文科数学2010-2019高考真题分类训练专题九解析几何第二十五讲椭圆

合集下载

【2019高考文科真题】分类汇编:9.5考点2 椭圆的几何性质

【2019高考文科真题】分类汇编:9.5考点2 椭圆的几何性质

高考真题(2019•全国II 卷(文))若抛物线y 2=2px (p >0)的焦点是椭圆的一个焦点,则p =A .2B .3C .4D .8【解析】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D . 【答案】D(2019•全国III 卷(文))设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________.【解析】由已知可得,.∴.设点的坐标为,则, 又,解得, ,解得(舍去), 的坐标为.【答案】2231x y pp+=22(0)y px p =>(,0)2p 2231x y p p +=23()2p p p -=8p =12F F ,22:+13620x y C =M C 12MF F △M 2222236,20,16,4a b c a b c ==∴=-=∴=11228MF F F c ∴===24MF =M ()()0000,0,0x y x y >>121200142MF F S F F y y =⋅⋅=△1201442MF F S y =⨯=∴=△0y=22013620x ∴+=03x =03x =-M (((2019•全国II 卷(文))已知是椭圆的两个焦点,P 为C 上一点,O 为坐标原点.(1)若为等边三角形,求C 的离心率;(2)如果存在点P ,使得,且的面积等于16,求b 的值和a 的取值范围. 【答案标记】【解析】(1)连结,由为等边三角形可知:在中,,,,于是, 故椭圆C 的离心率为; (2)由题意可知,满足条件的点存在,当且仅当,,, 即 ①②③ 由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点. 故,a 的取值范围为.【答案】(1);(2),a 的取值范围为.(2019•天津卷(文))设椭圆的左焦点为,左顶点为,上顶点为B .已知(为原点).12,F F 2222:1(0)x y C a b a b+=>>2POF 12PF PF ⊥12F PF △1PF 2POF 12F PF △1290F PF ∠=2PF c =1PF =122a PF PF c=+=1c e a ===(,)P x y 12162y c ⋅=1y y x c x c ⋅=-+-22221x y a b+=16c y =222x y c +=22221x y a b+=222a b c =+422b y c =22216y c=4b =22222()a x c b c=-22c b ≥2222232a b c b =+≥=a ≥4b =a ≥P 4b =)+∞1e =4b =)+∞22221(0)x y a b a b+=>>F A |2||OA OB =O(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程. 【答案标记】【解析】(I )解:设椭圆的半焦距为, 又由,消去得,解得,所以,椭圆的离心率为. (II )解:由(I )知,,故椭圆方程为,由题意,,则直线的方程为, 点的坐标满足,消去并化简,得到,解得, 代入到的方程,解得, 因为点在轴的上方,所以, 由圆心在直线上,可设,因为,且由(I )知,故,解得, 因为圆与轴相切,所以圆的半径为2,F 34l x P C x l C 4x =OC AP ∥c 2b =222a b c =+b 222)2a a c =+12c a =122,a c b ==2222143x y c c+=(,0)F c -l 3()4y x c =+P 22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩y 2276130x cx c +-=1213,7cx c x ==-l 1239,214y c y c ==-P x 3(,)2P c c 4x =(4,)C t OC AP ∥(2,0)A c -3242ct c c=+2t =C x又由圆与,解得, 所以椭圆的方程为:.【答案】(I );(II ).C l 2=2c =2211612x y +=122211612x y +=。

2010年高考真题(椭圆部分[含答案])

2010年高考真题(椭圆部分[含答案])

2010年高考题1.(2010全国卷2理)(12)已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B(C(D )2 【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.2.(2010全国卷2文)(12)已知椭圆C :22221x y a b +=(a>b>0,过右焦点F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。

则k =(A )1 (B(C(D )2 【答案】B【解析】1122(,),(,)A x y B x y ,∵ 3AF FB = ,∴ 123y y =-, ∵e =,设2,a t c t ==,b t =,∴ 222440x y t +-=,直线AB方程为x sy =。

代入消去x ,∴222(4)0s y t ++-=,∴2121224t y y y y s +==-+,22222234t y y s -=-=-+,解得212s =,k =3.(2010重庆理)(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是A. 直线B. 椭圆C. 抛物线D. 双曲线 【答案】 D解析:排除法 轨迹是轴对称图形,排除A 、C ,轨迹与已知直线不能有交点,排除B4.(2010四川理)(9)椭圆22221()x y a b a b+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 (A)⎛⎝⎦ (B )10,2⎛⎤ ⎥⎝⎦ (C ))1,1 (D )1,12⎡⎫⎪⎢⎣⎭解析:由题意,椭圆上存在点P ,使得线段AP 的垂直平分线过点F , 即F 点到P 点与A 点的距离相等而|F A |=22a b c c c-= |PF |∈[a -c ,a +c ]于是2b c∈[a -c ,a +c ]即ac -c 2≤b 2≤ac +c 2∴222222ac c a c a c ac c⎧-≤-⎪⎨-≤+⎪⎩ ⇒1112ca c c aa ⎧≤⎪⎪⎨⎪≤-≥⎪⎩或又e ∈(0,1) 故e ∈1,12⎡⎫⎪⎢⎣⎭【答案】D5.(2010广东文)7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A.54 B.53 C. 52 D. 51【答案】B6.(2010福建文)11.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP的最大值为A .2B .3C .6D .8【答案】C【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=,解得22003(1)4x y =-, 因为00(1,)FP x y =+ ,00(,)OP x y = ,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++ 203(1)4x -=20034x x ++,此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅ 取得最大值222364++=,选C 。

