includes the pixel of the similar blocks is low-rank,therefore,we apply to the low-rank matrix recovery algorithm to update each image block.The proposed method improves the quality ofreconstructed image and has a higher signal to noise ratio when compared with the exisiting reconstruction algorithms.【期刊名称】《天津理工大学学报》【年(卷),期】2017(033)001【总页数】5页(P25-29)【关键词】核磁共振成像;压缩感知;稀疏性;低秩性;共轭梯度法【作者】张红雨【作者单位】天津大学理学院,天津300350【正文语种】中文【中图分类】TP391.41磁共振成像技术(Magnetic Resonance Imaging,MRI)是20世纪80年代发展起来的影像检查技术.由于其不仅可以清楚地显示人体病理结构的形态信息,特别是对软骨组织具有很强的分辨能力,且对人体无辐射危害,近年来被广泛的应用于临床医学等领域.但MRI存在成像速度慢,易产生伪影等缺点.研究人员针对这些缺点展开了深入的研究.目前研究方向较多的是如何在减少采样数据时有效的重建图像,即在减少扫描时间的同时尽量提高图像的分辨率.近年来,Donoho与Candes等人提出的压缩感知(Compressive Sensing,CS)理论表明,如果信号具有稀疏性或在某个变换域下具有稀疏性,可以用一个与变换基不相关的观测矩阵将高维信号投影到低维空间中,然后通过求解优化问题就可以从少量投影中精确的重建出原信号[1-2].MR图像重建具备压缩感知理论应用的两个关键条件.首先MR图像满足在小波,差分等变换域下具有稀疏性,其次对K空间数据欠采样引起的混叠伪影是非相干的.为此,利用压缩感知理论可以从欠采样的K空间数据中恢复出原图像.近年来压缩感知理论在MRI领域的应用已成为研究热点.目前在压缩感知理论框架下很多文章利用MR图像在不同转换域上的稀疏性作为先验知识建立模型,实现了MR图像的快速重建[2-6].Donoho等[2]利用MR图像在总变分(total variation,TV)域的稀疏性采用共轭梯度算法求解MR重建问题.Lustig等[3]利用MR图像在小波域的稀疏性和TV的稀疏性设计了在K空间欠采样下重建MRI的优化模型.Ravishanker等[5]借鉴基于块稀疏的自适应字典稀疏的重建方法-KSVD[4],提出了基于KSVD的自适应字典学习的MRI重建算法DLMRI(Dictionary Learning Magnetic Resonance Imaging).Huang等[6]利用MR图像在小波域和TV域的稀疏性,使用算子分裂算法将MRI重建问题分解并提出了FCSA(FastCompositeSplittingAlgorithms)算法对分解后问题进行求解.Li等[7]利用MR图像在轮廓波域,小波域和TV域的稀疏性作为正则项建立优化模型,将快速迭代阈值算法(Fast iterative shrinkage/threshold algorithm,FIATA)进行改进对其进行求解,提高了重建图像的质量和计算效率.自然图像中存在大量重复的相似结构,这些相似结构不仅包括在平滑区域里,而且也存在于纹理区域和边缘部分中.图像的这个性质—非局部相似性对图像进行恢复重建在图像细节保真方面得到了提升.Buades等[8]通过在图像中搜索相似块并对其进行加权平均滤波进行图像去噪,取得良好的去燥效果.Dabov等[9]提出一种新的块匹配算法(BM3D),这种方法利用图像块的相似性对图像块进行聚类并采用滤波对图像进行重建.Dong等[10]提出了一种新的基于相似块的局部自适应迭代奇异值阈值的低秩算法,在解决图像重建问题中取得了不错的重建效果.自然图像的非局部相似性同样在MR图像中也普遍存在[11].Aksam M等[11]利用块的相似性和冗余性提出了增强非局部均值算法应用到脑部MRI图像去噪和分割中.Qu等[12]提出了从下采样的K空间数据中利用基于块的方向小波的方法来重建MR图像.Huang等[13]改进了FCSA算法,用非局部TV去代替FCSA中的TV,提高了图像重建的整体质量.本文提出了基于向量稀疏性和矩阵低秩性相结合的压缩感知核磁共振图像重建方法.在原有基于向量稀疏的求解模型中,通过利用MR图像的非局部相似性质,对共轭梯度算法进行改进.改进后的算法主要是在迭代过程中通过块匹配方法对每一图像块寻找其相似快,由相似块的像素组成的矩阵具有低秩性,然后使用矩阵低秩恢复算法对图像块进行更新.