示范教案(说课稿)(3.3.1 几何概型)
3.3.1几何概型教案

《3.3.1几何概型》教学设计一、教学目标1.知识与技能(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式并能进行简单的计算与应用:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型.2.过程与方法(1)通过经历提出问题、收集、处理数据和预测的过程,使学生将实际生活中的概率模型转化为应用数学来解决问题,发展学生的抽象思维和应用意识;(2)通过师生共同探究,体会数学知识的形成,学会应用几何概型来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.3.情感态度与价值观(1)通过活动参与,使学生积极参与数学学习活动,让学生在数学活动中获得成功的体验,建立自信心;(2)通过对实例和习题的学习,使学生体验数学活动充满着探索与创造,激发学生学习数学的兴趣,并能从中感受数学的严谨性,形成实事求是的态度.二、教学重难点1.重点:几何概型概念的形成及其公式的应用.2.难点:几何概型的应用,如何把实际问题转化为几何概型.三、教材分析学习几何概型之前学生学习了概率的统计定义以及古典概型的定义和计算公式,这些内容虽然可以帮助学生解决一些实际生活中的概率问题,可是古典概型的使用是有限的,它只能解决等可能事件只有有限个时的概率,而对于生活中同样也比较常见的无限个等可能事件的情况却束手无策.几何概型正是古典概型的拓展和延伸,这样才能使学生形成完整的知识网络体系,使数学学习更加紧密结合学生的实际生活,体现了学习数学的价值,同时又可以培养学生学习数学的兴趣和积极性.几何概型是将古典概型从点到线、面、体的拓展,是从有限到无限的延伸,这体现了知识的连续性和层次性,同时也为后续内容做好铺垫,因此本节内容在单元中起到了承上启下的作用. 例题的选择采用长度、面积、体积的三维梯度设计,便于学生对常见题型的归纳总结.四、教学过程1.创设情境,引入新课情境1:(幻灯片)“双旦节”活动细则:从12月20日起,凡在本超市当天购物累计满100元的顾客可以按照以下方案抽奖.方案1:同时掷两枚骰子一次,两枚骰子的点数之和等于7,即可获得价值50元的精美礼品一个.问题1:方案1中获得精美礼品的概率是多少?师生互动:教师以生活中的实例来创设情境,让学生去选择自己认为适合的方法. 学生通过独立思考、自主学习,计算方案获得奖品的概率. 引导学生复习古典概型的计算公式和两个特征.情境2:将抽奖方式换成转盘游戏,如图1所示,按照以下方式抽奖:方案2:随意转动转盘甲,转到蓝色区域,即可获得价值50元的精美礼品一个.问:如果让你来玩这个游戏,你获得奖品的概率?甲问题2:这个游戏中可不可以像上一个游戏一样,用古典概型的计算方法算出赢的概率呢?为什么?【设计意图】这两个情境不仅使学生复习了古典概型,更使学生加深对随机现象的理解,消除日常生活中的一些错误认识,体会用科学的方法去观察世界和认识世界,同时也为几何概型的引入做好铺垫. 采用启发式学习法,让学生自己去发现问题所在,这样可以激发学生学习数学的求知欲.2.初步探索,展示内涵探究1:(幻灯片)将一根长度为20 cm 的线绳AB ,从中任取一点剪断,求使剪开的两段线绳长度都不小于5 cm 的概率.问题1:同学们将用怎样的几何量来描述这个事件的基本事件空间呢?分析:可以用线段长度的比值来求这个概率,即记“剪开的两段线绳长度都不小于5 cm ”为事件W ,C 、D 分别为AB 的四等分点,如图2所示,虽然剪刀于每一个位置都是等可能的,可是基本事件是无限个,所以这个例子不属于古典概型.A C D B图2所以P (W )=212010==的长度的线段长度AB CD 【设计意图】教师提出问题,使学生通过合作交流的学习方式动手实践,在实践中探索解题的方法. 虽然学生没学过几何概型的计算公式,但是可以用与之相关的几何量—线段长度的比值来描述所求事件的概率. 借此为几何概型定义和特点的引出作铺垫.这与古典概型的解题思路是相同的. 只不过在古典概型中概率的比是个数的比,而对于这类题型,可以把线段看成是无限个点组成的集合,学生就更容易理解了.探究2:在情境2的转盘游戏中,指针落在蓝色区域的概率是如何计算的?你将用怎样的几何量来描述这个事件的基本事件空间呢?法1:利用红色区域所占的弧长的比值求解, P=21=整个圆的弧长红色区域的弧长 法2:利用红色区域所占的角度的比值求解,P=21=整个圆的圆周角红色区域的圆周角. 【设计意图】教师组织学生分组讨论,提高学生自主探究问题、解决问题的能力,使学生积极参与数学学习活动,在数学活动中获得成功的体验,建立自信心. 使学生体会几何概型与古典概型“比例解法”的相同之处,为归纳出几何概型的概念作铺垫. 通过学生的求解,发现指针落在红色区域的概率是相等的.变式探究:若将同样的圆像(图3)一样八等分,那么请同学们计算一下,转动转盘而指针落在在深色区域的概率.图3根据前面的比例关系,不难求出图2中,指针落在深色区域的概率同样也是21. 