文科数学2010-2019高考真题分类训练专题九解析几何第二十五讲椭圆答案

文科数学2010-2019高考真题分类训练专题九解析几何第二十五讲椭圆答案

专题九 解析几何第二十五讲 椭圆答案部分 2019年2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫-⎪⎝⎭. 因为点B 在椭圆()222210x y a b a b +=>>上,所以291144a +=.解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B.2.解析:由题意可得:232p p p ⎛⎫-= ⎪⎝⎭,解得8p =.故选D .3.解析(I )由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(Ⅱ)设P (1,y 1),Q (2,y 2), 则直线AP 的方程为1111y y x x -=+.令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k -+=-⋅+-⋅-+-++12||1tt+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t=0,所以直线l 为y kx =,所以直线l 恒过定点(0,0). 4.解析 (1)设椭圆C 的焦距为2c . 因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥轴,所以DF 2=32==, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥轴,所以点A 的横坐标为1. 将=1代入圆F 2的方程(-1) 2+y 2=16,解得y =±4. 因为点A 在轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2+2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图所示,联结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥轴,所以EF 1⊥轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E是线段BF2与椭圆的交点,所以32 y=-.因此3 (1,)2E--.5.解析:设椭圆的右焦点为F',连接PF',线段PF的中点A在以原点O为圆心,2为半径的圆,连接AO,可得24PF AO'==,设P的坐标为(m,n),可得2343m-=,可得32m=-,15n=,由(2,0)F-,可得直线PF的斜率为15215322=-+.6.解:(1)连结1PF,由2POF△为等边三角形可知在12F PF△中,1290F PF∠=︒,2PF c=,13PF c=,于是122(31)a PF PF c=+=,故C的离心率是31cea==.(2)由题意可知,满足条件的点(,)P x y存在当且仅当1||2162y c⋅=,1y yx c x c⋅=-+-,22221x ya b+=,即||16c y=,①222x y c+=,②22221x ya b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P . 所以4b =,a的取值范围为)+∞.7.解析(Ⅰ)设椭圆的半焦距为c2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (Ⅱ)由(Ⅰ)知,2a c =,b = ,故椭圆方程为2222143x y c c+=.由题意,(),0F c -,则直线l 的方程为3()4y x c =+. 点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,,,消去y 并化简,得到2276130x cx c +-=,解得1x c =,2137c x =-,代入到l 的方程,解得132y c =,2914y c =-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设()4,C t . 因为OC AP ∥,且由(Ⅰ)知()2,0A c -,故3242c t c c=+,解得2t =. 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l2=,可得2c =.所以,椭圆的方程为2211612x y +=.8.解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .9.解析(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM u u u u r =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||EM =u u u u r 22522x y ⎛⎫+-= ⎪⎝⎭.2010-2018年1.C 【解析】不妨设0a >,因为椭圆C 的一个焦点为(20),,所以2c =,所以222448a b c =+=+=,所以C 的离心率为2c e a ==.故选C . 2.D 【解析】由题设知1290F PF ∠=o,2160PF F ∠=︒,12||2F F c =,所以2||PF c =,1||PF =.由椭圆的定义得12||||2PF PF a +=,2c a +=,所以1)2c a =,故椭圆C 的离心率1c e a ===.故选D .3.C 【解析】由题意25=a ,=a .由椭圆的定义可知,P 到该椭圆的两个焦点的距离之和为2=a ,故选C .4.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B .5.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,3c e a ==,故选A .6.A 【解析】当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o,则tan 60ab ≥=o ≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o,则tan 60ab ≥=o ≥, 得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,选A .7.B 【解析】不妨设直线l 过椭圆的上顶点(0,)b 和左焦点(,0)c -,0,0b c >>,则直线l的方程为0bx cy bc -+=124b =⨯,解得223b c =, 又222b ac =-,所以2214c a =,即12e =,故选B .8.A 【解析】由题意,不妨设点P 在x 轴上方,直线l 的方程为()(0)y k x a k =+>,分别令x c =-与0x =,得||()FM k a c =-,||OE ka =,设OE 的中点为G ,由OBG FBM ∆∆:,得||||||||OG OB FM BF =,即2()ka a k a c a c =-+,整理得13c a =,所以椭圆C 的离心率13e =,故选A . 9.B 【解析】∵抛物线C :28y x =的焦点坐标为(2,0),准线l 的方程为2x =- ①,设椭圆E 的方程为22221(0)x y a b a b+=>>,所以椭圆E 的半焦距2c =,又椭圆的离心率为12,所以4,a b ==E 的方程为2211612x y +=②,联立①②, 解得(2,3),(2,3)A B ---或(2,3),(2,3)A B ---,所以||6AB =,选B . 10.B 【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C . 11.A 【解析】设椭圆的左焦点为1F ,半焦距为c ,连结1AF ,1BF ,则四边形1AF BF 为平行四边形,所以11||||||||4AF BF AF BF +=+=,根据椭圆定义,有11||||||||4AF AF BF BF a +++=,所以84a =,解得2a =.因为点M 到直线l :340x y +=的距离不小于45,即44,155b b ≥≥,所以21b ≥,所以2221,41a c c --≥≥,解得0c <0c a <≤心率的取值范围为(0,]2.12.D 【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ===,当且仅当2sin3α=-时取等号,所以max max||||PQ CQ r+==≤,所以QP,两点间的最大距离是.13.D【解析】设1122(,),(,)A x yB x y,则12x x+=2,12y y+=-2,2211221x ya b+=①2222221x ya b+=②①-②得1212121222()()()()x x x x y y y ya b+-+-+=,∴ABk=1212y yx x--=212212()()b x xa y y+-+=22ba,又ABk=0131+-=12,∴22ba=12,又9=2c=22a b-,解得2b=9,2a=18,∴椭圆方程为221189x y+=,故选D.14.D【解析】∵1,2,c a b=== D.15.C【解析】∆21F PF是底角为30o的等腰三角形221332()224cPF F F a c c ea⇒==-=⇔==16.5【解析】设11(,)A x y,22(,)B x y,由2AP PB=u u u r u u u r,得1212212(1)x xy y-=⎧⎨-=-⎩,即122x x=-,1232y y=-.因为点A,B在椭圆上,所以222222224(3)44xx mxy m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m=+,所以2222221591(32)(5)444244x m y m m m=--=-+-=--+≤,所以当5m=时,点B横坐标的绝对值最大,最大值为2.17.2【解析】设左焦点为1F,由F关于直线by xc=的对称点Q在椭圆上,得||||OQ OF=,又1||||OF OF=,所以1F Q QF⊥,不妨设1||QF ck=,则||QF bk=,1||F F ak=,因此2c ak=,又2a ck bk=+,由以上二式可得22c ak a b c==+, 即c a a b c=+,即22a c bc =+,所以bc =,2e =. 