文献[2]在压缩感知理论框架下运用MR图像在傅里叶域和TV域上的稀疏性进行重建.本文对文献[2]中的求解算法作了改进,改进的算法同时利用了MR图像的向量稀疏性和矩阵低秩性两个先验知识.下面先简要介绍文献[2]提出的基于向量稀疏的压缩感知重建MR图像的方法.1.1 基于向量稀疏的压缩感知MR图像重建方法设x为要重建的MR图像,对x进行稀疏变换为x=ψα、α,是图像x在ψ域的稀疏表示系数,然后用一个与变换矩阵ψ不相关的测量矩阵Φ对图像x进行线性投影,从而得到线性观测值y.MR图像的重建问题就是要根据观测值y重建MR 图像[1][14].该问题属于逆问题的求解.因为MR图像在许多变换域上是稀疏的,Candes等[15]证明了MR重建问题可以通过求解最小L0范数得到解决.由于L0问题是NP-hard 问题,Donoho等[16]提出了用L0范数代替L0范数,进而转化为一个凸优化问题.即其中x是待重建的图像,y是在Fourier变换域下的观测数据,Fu为MRI傅里叶域下的随机欠采样算子,ψ表示稀疏域.将TV作为稀疏正则项,保留了图像的边缘和细节信息[17].因此文献[2]同时利用MR图像在傅里叶域和TV域上稀疏性,得到下面的模型(2).分别表示第一,第二维度方向像素的离散梯度.对于模型(2),文献[2]采用非线性共轭梯度算法进行求解.此算法的主要步骤为:Step1:设置初始参数并计算初始梯度:x0为待重建MR图像,y为Fourier变换域下的观测数据,α,β为线性搜索参数,iter为迭代次数,Tol为迭代停止精度,并令k:=0.Step2:计算初始下降搜索方向:Step3:若‖gk‖<Tol同时k>iter时,停止计算,输出x*=xk.Step4:确定搜索步长t.初始化t=1,当满足条件f(xk+txk)>f(xk)+αt*Re al(gk*Δxk),令步长为t=βt.Step5:图像更新并计算下降搜索方向:Step6:迭代次数更新:令k:=k+1,转步Step3.1.2 基于矩阵低秩的压缩感知MR图像重建算法图像的每一个像素都与其周围的像素点共同构成图像中的一个结构.以某个像素点为中心取窗口称该窗口为图像块.所取图像块包含一定的空间结构,而在图像中存在大量重复相似结构信息,这可以看做图像本身结构细节部分具有非局部相似性.如图1所示,在图像中取一小块,则可以在图像中找到多处与此图像块相似的小块.本文利用MRI具有的非局部相似性对文献[2]的求解算法进行改进,使得MRI重建算法不仅利用了MRI在傅里叶域和TV域上具有稀疏性,同时也考虑了具有相似特性的图像块所构成矩阵的低秩特性.本文采用改进后的非线性共轭梯度算法求解优化问题.原算法在Step5中采用最速下降法直接对图像进行更新,而改进后的算法先在Step5中使用矩阵低秩算法对图像块进行更新后,再使用最速下降法进行二次更新.具体操作如下:将图像x分成若干小图像块,对每一个图像块寻找其对应的相似图像块进行聚类,将相似图像块的像素组成近似低秩矩阵的列向量.采用下面模型对近似低秩矩阵寻找相似图像块的低秩子空间:其中P=[p1,p2,…,pm]表示相似块构成的矩阵,U表示为左乘矩阵,V为右乘矩阵,∑=diag{λ1,λi,…,λk}为对角矩阵,λi为奇异值,τ为正则参数.分为两步对问题(5)进行迭代求解.①对低秩矩阵P进行SVD分解:(U,∑,V)=svd(P).②对经过SVD分解得到的奇异值进行软阈值操作:,其中Sτ表示为阈值为τ的软阈值操作.因此新的低秩矩阵为P*=UVT.得到的每一个新的低秩矩阵作为更新图像块的初始估计,再将更新后的图像进行最速下降法的二次更新.改进后的方法充分利用图像数据的稀疏性和低秩性,从而更好地平滑噪声和保持图像边缘信息.为了验证本文改进的算法的性能和效果,对两幅经典MR图像进行测试.测试图像的尺寸均为256*256.如图2列出了两幅原始图像(不含噪声).首先对原始K空间数据加入噪声方差为0.01的高斯白噪声后进行欠采样(采样率为0.2),然后再用欠采样数据进行图像重建.实验部分测量矩阵采用的是高斯随机观测矩阵,稀疏变换域为Fourier域,图像块的大小为7*7.为了验证算法的有效性,本文算法将与CG算法[2],SparseMRI算法[3],FCSA算法[6],FICOTA算法[7]进行比较.实验结果的对比,主要采用主观比较和客观评价标准比较相结合的方式.主观比较主要比较MR图像重建的整体效果和图像纹理,边缘等局部细节.客观评价标准采用PSNR(peak signal-to noise radio),TEI(Tranferred edge information)和数据逼真项L2范数误差这三项来评估重建效果.图3,图4为两幅图像在不同算法下的重建效果,图5为重建Shoulder图像的局部细节图.通过图3,图4可以看出,与其他算法相比,本文方法整体重建效果较清晰.