【设计意图】 这个例子说明利用比例关系求解概率的方法与几何图形的形状无关,只与几何度量的大小有关.探究3:四边形ABCD 为长方形,AB=2,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为多少? 记“取到的点到O 的距离大于1”为事件A ,则该事件发生的概率等于半圆面积与长方形总面积的比值,即422A )(ππ===的面积试验的全部结果所构成的区域面积构成事件A P 探究4:在一个器皿中装有500 ml 的水,水中有一只草履虫,现在从中随即取出2 ml 水样放到显微镜下观察,求发现草履虫的概率.分析:草履虫在水中的位置是任意的,因此虽然是等可能事件,可是草履虫的位置有无限多个,故也不属于古典概型.记“在取出的2 ml 水样中有草履虫”为事件E ,则该事件发生的概率等于取出水的体积与器皿中水的总体积的比值,即P(E)=004.05002=. 探究3中设计了三维空间的体积的实例让学生观察和分析,使学生体会事件的概率只与水这个几何量的体积比例有关,而与几何量的位置和形状无关. 变式探究:若将题设中的“器皿”改为“正方体器皿”或是“圆柱体水杯”,那么发现草履虫的概率是多少?为什么?概率仍然0.004.只要体积不变,概率就不变.(1)几何概型的定义:事件A 理解为区域的某一子区间A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足以上条件的试验称为几何概型.(2)几何概型的概率公式:P(A)=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等. BD C3.循序渐进,延伸拓展例1 一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒。
高中数学人教新课标B版必修3--《3.3.1 几何概型》教学设计

§3.3.1 几何概型教学设计教学内容:人教版《数学必修3》第三章第三节几何概型。
学情分析:学生学习了概率的含义以及古典概型的计算方式,对概率有了一定的了解,对概率的求法也有了一定的方法。
现在进行几何概型的学习,可以通过对比进行学习,通过分辨两种概型的区别与联系,可以达到学习几何概型的目的。
教学目标知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过游戏、案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。
教学重点:初步体会几何概型,将求未知量的问题转化为几何概型求概率的问题教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域D 和与事件A 对应的区域d ,并求出它们的测度。
教学过程:一、复习引入古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.小试牛刀1、从区间[-10,10]上任取一个整数,求取到大于1小于5的数的概率. 思考:那么对于有无限多个试验结果的情况相应的概率应如果求呢? (设计意图:通过古典概型的特点以及概率公式的应用巩固,为后面的对比学习奠定基础,同时也引出的新的概率模型,增强学生的好奇心。
)(师生互动:学生回答并完成练习,师生共同总结)二、创设情景,引入新课探究实验11. 取一根长度为30cm 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于10cm 的概率有多大?探究实验22.射箭比赛的箭靶是涂有五个彩色的分环.从外向内为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m 外射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率是多少?()AP A包含基本事件的个数公式:基本事件的总数探究实验33、一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中,始终保持与正方体的6各面的距离都大于1,则称其为“安全飞行”,求蜜蜂安全飞行的概率.由以上3个实验回答:(1)实验中的基本事件是什么:(2)每个基本事件发生是等可能的吗?(3)符合古典概型的特点吗?(设计意图:通过实验操作,让学生能直观感受几何概型的基本事件覆盖的区域)(师生互动:学生观察并回答问题,教师及时修正和确认答案)几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.思考:在几何概型中,如何求得某事件A的概率?在几何概型中,事件A的概率的计算公式如下:学生活动(分组讨论)求几何概型概率问题的步骤:1、判断实验的概率模型是否满足几何概型的两个特征;2、2、利用作图法描述基本事件对应的区域;3、3、把随机事件A转化为与之对应的区域d;4、4、利用几何概型概率公式计算。
3.3.1 几何概型教案教案

3.3.1《几何概型》教学目标知识与技能目标:(1)通过对本节内容的学习,正确理解几何概型的意义、特点;掌握几何概型的概率公式:,会用公式计算几何概型。