18.22【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=, 且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以22e =.19.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.2032(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-,232b ac =,解得33e =. 21.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b--+=, 又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=. 22.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-. 23由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故c e a ==.24.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d .12(F F,可得1()F A m n =u u u r,2()F B c d =u u u u r, ∵125F A F B =u u u r u u u u r,∴55m nc d +==,又点,A B 在椭圆上, ∴2213m n +=,22(5()135m n ++=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.25.【解析】(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+.由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)44364(48)20x x y y y x =--+-=-=∆. 因为00,0x y >,所以001x y ==. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=AB . 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为.综上,直线l的方程为y =+26.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=.两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22x FB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r27.【解析】(1)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=. (2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232mx x +=-,212334m x x -=,则12|||AB x x=-==,易得当20m=时,max||AB,故||AB.(3)设11(,)A x y,22(,)B x y,33(,)C x y,44(,)D x y,则221133x y+=①,222233x y+=②,又(2,0)P-,所以可设1112PAyk kx==+,直线PA的方程为1(2)y k x=+,由122(2)13y k xxy=+⎧⎪⎨+=⎪⎩消去y可得2222111(13)121230k x k x k+++-=,则2113211213kx xk+=-+,即2131211213kx xk=--+,又1112ykx=+,代入①式可得13171247xxx--=+,所以13147yyx=+,所以1111712(,)4747x yCx x--++,同理可得2222712(,)4747x yDx x--++.故3371(,)44QC x y=+-u u u r,4471(,)44QD x y=+-u u u r,因为,,Q C D三点共线,所以34437171()()()()04444x y x y+--+-=,将点,C D的坐标代入化简可得12121y yx x-=-,即1k=.28.【解析】(1)设椭圆的焦距为2c,由已知得2259ca=,又由222a b c=+,可得23.a b=由||AB==,从而3,2a b==.所以,椭圆的方程为22194x y+=.(2)设点P的坐标为11(,)x y,点M的坐标为22(,)x y,由题意,21x x>>,点Q的坐标为11(,).x y--由BPM△的面积是BPQ△面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩ 消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =. 由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去; 当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.29.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b a c =-,可得2220c ac a +-=,即2210e e +-=. 又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (Ⅱ)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)3,22m c cx y m m -==++, 即点Q 的坐标为(22)3(,)22m c cm m -++.由已知|FQ |=32c ,有222(22)33[]()()222m c c cc m m -++=++,整理得2340m m -=,所以43m =,即直线FP 的斜率为34.(ii )由2a c =,可得b =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22223430,1,43x y c x y c c-+=⎧⎪⎨+=⎪⎩消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(,)2cP c,进而可得5|2|c FP ==,所以53||||||22c cFP FQ Q c P -=-==.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP . 因为QN FP ⊥,所以339||||tan 248c cQN FQ QFN =⋅∠=⨯=,所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.31.【解析】(Ⅰ)由椭圆的离心率为2,得2222()a a b =-, 又当1y =时,2222a x a b =-,得2222a a b-=,所以24a =,22b =,因此椭圆方程为22142x y +=. (Ⅱ)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩ 得222(21)4240k x kmx m +++-=, 由0∆> 得2242m k <+ (*)且122421kmx x k +=+ , 因此122221my y k +=+ , 所以222(,)2121km mD k k -++ ,又(0,)N m - , 所以222222()()2121km m ND m k k =-++++ 整理得:2242224(13)(21)m k k ND k ++=+ ,因为NF m =所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++令283t k =+,3t ≥ 故21214t k ++=所以2221616111(1)2ND t t NFt t=+=++++. 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增, 因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF+=≤,由(*)得m <<且0m ≠,故12NDNF ≥, 设2EDF θ∠=, 则1sin 2NF ND θ=≥ , 所以θ得最小值为6π. 从而EDF ∠的最小值为3π,此时直线l 的斜率时0. 综上所述:当0k =,(m ∈⋃时,EDF ∠取得最小值为3π. 32.【解析】(Ⅰ)设椭圆C 的方程为22221(0,0)x y a b a b+=>>.由题意得2,2a c a=⎧⎪⎨=⎪⎩解得c =所以2221b a c =-=.所以椭圆C 的方程为2214x y +=. (Ⅱ)设(,)M m n ,且22m -<<,则(,0),(,)D m N m n -.直线AM 的斜率2AM nk m =+,由AM DE ⊥,则1AM DE k k ⋅=-, 故直线DE 的斜率2DE m k n+=.所以直线DE 的方程为2()m y x m n +=--.直线BN 的方程为(2)2ny x m=--.联立2(),(2),2m y x m n n y x m +⎧=--⎪⎪⎨⎪=-⎪-⎩,解得点E 的纵坐标222(4)4E n m y m n -=--+. 由点M 在椭圆C 上,得2244m n -=.所以45E y n =-. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△,所以BDE △与BDN △的面积之比为4:5. 33.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 34.【解析】(I )由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=.又c =c e a ==. (II )设()00,x y P (00x <,00y <),则220044x y +=.又()2,0A ,()0,1B ,所以直线PA 的方程为()0022y y x x =--. 