从图5可以看出,本文重建的纹理细节较为清晰,边缘锯齿较小,平滑了噪声.表1,表2为测试图像在不同算法下的客观评价标准对比.通过表1,表2可以看出,对于测试图像Brain和Shoulder,从客观标准PSNR和TEI的值来看,本文算法高于其他算法,说明本文算法重建图像的质量最好.而L2范数误差值的角度来看,本文方法的值要小于其他算法,说明本文算法重建图像与原图像之间的误差最小.通过表1,2的结果分析,本文方法在3个客观评价标准的性能方面都高于其它4种方法,从客观上反映了本文方法取得了较好的重建效果.因此无论是从重建MR图像质量的主观比较还是客观评价标准来对比,本文算法能够很好地利用K空间欠采样数据重建出效果更好的MR图像,而且从整体图像的重建效果来看,本文算法都要优于其他算法.本文提出了一种基于向量稀疏和矩阵低秩的压缩感知MR图像重建的方法,使用矩阵低秩算法对非线性共轭梯度算法进行改进,充分将图像数据的稀疏性和低秩性结合在一起.通过与其他算法对比,本文算法具有较高的信噪比,重建的图像整体更为清晰,更好地平滑噪声和保持图像边缘信息.下一步工作将进一步探究图像数据的稀疏性和低秩性在MR图像中实现更加快速和有效的重建.【相关文献】[1]Donoho pressed sensing[J].IEEE Transactions on Information Theory,2006,50(1):1289-1306.[2]Lustig M,Donoho D,Santos J M,et pressed sensing MRI[J].IEEE Signal Processing Magazine.2008,25(2):72-82.[3]Lustig M,Donoho D,Pauly J M.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Mag-netic Resonance in Medicine,2007,58(2):1182-1195.[4]Aharon M,Elad M,Bruckstein A,et al.K-SVD:An algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Trans on Signal Processing,2006,54(1):4311-4322.[5]Raavishankar S,Bresler Y.MR Image reconstruction from highly undersampled k-space data by dictionary learning[J].IEEE Trans on Medical Imaging,2011,30(3):1028-1041.[6]Huang J,Zhang S,Metaxas D.Efficient MR image reconstruction for compressed MR imaging[J].Medical Image Anlysis,2011,15(5):670-679.[7]Li J W,Hao W L,Qu X B,et al.Fat iterative contourlet thresholding for compressed sensing MRI[J].Electronics Letters.2013,49(19):1206-1208.[8]Buade A,Morel J M.A non-local algorithm for image denoising[C]//Proceedingsof the 2005 Computer Vision and Pattern Recognition(CVPR).San Francisco.CA:IEEE,2005:60-65.[9]Dabov K,Foi A,Katkovnik V,et al.Image denoising by sparse 3D transform-somain collaborative filtering[J].IEEE Trans on Image Processing.2007,16(1):2080-2095.[10]Dong W S,Shi G M,Li X.Nonlocal image restoration with bilateral variance estimation:a low-rank approach[J].IEEE Trans on image processing,2013,22(2):700-712.[11]Aksam M,Jalil A,Rathore S,et al.A.Robust brain MRI den-oising and segmentation using enhanced non-local means algorithm[J].International Journal of Imaging Systems and Technology,2014,24:52-66.