(2)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(3)通过解决具体问题的实例感受理解几何概型的概念,掌握基本事件等可能性的判断方法,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。
感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。
过程与方法目标:(1)通过古典概型的例子,稍加变化后成为几何概型,从有限个等可能结果推广到无限个等可能结果,让学生经历概念的建造这一过程,感受数学的拓展过程。
(2)发现法教学,通过师生共同对“问题链”的探究,运用观察、类比、思考、探究、概括、归纳的方法和动手尝试相结合体会数学知识的形成的过程,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。
(3)通过试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。
情感态度与价值观目标:本节课的主要特点是贴近生活,体会概率在生活中的重要作用,感知生活中的数学,激发学生提出问题和解决问题的勇气,培养积极探究的精神。
同时,随机试验多,学习时养成勤学严谨的思维习惯。
教学重点:理解几何概型的意义、特点,会用公式计算几何概率。
教学难点:等可能性的判断几何概型与古典概型的联系和区别。
教学过程师生活动设计意图(一)知识链接,复习提问老师:前面,我们共同研究了古典概型,请大家回忆:古典概型有哪些特点?学生:1.基本事件的个数为有限个;2.每一个基本事件发生的可能性都相等。
老师:古典概型的概率计算公式是什么形式?学生:。
老师:可见,求古典概型中事件A的概率,实际上就是要数清A所含的基本事件的个数与全部基本事件的个数,它们的比值就是这个事件的概率。
接下来,我们共同研究几个问题,看看它们还是不是古典概型。
温故而知新,通过复习旧知加强学生对以往知识的掌握,为后面总结古典概型与几何概型之间的区别与联系做好铺垫。
仇怀英3.3.1《几何概型》说课稿

《几何概型》说课稿且末县第二中学仇怀英今天我说课的题目是《几何概型》,我将从教材分析,学情分析,教法与学法分析,教学过程设计、教学评价与保障措施五个方面来阐述。
一、教材分析:1、教材的地位和作用:本节课是新教材人教版必修3第三章第三节第一课,它安排在“古典概型”之后,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。
教材这样安排的作用:一是体现了古典概型和几何概型的区别,在类比中巩固这两种概型,二是为解决实际问题提供了一种新的模型,在教材中起到了承上启下的作用。
2、教学目标:(1)知识与能力目标:通过具体实例正确理解几何概型定义及与古典概型的区别;掌握几何概型的概率计算公式并能解决简单实际问题。
(2)过程与方法目标:通过几何概型的概念和公式的探究过程 , 培养学生分析、归纳等数学思维能力,感知用图形解决概率问题的方法。
(3)情感态度与价值观目标:通过对几何概型的教学,增加学生合作交流的机会,帮助学生树立科学的世界观和辩证的思想,在体会几何概型意义的同时,感受与他人合作的重要性。
(依据:根据新课程标准和考试说明并结合学生已有的认知结构和心理特征。
)3、教学的重点和难点:(1)教学重点:掌握几何概型的判断及几何概型中概率的计算公式。
(2)教学难点:几何概型应用中几何度量的确定及运算。
(依据:新课程标准的要求和考试说明以及高中学生已有的认知结构和心理特征。
)二、学情分析:(1)知识方面:学生前面已经学习了随机事件的概率和古典概型,初步学会了用古典概型公式解决概率题,很容易把本节内容与古典概型的特点、计算方法等进行类比,这是知识的生长点,应因势利导。
(2)能力方面:初步具备运用所学知识解决问题的能力,但归纳推理与逻辑思维能力还需进一步地培养和加强.如何将问题的实际背景转化为“几何度量”,学生会有一些困难和疑惑,这就需要恰当的引导。
(3)情感方面:大多数学生对于概率的学习以及概率试验产生了浓厚的兴趣,多数学生有积极的学习态度,能主动参与探究.少数学生的学习主动性,还需要通过营造一定的学习氛围来加以带动。
人教A版数学必修3第三章3.3.1 几何概型 说课稿

《几何概型》说课稿《几何概型》今天我说课的题目是几何概型,我将从教材分析,教学过程分析,教法学法分析,评价分析、板书设计五个方面来阐述。
一、教材分析:1、地位和作用:本节课是高中数学必修三第三章第三节几何概型的第一课时,是在学习了随机事件的概率及古典概型之后,引入的另一类基本的概率模型,在概率论中占有相当重要的地位。
学好几何概型可以有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
2、教学的重点和难点:(1)重点:①了解几何概型的概念、特点;②会用几何概型概率公式求解随机事件的概率。
(2)难点:如何判断一个试验是否为几何概型,弄清在一个几何概型中构成事件A的区域和试验的全部结果所构成的区域及度量。