令0x =,得0022y y x M =--,从而002112y y x M BM =-=+-. 直线PB 的方程为0011y y x x -=+. 令0y =,得001x x y N =--,从而00221x x y N AN =-=+-. 所以四边形ABNM 的面积12S =AN ⋅BM 00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x y x y x y ++--+=--+00000000224422x y x y x y x y --+=--+2=.从而四边形ABNM 的面积为定值.35.【解析】(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (Ⅱ)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故12||2|34AM x k =+=+.由题设,直线AN 的方程为1(2)y x k=-+,故同理可得212||43AN k =+.由2||||AM AN =得2223443kk k=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>, 因此()f t 在(0,)+∞有唯一的零点,且零点k在2)2k <<.36.【解析】(Ⅰ)设椭圆的半焦距为c,由题意知24,2a c ==所以2,a b ===C 的方程为22142x y +=. (Ⅱ)(i)设()()0000,0,0P x y x y >>,由M (0,m ),可得()()00,2,,2.P x m Q x m - 所以直线PM 的斜率002m m m k x x -== ,直线QM 的斜率0023'm m mk x x --==-. 此时'3k k =-,所以'k k为定值3-. (ii)设()()1122,,,A x y B x y ,直线P A 的方程为y kx m =+, 直线QB 的方程为3y kx m =-+.联立 22142y kx m x y =+⎧⎪⎨+=⎪⎩ ,整理得()222214240k x mkx m +++-=.由20122421m x x k -=+可得()()21202221m x k x -=+ ,所以()()21122221k m y kx m m k x -=+=++, 同理()()()()2222222262,181181m k m x y m kx k x---==+++.所以()()()()()()()222221222222223221812118121m m k m x x k x k x k k x -----=-=++++,()()()()()()()()2222212222622286121812118121k m m k k m y y m m k x k x k k x----+--=+--=++++ ,所以2212161116.44ABy y k k k x x k k -+⎛⎫===+ ⎪-⎝⎭由00,0m x >>,可知>0,所以16k k+≥,等号当且仅当k =.6=,即m =,符号题意.所以直线AB. 37.【解析】(Ⅰ)设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-, 可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (Ⅱ)设直线的斜率为(0)k k ≠,则直线l 的方程为(2)y k x =-,设(,)B B B x y ,由方程组221,43(2),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 整理得2222(43)1616120k x k x k +-+-=,解得2x =或228643k x k -=+, 由题意得228643B k x k -=+,从而21243B ky k -=+, 由(Ⅰ)知(1,0)F ,设(0,)H H y ,有(1,)H FH y =-u u u r ,2229412(,)4343k kBF k k -=++u u u r ,由BF HF ⊥,得0BF HF ⋅=u u u r u u u r ,所以222124904343Hky k k k -+=++, 解得29412H k y k -=,因此直线MH 的方程为219412k y x k k-=-+,设(,)M M M x y ,由方程组2194,12(2),k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩消去y ,得2220912(1)M k x k +=+, 在MAO ∆中,MOA MAO ∠=∠⇔||||MA MO =,即2222(2)M MMMx y x y -+=+,化简得1M x =,即22209112(1)k k +=+,解得4k =-或4k =,所以直线l的斜率为4k =-或4k =. 38.【解析】=22421a b+=,解得228,4a b ==. 所以C 的方程为22184x y +=. (Ⅱ)设直线l :y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y将y kx b =+代入22184x y +=得222(21)4280k x kbx b +++-=. 故1222221M x x kb x k +-==+,221M M by k x b k =⋅+=+. 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值. 39.【解析】(Ⅰ)设(),0F c -,由已知离心率c a =222a b c =+,又因为()0,B b ,故直线BF 的斜率()020b bk c c-===--.(Ⅱ)设点()()(),,,,,P P Q Q M M P x y Q x y M x y ,(i )由(Ⅰ)可得椭圆方程为2222154x y c c +=,直线BF 的方程为22y x c =+,将直线方程与椭圆方程联立, 消去y ,得2350x cx +=,解得53P cx =-.因为BQ BP ⊥,所以直线BQ 方程为 122y x c =-+,与椭圆方程联立,消去y ,整得221400x cx -=,解得4021Q cx =.又因为PM MQ λ= ,及0M x =,可得78M P P Q M Q x x x x x x λ-===-. (ii )由(i )有78PMMQ =,所以777815PM PM MQ ==++,即157PQ PM =,又因为||sin =9PM BQP ∠,所以=||sin BP PQ BQP ∠=15||sin 73PM BQP ∠=.又因为4223P P y x c c =+=-,所以3BP c ==,因此33c =,1c =,所以椭圆方程为22154x y +=. 40.【解析】(Ⅰ)由题设知2c a =,1b =结合222a b c =+,解得a = 所以椭圆的方程式为2212x y +=. (Ⅱ)由题设知,直线PQ 的方程式为1+1y k x =-()(2)k ≠,代入2212x y +=, 得22(12)4(1)2(2)0k x k k x k k +--+-=. 由已知Δ>0.设11(,)P x y ,22(,)Q x y ,120x x ≠, 则1212224(1)2(2),1212k k k k x x x x k k --+==++. 从而直线,AP AQ 的斜率之和121212121122AP AQ y y kx k kx k k k x x x x +++-+-+=+=+ =121212112(2)()2(2)x x k k k k x x x x ++-+=+- =4(1)2(2)22(1)22(2)k k k k k k k k -+-=--=-.41.【解析】(Ⅰ)由椭圆的定义,((122||||224a PF PF =+=+=,故2a =.设椭圆的半焦距为c ,由已知12PF PF ⊥,因此122||c F F ====即c =1b =.故所求椭圆的标准方程为2214x y +=. (Ⅱ)如题(21)图,由11,||||PF PQ PQ PF λ⊥=,得222111||||||1|QF PF PQ PF λ=+=+.由椭圆的定义,12||||2PF PF a +=,12||||2QF QF a +=, 进而11||||||4PF PQ QF a ++=. 于是21(11||4PF a λλ++=. 解得12||11PF λλ=+++,故22122(11)||2||11a PF a PF λλλλ++-=-=+++由勾股定理得22222122||||||(2)4PF PF PF c c +===,从而2222222(11)41111a c λλλλλλ⎛⎫++-+=++++++, 两边除以24a ,得()()22222221(11)1111e λλλλλλ+++=+++++,若记211t λλ=++,则上式变成22224(t 2)111842e t t +-⎛⎫==-+ ⎪⎝⎭. 由3443λ≤<,并注意到211λλ++λ的单调性,得34t ≤<,即11143t <≤,进而21529e <≤25e <≤. 42.【解析】223(c,0)== 3.3F c c(I )设,由条件知, 2223=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即 OPQ ι∆所以,当的面积最大时,的方程为2222y x y x =-=--或. 43.【解析】(Ⅰ)设直线l 的方程为()0y kx m k =+<,由22221y kx mx y a b=+⎧⎪⎨+=⎪⎩,消去y 得,()22222222220b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭,由点P 在第一象限, 故点P的坐标为22⎛⎫⎝; (Ⅱ)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l的距离d =,整理得22d =,因为22222b a k ab k +≥,2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.44.【解析】(Ⅰ)根据c 22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即24b a = ①由15MN F N =得112DF F N =。