[12]Qu X,Guo D,Ning B.et al.Undersampled MRI reconstruction with patch-based directional wavelets[J].Magnetic resonance imaging,2012,30(1):967-977.[13]Huang J,Yang pressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation[J]. Proceedings,2012,5(1):968-971.[14]石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081.[15]Candes E J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency Information[J].IEEE Trans on Information Theory,2006,52(1):489-509.[16] Donoho D.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.[17]Rudin L,Osher S.Non-linear total variation noise removal algorithm[J].Phys D,1992,60(2):259-268.。
压缩感知技术在图像处理中的应用

压缩感知技术在图像处理中的应用压缩感知技术是一种创新的数据压缩方法,用于减少并优化数据的传输和存储。
在图像处理领域,压缩感知技术已经取得了显著的进展,并得到了广泛的应用。
本文将介绍压缩感知技术的基本原理,并探讨其在图像处理中的应用。
压缩感知技术的基本原理是通过稀疏表示和随机测量来实现数据的高效压缩。
稀疏表示假设信号可以用一个较小的基向量集合表示,因此只需传输这些基向量和相应的系数即可重构信号。
随机测量则用于从原始数据中采样一部分,通过这些采样值来计算信号的系数。
利用这种方法,可以在不丢失重要信息的情况下,显著减少需要传输和存储的数据量。
在图像处理中,压缩感知技术可以应用于多个方面。
首先,压缩感知技术可以用于图像压缩。
传统的图像压缩方法如JPEG、PNG等,往往需要大量的计算和存储资源。
而压缩感知技术通过测量信号的稀疏表示,可以实现更高效的图像压缩。
相比传统方法,压缩感知技术可以在保持较高图像质量的同时,减少数据的传输和存储成本。
其次,压缩感知技术可以用于图像重构和恢复。
在某些场景下,由于信号传输或存储的原因,图像可能会受到噪声、失真或丢失。
压缩感知技术可以通过信号的稀疏表示来恢复图像,即使只有部分原始数据可用。
这使得压缩感知技术在图像恢复、图像增强和图像修复等领域具有很大的潜力。
另外,压缩感知技术还可以应用于图像传感和图像处理。
图像传感包括图像采集和图像传输两个方面。
传统的图像采集方法需要高分辨率的传感器和高带宽的传输通道,但这对于某些特殊场景下的图像传感是不现实的。
而压缩感知技术则可以通过随机测量和稀疏表示,实现对图像的高效采集和传输。
图像处理方面,压缩感知技术可以应用于图像特征提取、目标检测和图像分类等任务中,提高图像处理的效率和准确性。
除了以上应用,压缩感知技术还可以用于图像分析、图像识别和图像处理的其他任务中。
压缩感知技术的出现为图像处理领域带来了全新的思路和方法,提高了图像处理的效率和质量。
基于TOEPLITZ重构的压缩感知嵌套阵列DOA估计

基于TOEPLITZ重构的压缩感知嵌套阵列DOA估计
李荣禄;汤建龙;袁永强
【期刊名称】《雷达科学与技术》
【年(卷),期】2024(22)3
【摘要】针对传统稀疏阵列波达方向(DOA)估计算法在小快拍数、低信噪比和多信源数等条件下的估计精度不高的问题,提出了一种基于TOEPLITZ重构的压缩感知嵌套阵列DOA估计方法。
首先利用TOEPLITZ重构方法将虚拟阵列的输出信号向量构建成满秩协方差矩阵,然后利用信号在空间域的稀疏性,将阵列协方差矩阵进行稀疏表示,通过噪声子空间和信号子空间的正交关系构建权值向量,对稀疏向量进行加权约束,最后通过求解最优化方程获取入射信源的DOA估计。
仿真结果表明,本文方法比传统稀疏阵列DOA估计算法在低信噪比、小快拍数和多信源数下具有更好的DOA估计性能。
【总页数】7页(P334-340)
【作者】李荣禄;汤建龙;袁永强
【作者单位】西安电子科技大学电子工程学院
【正文语种】中文
【中图分类】TN911.7
【相关文献】
1.单快拍虚拟阵列Toeplitz矩阵重构的相干信源DOA估计