3、教学目标:(1)知识与技能:①了解几何概型的概念②会用公式求解随机事件的概率。
(2)过程与方法:通过试验,将已学过计算概率的方法做对比,提出新问题,师生共同探究,引导学生继续对概率的另一类问题进行思考、分析,进而提出可行性解决问题的建议或想法。
(3)情感、态度与价值观:通过试验,感知生活中的数学,培养学生用随机的观点来理性的理解世界,增强学生数学思维情趣,形成学习数学知识的积极态度。
二、教法分析基于以上对本节课教学过程的分析,体现了本节课的教法是:采用引导发现和归纳概括相结合的教学方法,通过两组试验来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
三、教学过程分析:基于以上分析,本节课的教学过程我将分为五个环节:提出问题,引入新课;思考交流,形成概念;观察类比,推导公式;例题分析,推广应用;总结概括,加深理解。
1、提出问题,引入新课本节课理解起来很困难,特别是如何判断一个试验是否为几何概型,其概率如何计算对学生来说是个难点。
那么如何分散这些难点的呢?由于几何概型与古典概型既有共性(等可能性),又有本质上的区别,因此,我在本节课的开始设计了两组试验,试验的第一题是古典概型,稍加变化之后就是几何概型,它们表面上很相似,但实际上有本质的不同。
人教版高中必修3(B版)3.3.1几何概型课程设计

人教版高中必修3(B版)3.3.1几何概型课程设计一、课程背景几何概型是高中数学必修课程的重要内容之一,也是初中数学学习中重要的过渡环节。
在高中课程中,几何概型的学习不仅有利于学生形成立体思维,还有助于他们理解和掌握解决实际问题的几何方法。
本课程主要是以建立学生对几何概型基本概念和方法的认识为主要目的,同时也要在实际问题中应用所学几何知识并使学生形成科学的思维方法和逻辑思维能力。
二、教材分析本课程所使用的教材为人教版高中必修3(B版)。
该教材对几何概型的教学内容进行了比较详细的描述,包括基本概念、基本定理、平面几何、空间几何等内容。
在本课程的教学过程中,将会结合教材中的内容,进行教学和辅导。
三、课程目标本课程的主要目标是:1.让学生掌握几何概型的基本概念和术语。
2.让学生掌握几何概型的基本定理和证明方法。
3.培养学生观察、分析、解决几何问题的能力。
4.培养学生科学的思维方法和逻辑思维能力。
四、课程内容和教学方法本课程的主要内容包括:几何概型的基本概念和术语、基本定理和证明方法、平面几何与空间几何等内容。
在教学过程中,将会采用以下教学方法:1.讲解法。
通过讲解教材内容,引导学生理解概念和定理,并且让学生能够掌握证明方法。
2.实例法。
通过实际问题引出几何概型的相关知识,让学生在解决实际问题的过程中掌握几何知识。
3.讨论法。
通过讨论教材上的例题或是学生提出的问题,让学生积极参与,提高他们的思维能力和分析能力。
4.实验法。
通过实验让学生在实践中感性认识几何知识,提高他们的实际操作能力。
五、课程评估本课程的评估方式主要包括课堂测试、作业评定、实验报告、考试等。
其中,考试是本课程的重要评估方式,在考试中将会设置选择题、填空题、解答题等不同考试题型,从而全面考察学生掌握几何概型的情况。
除了考试,本课程也将充分重视学生的学习兴趣、思维习惯、合作精神等方面的培养,从而全面评估学生的学习成绩。
六、教学资源本课程的教学资源主要包括教师教学PPT、教材、讲义、练习册、作业、实验器材等。
高中数学优质教学设计6:3.3.1 几何概型 教案
3.3.1 几何概型[课标解读]1.理解几何概型的定义及特点.(重点)2.掌握几何概型的计算方法和求解步骤,准确地把实际问题转化为几何概型问题.(难点)3.与长度、角度有关的几何概型问题.(易混点)知识点几何概型[提出问题]每逢节假日,各大型商场竞相出招,吸引顾客,其中某商场设立了一个可以自由转动的转盘,规定顾客消费100元以上,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准①、②或③区域,顾客就可以分别获得100元、50元、20元的购物券(转盘被等分成20个扇形),一位顾客消费了120元.问题1:这位顾客获得100元购物券的概率与什么因素有关?提示:与标注①的小扇形个数多少(面积大小)有关.问题2:在该实例试验中,试验结果有多少个?其发生的概率相等吗?提示:试验结果有无穷多个,但每个试验结果发生的概率相等.问题3:如可计算该顾客获得100元购物券的概率?提示:用标注①的扇形面积除以圆的面积.[导入新知]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.3.几何概型概率公式在几何概型中,事件A的概率的计算公式为:P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).[化解疑难]理解几何概型应关注三点(1)几何概型中,每个基本事件在一个区域内均匀分布,所以随机事件概率的大小与随机事件所在区域的形状、位置无关,只与区域的大小有关.