文科数学2010-2019高考真题分类训练专题九解析几何第二十六讲双曲线

文科数学2010-2019高考真题分类训练专题九解析几何第二十六讲双曲线

专题九 解析几何第二十六讲 双曲线2019年1.(2019全国III 文10)已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .922.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .3.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是A B .1CD .24.(2019全国1文10)双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒5.(2019全国II 文12)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D6.(2019北京文5)已知双曲线2221x y a-=(a >0a =(A(B )4(C )2 (D )127.(2019天津文6)已知抛物线24y x =的焦点为F ,准线为l .若与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为(A(B(C )2(D2010-2018年一、选择题1.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)2.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .2=±y x D .=y x3.(2018全国卷Ⅲ)已知双曲线22221(00)x y C a b a b-=>>:,则点(4,0)到C 的渐近线的距离为AB .2C .2D .4.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .22139x y -= B .22193x y -= C .221412x y -= D .221124x y -=5.(2017新课标Ⅰ)已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ∆的面积为A .13 B .12 C .23 D .326.(2017新课标Ⅱ)若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)7.(2017天津)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为A .221412x y -= B .221124x y -= C .2213x y -= D .2213y x -= 8.(2016天津)已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为A .1422=-y xB .1422=-y x C .15320322=-y x D .12035322=-y x 9.(2015湖南)若双曲线22221x y a b-=的一条渐近线经过点(3,4)-,则此双曲线的离心率为A B .54 C .43D .53 10.(2015四川)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB =A .3B .C .6D .11.(2015重庆)设双曲线22221(0,0)x y a b a b-=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 做12A A 的垂线与双曲线交于,B C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为A .12±B .2±C .1±D .12.(2014新课标1)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C的一条渐近线的距离为A B .3 C D .3m13.(2014广东)若实数满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等14.(2014天津)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为 A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 15.(2014重庆)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A .34 B .35 C .49D .316.(2013新课标1)已知双曲线C :22221x y a b-=(0,0a b >>C的渐近线方程为 A .14y x =±B .13y x =±C .12y x =± D .y x =±17.(2013湖北)已知04πθ<<,则双曲线 22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的A .实轴长相等B .虚轴长相等C .焦距相等D . 离心率相等18.(2013重庆)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A .(,2]3 B .[2)3 C .()3+∞ D .[,)3+∞ 19.(2012福建)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .14B .4 C .32D .4320.(2012湖南)已知双曲线C :22x a 22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A .220x 25y =1B .25x 220y =1C .280x 220y =1 D .220x 280y =121.(2011安徽)双曲线x y 222-=8的实轴长是A .2B .C .4D .22.(2011山东)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22x y +-650x +=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 23.(2011湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3 C .2 D .124.(2011天津)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为A .B .C .D .25.(2010新课标)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y -= 26.(2010新课标)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2)-,则它的离心率为A B C D 27.(2010福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP u u u r u u u rg 的最大值为A .2B .3C .6D .8 二、填空题28.(2018北京)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.29.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c ,则其离心率的值是 . 30.(2017新课标Ⅲ)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 31.(2017山东)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .32.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .33.(2016年北京)已知双曲线22221x y a b-= (0,0)a b >>的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.34.(2016年山东)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 35.(2015新课标1)已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 .36.(2015山东)过双曲线()2222:10,0x y C a b a b-=>> 的右焦点作一条与其渐近线平行的直线,交C 于点P ,若点P 的横坐标为2a ,则C 的离心率为 .37.(2015新课标1)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,A ,当APF ∆ 周长最小时,该三角形的面积为 .38.(2014山东)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 .39.(2014浙江)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是____.40.(2014北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.41.(2014湖南)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.42.(2013辽宁)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为 .43.(2012辽宁)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为 .44.(2012天津)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b = .45.(2012江苏)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 .46.(2011山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .47.(2011北京)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .三、解答题48.(2014江西)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y a xx l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF 恒为定值,并求此定值.49.(2011广东)设圆C 与两圆2222(5)4,(5)4x y x y +=+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点M 3545(5,0)55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.。