2.基于Toeplitz矩阵重构的嵌套阵DOA估计算法
3.基于Toeplitz协方差矩阵重构的互质阵列DOA估
计方法4.高斯色噪声下基于2 q阶嵌套MIMO阵列的DOA估计算法5.基于改进典范分解的嵌套阵列DOA估计
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
me t h o d i s v e if r ie d a n d t he r e c o v e r y r e s u hs h av e be e n i mpr o v e d t o s o me e xt e nt . Comp ar e d wi t h t he c o n ve nt i o n a l wa v e l e t r e s t o r a t i o n
t h r e s h o l d s e l e c t i o n s o f Gr a m ma t r i x c o n s t i t u t e d b y n l e a s t l r e me n t ma t r i x a n d s p a r s e ma t i r x,a n d ma k i n g a p p r o p ia r t e s c a l i n g p r o c e s s i n g,
r e c o n s t r uc t i o n
Z h e n g Y o n g q i , J i a o Z h u , Ha n Yu x i a
( 1 . Z h e n g z h o u S h u q i n g Me d i c a l C o l l e g e, Z h e n g z h o u 4 5 3 4 0 0, C h i n a
2 . Xi a n Un i v e r s i t y o f T e c h n o l o g y, Xi a n 7 1 0 0 6 8, C h i n a)
Ab s t r a c t :T h i s p a p e r b e g i n s wi t h t h e p e t s p e e t i v e o f t h e c o r r e l a t i o n b e t we e n me a s u r e me n t ma t r i x a n d s p a r s e ma t r i x .By ma k i n g
中 图 分 类 号 :T N 9 1 9 文 献 标 识 码 :A 文 章 编 号 :1 6 7 4 — 7 7 2 0 ( 2 0 1 3 ) 0 5 — 0 0 4 2 — 0 4
S t u d y o f c o r r e l a t i o n b e t we e n ma t r i x i n c o mpr e s s e d s e n s i n g i ma g e
的测 量 值 , 而 且 可 以 完 成 对 测 量 矩 阵 的 优 化 改 进 。通 过 在 D WT、 D C T 下 的 压 缩 感 知 图像 重 构 实 验 验 证 了该 方 法 的 可 行 性 , 恢 复效 果 得 到 一 定 程 度 的 提 高 , 相 比 于传 统 的 小 波 恢 复 重 构 , 达 到 了预 期 的 效 果 。 关 键 词 :压 缩 感 知 : 稀疏表示 ; 测 量 矩 阵
摘 要 : 从 测 量 矩 阵 和 稀 疏 矩 阵 的 互 相 关 性 角 度 出 发 , 通 过 对 测 量 矩 阵 和 稀 疏 矩 阵 所 构 成 的
G r a m 矩 阵进 行 门限 选择 , 进 而 经过 相 应 的 缩放 处 理 降 低 互 相 关性 , 这 样 不 仅 可 以 获 取 更 多 有 信 息 量
r e c o n s t r u c t i o n.i t a c h i e v e s t h e d e s i r e d r e s u h s .
K e y wo r d s: c o mp r e s s e d s e n s i n g;s p a r s e r e p r e s e n t a t i o n:l n e a s u r e n l e n t ma t i r x
I ma g e Pr o c e s s i n g a n d Mu l t i me di a Te c h n o l o g y
压 缩感 知 图像 重构 中矩 来自互相 关 性 的研 究 郑 永 奇 , 焦 铸 。 , 韩 玉 霞 ( 1 . 郑州 I 澍 青 医学高 等 专 科 学校 , 河南 郑 州 4 5 3 4 0 0; 2 . 西安 理 工 大 学 , 陕西 西安 7 1 0 0 6 8 )