(2)如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但不是不可能事件.(3)如果一个随机事件所在的区域是全部区域扣除一个单点,则它出现的概率为1,但不是必然事件.题型一与长度有关的几何概型[例1] (1)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.【解析】∵区间[-1,2]的长度为3,由|x |≤1得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.【答案】23(2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.解 设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.[类题通法]1.几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性); (2)把基本事件转化为与之对应的区域D ; (3)把所求随机事件A 转化为与之对应的区域I ; (4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为: P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.[活学活用]一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮; (3)不是红灯亮.解在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型.(1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.题型二与面积有关的几何概型[例2] (1)有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖,他应 当选择的游戏盘为( )(2)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .π4B .1-π4C .π8D .1-π8【解析】(1)根据几何概型的面积比,A 中中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为(2r )2-πr 2(2r )2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,故A 游戏盘的中奖概率最大.(2)长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2÷2=π4,取到的点到O 的距离大于1的概率为1-π4.【答案】(1)A (2)B[类题通法]1.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为: P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.2.解与面积相关的几何概型问题的三个关键点(1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积; (3)套用公式,从而求得随机事件的概率. [活学活用]在平面直角坐标系xOy 中,设M 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向M 中随机投一点,则所投的点落入E 中的概率是________.【解析】如图,区域M 表示边长为4的正方形ABCD 的内部(含边界),区域E 表示单位圆及其内部,因此P =π×124×4=π16.【答案】π16题型三与角度有关的几何概率[例3] 在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解 如图,在AB 上取AC ′=AC ,连接CC ′,则∠ACC ′=180°-45°2=67.5°.设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,AM <AC ,则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.5°90°=34.[类题通法]与角度有关的几何概型概率的求法(1)如果试验的所有结果构成的区域的几何度量可用角度表示,则其概率的计算公式为 P (A )=构成事件A 的区域角度试验的全部结果构成的区域角度.(2)解决此类问题的关键是事件A 在区域角度内是均匀的,进而判定事件的发生是等可能的. [活学活用]如图,在平面直角坐标系中,射线OT 为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT 内的概率是( )A.16B.23C.13D.160【解析】如图,∵在任意角集合中任取一个角,则该角终边落在∠xOT 内对应的角度为60度,而整个角集合对应的角度为圆周角,∴该角终边落在∠xOT 内的概率P =60360=16,故选A.