文科数学2010-2019高考真题分类训练专题九解析几何第二十六讲双曲线

文科数学2010-2019高考真题分类训练专题九解析几何第二十六讲双曲线

专题九 解析几何第二十六讲 双曲线2019年1.(2019全国III 文10)已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .922.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .3.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是A B .1CD .24.(2019全国1文10)双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒5.(2019全国II 文12)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D6.(2019北京文5)已知双曲线2221x y a-=(a >0,则a =(A(B )4(C )2 (D )127.(2019天津文6)已知抛物线24y x =的焦点为F ,准线为l .若与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为(A(B(C )2(D2010-2018年一、选择题1.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)2.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .2=±y x D .=y x3.(2018全国卷Ⅲ)已知双曲线22221(00)x y C a b a b-=>>:,则点(4,0)到C 的渐近线的距离为AB .2C .2D .4.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .22139x y -= B .22193x y -= C .221412x y -= D .221124x y -=5.(2017新课标Ⅰ)已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ∆的面积为A .13 B .12 C .23 D .326.(2017新课标Ⅱ)若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)7.(2017天津)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为A .221412x y -= B .221124x y -= C .2213x y -= D .2213y x -= 8.(2016天津)已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为A .1422=-y xB .1422=-y x C .15320322=-y x D .12035322=-y x 9.(2015湖南)若双曲线22221x y a b-=的一条渐近线经过点(3,4)-,则此双曲线的离心率为A B .54 C .43D .53 10.(2015四川)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB =A .3B .C .6D .11.(2015重庆)设双曲线22221(0,0)x y a b a b-=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 做12A A 的垂线与双曲线交于,B C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为A .12±B .2±C .1±D .12.(2014新课标1)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C的一条渐近线的距离为A B .3 C D .3m13.(2014广东)若实数满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等14.(2014天津)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为 A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 15.(2014重庆)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A .34 B .35 C .49D .316.(2013新课标1)已知双曲线C :22221x y a b-=(0,0a b >>C的渐近线方程为 A .14y x =±B .13y x =±C .12y x =± D .y x =±17.(2013湖北)已知04πθ<<,则双曲线 22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的A .实轴长相等B .虚轴长相等C .焦距相等D . 离心率相等18.(2013重庆)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A .(2]3 B .[2)3 C .(,)3+∞ D .[)3+∞ 19.(2012福建)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .14B .4 C .32D .4320.(2012湖南)已知双曲线C :22x a 22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A .220x 25y =1B .25x 220y =1C .280x 220y =1 D .220x 280y =121.(2011安徽)双曲线x y 222-=8的实轴长是A .2B .C .4D .22.(2011山东)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22x y +-650x +=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 23.(2011湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3 C .2 D .124.(2011天津)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为A .B .C .D .25.(2010新课标)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y -= 26.(2010新课标)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2)-,则它的离心率为A B C D 27.(2010福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP u u u r u u u rg 的最大值为A .2B .3C .6D .8 二、填空题28.(2018北京)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.29.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c ,则其离心率的值是 . 30.(2017新课标Ⅲ)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 31.(2017山东)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .32.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .33.(2016年北京)已知双曲线22221x y a b-= (0,0)a b >>的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.34.(2016年山东)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 35.(2015新课标1)已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 .36.(2015山东)过双曲线()2222:10,0x y C a b a b-=>> 的右焦点作一条与其渐近线平行的直线,交C 于点P ,若点P 的横坐标为2a ,则C 的离心率为 .37.(2015新课标1)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,A ,当APF ∆ 周长最小时,该三角形的面积为 .38.(2014山东)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 .39.(2014浙江)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是____.40.(2014北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.41.(2014湖南)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.42.(2013辽宁)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为 .43.(2012辽宁)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为 .44.(2012天津)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b = .45.(2012江苏)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 .46.(2011山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .47.(2011北京)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .三、解答题48.(2014江西)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y a xx l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF 恒为定值,并求此定值.49.(2011广东)设圆C 与两圆2222(5)4,(5)4x y x y +=+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点M 3545(5,0)55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.。

文科数学2010-2019高考真题分类训练专题九解析几何第二十六讲双曲线

文科数学2010-2019高考真题分类训练专题九解析几何第二十六讲双曲线

专题九 解析几何第二十六讲 双曲线2019年1.(2019全国III 文10)已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .922.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .3.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是A B .1CD .24.(2019全国1文10)双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒5.(2019全国II 文12)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D6.(2019北京文5)已知双曲线2221x y a-=(a >0a =(A(B )4(C )2 (D )127.(2019天津文6)已知抛物线24y x =的焦点为F ,准线为l .若与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为(A(B(C )2(D2010-2018年一、选择题1.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)2.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .2=±y x D .=y x3.(2018全国卷Ⅲ)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为AB .2C .2D .4.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .22139x y -= B .22193x y -= C .221412x y -= D .221124x y -=5.(2017新课标Ⅰ)已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ∆的面积为A .13 B .12 C .23 D .326.(2017新课标Ⅱ)若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)7.(2017天津)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为A .221412x y -= B .221124x y -= C .2213x y -= D .2213y x -= 8.(2016天津)已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为A .1422=-y xB .1422=-y x C .15320322=-y x D .12035322=-y x 9.(2015湖南)若双曲线22221x y a b-=的一条渐近线经过点(3,4)-,则此双曲线的离心率为A B .54 C .43D .53 10.(2015四川)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB =A .3B .C .6D .11.(2015重庆)设双曲线22221(0,0)x y a b a b-=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 做12A A 的垂线与双曲线交于,B C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为A .12±B .2±C .1±D .12.(2014新课标1)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C的一条渐近线的距离为A B .3 C D .3m13.(2014广东)若实数满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等14.(2014天津)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为 A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 15.(2014重庆)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A .34 B .35 C .49D .316.(2013新课标1)已知双曲线C :22221x y a b-=(0,0a b >>C的渐近线方程为 A .14y x =±B .13y x =±C .12y x =± D .y x =±17.(2013湖北)已知04πθ<<,则双曲线 22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的A .实轴长相等B .虚轴长相等C .焦距相等D . 离心率相等18.(2013重庆)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A .(,2]3 B .[2)3 C .()3+∞ D .[,)3+∞ 19.(2012福建)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .14B .4 C .32D .4320.(2012湖南)已知双曲线C :22x a 22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A .220x 25y =1B .25x 220y =1C .280x 220y =1 D .220x 280y =121.(2011安徽)双曲线x y 222-=8的实轴长是A .2B .C .4D .22.(2011山东)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22x y +-650x +=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 23.(2011湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3 C .2 D .124.(2011天津)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为A .B .C .D .25.(2010新课标)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y -= 26.(2010新课标)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2)-,则它的离心率为A B C D 27.(2010福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP u u u r u u u rg 的最大值为A .2B .3C .6D .8 二、填空题28.(2018北京)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.29.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c ,则其离心率的值是 . 30.(2017新课标Ⅲ)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 31.(2017山东)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .32.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .33.(2016年北京)已知双曲线22221x y a b-= (0,0)a b >>的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.34.(2016年山东)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 35.(2015新课标1)已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 .36.(2015山东)过双曲线()2222:10,0x y C a b a b-=>> 的右焦点作一条与其渐近线平行的直线,交C 于点P ,若点P 的横坐标为2a ,则C 的离心率为 .37.(2015新课标1)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,A ,当APF ∆ 周长最小时,该三角形的面积为 .38.(2014山东)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 .39.(2014浙江)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是____.40.(2014北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.41.(2014湖南)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.42.(2013辽宁)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为 .43.(2012辽宁)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为 .44.(2012天津)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b = .45.(2012江苏)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+,则m 的值为 .46.(2011山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .47.(2011北京)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .三、解答题48.(2014江西)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y a xx l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF 恒为定值,并求此定值.49.(2011广东)设圆C 与两圆2222(5)4,(5)4x y x y +=-+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点M 355(5,0)55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.。

十年高考分类汇编椭圆带答案

十年高考分类汇编椭圆带答案

椭圆定义1、已知△ABC 的顶点B 、C 在椭圆错误!+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是(A )2错误! (B )6 (C )4错误! (D )12选C2、已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .答案:83、椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 。

2,120︒4、已知椭圆C:22221(0)x y a b a b +=>>的左右焦点为F 1,F 2离心率为33,过F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为43,则C 的方程为( )A 。

22132x y += B. 2213x y += C 。

221128x y += D 。

221124x y +=5、椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P,则||2PF =( C )A .23 B .3C .27 D .46、已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( A )A .3332 B .32C .22D .23 7、设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F P 是C 上的点21212,30PF F F PF F ⊥∠=︒,则C 的离心率为 ( )A .B .C .D .【答案】D8、设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,过2F 作x 轴的垂线与C 交于 B A ,两点,B F 1与y 轴交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.9、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是(D ) (2 (21-22 (D 21 10、在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A CB+= 5/4 。

高考文科第9章平面解析几何课件+练习(20份)含答案9.5 椭 圆

高考文科第9章平面解析几何课件+练习(20份)含答案9.5 椭 圆
第九章 平面解析几何 §9.5 椭 圆
[考纲要求] 1.掌握椭圆的定义、几何图形、标准方程 及简单性质.2.了解圆锥曲线的简单应用.3.理解数形结合的 思想.
高考总复习·数学文科(RJ)
第九章 平面解析几何
1.椭圆的概念 平 面 内 与 两 个 定 点 F1 , F2 的 距 离 的 和 等 于 常 数 ( 大 于 |F1F2|)的点的轨迹叫做_椭__圆__.这两个定点叫做椭圆的_焦__点_, 两焦点的距离叫做椭圆的_焦__距___.
高考总复习·数学文科(RJ)
第九章 平面解析几何
跟踪训练1 (1)已知圆(x+2)2+y2=36的圆心为M,设A
为圆上任一点,且点N(2,0),线段AN的垂直平分线交MA
于点P,则动点P的轨迹是( )
A.圆
B.椭圆
C.双曲线
D.抛物线
高考总复习·数学文科(RJ)
第九章 平面解析几何
(2)过点( 3,- 5),且与椭圆2y52 +x92=1 有相同焦点的椭圆 的标准方程为____________________________.
() A.4
B.8
C.4 或 8
D.12
高考总复习·数学文科(RJ)
第九章 平面解析几何
【解析】 当焦点在x轴上时,10-m>m-2>0, 10-m-(m-2)=4,∴m=4. 当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)= 4, ∴m=8. 【答案】 C
高考总复习·数学文科(RJ)
A.0
B.1
C.2
D.2 2
(2)(2015·浙江)椭圆ax22+by22=1(a>b>0)的右焦点 F(c,0)关于
直线 y=bcx 的对称点 Q 在椭圆上,则椭圆的离心率是________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题九 解析几何第二十五讲 椭圆2019年1.(2019全国1文12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=2.(2019全国II 文9)若抛物线y 2=2p (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .83.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与轴交于点M ,直线AQ 与轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.4.(2019江苏16)如图,在平面直角坐标系Oy 中,椭圆C 22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作轴的垂线l ,在轴的上方,l 与圆F 2222(1)4x y a-+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.5.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.6.(2019全国II 文20)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.7.(2019天津文19)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,顶点为B .3|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.8.(2019全国III 文15)设12F F ,为椭圆C22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.9.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与轴交于点M ,直线AQ 与轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2010-2019年一、选择题1.(2018全国卷Ⅰ)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12CD 2.(2018全国卷Ⅱ)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 13.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为A .B .C .D .4.(2017浙江)椭圆22194x y +=的离心率是A .B C .23D .59 5.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C .3 D .136.(2017新课标Ⅰ)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足AMB ∠ =120°,则m 的取值范围是A .(0,1][9,)+∞UB .[9,)+∞UC .(0,1][4,)+∞UD .[4,)+∞U7.(2016年全国I 卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 A .13 B .12 C .23 D .348.(2016年全国III 卷)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .349.(2015新课标1)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .1210.(2015广东)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m = A .2 B .3 C .4 D .911.(2015福建)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4 C . D .3[,1)412.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .2613.(2013新课标1)已知椭圆22221(0)x y a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=114.(2013广东)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 15.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题16.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =u u u r u u u r ,则当m =___时,点B 横坐标的绝对值最大.17.(2015浙江)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .18.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .19.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .20.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.21.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.22.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .23.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.24.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =u u u r u u u u r;则点A 的坐标是 .三、解答题25.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 26.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .27.(2018北京)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为3.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .28.(2018天津)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.29.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.(2017天津)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.31.(2017山东)在平面直角坐标系xOy 中,已知椭圆C 22221x y a b+=(0)a b >>的离心率为2,椭圆C 截直线1y =所得线段的长度为 (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N e 的半径为||NO . 设D 为AB 的中点,DE ,DF 与N e 分别相切于点E ,F ,求EDF ∠的最小值.x32.(2017北京)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:BDE ∆与BDN ∆的面积之比为45.33.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.34.(2016年北京)已知椭圆C :22221x y a b+=过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x轴交于点N ,求证:四边形ABNM 的面积为定值.35.(2016年全国II 卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =时,证明:32k <<.36.(2016年山东)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,焦距为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为、',证明k k'为定值; (ii)求直线AB 的斜率的最小值.37.(2016年天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.38.(2015新课标2)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,点在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.39.(2015天津)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为5. (Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ λ. (i )求λ的值;(ii )若||sin =9PM BQP ∠,求椭圆的方程.40.(2015陕西)如图,椭圆E :22221x y a b+=(a >b >0)经过点(0,1)A -,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.41.(2015重庆)如图,椭圆22221x y a b+=(a >b >0)的左、右焦点分别为1F ,2F ,且过2F 的直线交椭圆于,P Q 两点,且PQ ⊥1PF .(Ⅰ)若122PF =+|,222PF =-|,求椭圆的标准方程; (Ⅱ)若|1PQ PF λ=,且3443λ≤≤,试确定椭圆离心率e 的取值范围.42. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>3F 是椭圆E 的右焦点,直线AF 23,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.43.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.44.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .45.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ;(Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 46.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b ab+=>>的离心率为y x =被椭圆C . (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.47.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=u u u r u u u r u u u r?证明你的结论.48.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 49.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点23)P ,.(Ⅰ)求椭圆C 的方程;(Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点(0,22)A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.50.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.51. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 3, 过点F 且与 轴43(Ⅰ) 求椭圆的方程;(Ⅱ) 设A ,B 分别为椭圆的左、右顶点, 过点F 且斜率为的直线与椭圆交于C ,D 两点.若··8AC DB AD CB +=u u u r u u u r u u u r u u u r, 求的值.52.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.53.(2012北京)已知椭圆C 22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN时,求k 的值. 54.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.55.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.56.(2011陕西)设椭圆C ()222210x y a b a b +=>>过点(0,4),离心率为35.(Ⅰ)求C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 57.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG V 的外接圆方程;若不能,请说明理由.58.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(0﹤b ﹤1)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.59.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB u u u r u u u r .(Ⅰ)求椭圆C 的离心率; (Ⅱ)如果||AB =154,求椭圆C 的方程.。

相关文档
最新文档