【答案】A题型四与体积有关的几何概型[例4] (1)在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( )A.6πB.32πC.3πD.233π【解析】由题意可得正方体的体积为V 1=1.又球的直径是正方体的对角线,故球的半径R =32.球的体积V 2=43πR 3=32π.这是一个几何概型,则此点落在正方体内的概率为P =V 1V 2=132π=233π. 【答案】D(2)已知正方体ABCD -A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD -A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是________.【解析】设正方体的棱长为2.正方体ABCD -A 1B 1C 1D 1的内切球O 的半径是其棱长的一半,其体积为V 1=43π×13=4π3.则点M 在球O 内的概率是4π323=π6.【答案】π6[类题通法]与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为 P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.[活学活用]有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,求点P 到点O 的距离大于1的概率.解圆柱的体积V 圆柱=π×12×2=2π是试验的全部结果构成的区域体积.以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×4π3×13=2π3,则构成事件A “P到点O 的距离大于1”的区域体积为2π-2π3=4π3,由几何概型的概率公式得P (A )=4π32π=23.多维探究几何概型中的交汇性问题[典例] 设关于x 的一元二次方程x 2+2ax +b 2=0,若a 是从区间[0,3]上任取的一个数, b 是从区间[0,2]上任取的一个数,求上述方程有实根的概率.[解题指导] 设事件A 为“方程x 2+2ax +b 2=0”有实根. 则Δ=4a 2-4b 2≥0,即a 2≥b 2. 又∵a ≥0,b ≥0. ∴a ≥b .试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},而构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },即如图所示的阴影部分.所以,P (A )=3×2-12×223×2=23.[多维探究]几何概型与其他知识的交汇问题,以其新颖性、综合性而渐成为命题者的一个重要着眼点,本题是以方程的根为依托考查了与面积有关的几何概型的求法,另外,几何概型还常与集合、解析几何等问题相交汇命题,出现在试卷中. [角度一] 几何概型与集合的交汇问题已知集合M ={}x ,y |x +y ≤8,x ≥0,y ≥0,N ={}x ,y |x -3y ≥0,x ≤6,y ≥0,若向区域M 随机投一点,则点P 落入区域N 的概率为( )A.13 B.12C.38D.316【解析】根据题设中的集合的意义,在平面直角坐标系中分别画出区域M 和N ,可分别计算区域M 和N 的面积,进而求解.将集合M 和N 所表示的区域在直角坐标系中画出,如图,则区域M 的面积S =12×8×8=32,区域N 的面积S ′=12×6×2=6,所以点P 落入区域N 的概率为P =632=316,故选D.【答案】D[角度二] 几何概型与解析几何的交汇问题已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)求圆C 的圆心到直线l 的距离.(2)求圆C 上任意一点A 到直线l 的距离小于2的概率. 解 (1)由点到直线l 的距离公式可得d =2542+32=5. (2)由(1)可知圆心到直线l 的距离为5,要使圆上点到直线的距离小于2,设与圆相交且与直线l 平行的直线为l 1,其方程为4x +3y =15.则符合题意的点应在l 1:4x +3y =15与圆相交所得劣弧上,由半径为23,圆心到直线l 1的距离为3可知劣弧所对圆心角为π3.故所求概率为P =π32π=16.[随堂即时演练]1.下列概率模型中,几何概型的个数为( )①从区间[-10,10]内任取出一个数,求取到1的概率;②从区间[-10,10]内任取出一个数,求取到绝对值不大于1的数的概率;③从区间[-10,10]内任取出一个整数,求取到大于1而小于2的数的概率;④向一个边长为4 cm 的正方形ABCD 内投一点P ,求点P 离中心不超过1 cm 的概率. A .1 B .2 C .3D .4【解析】①不是几何概型,虽然区间[-10,10]有无限多个点,但取到“1”只是一个数字,不能构成区域长度;②是几何概型,因为区间[-10,10]和[-1,1]上有无限多个数可取(满足无限性),且在这两个区间内每个数被取到的机会是相等的(满足等可能性);③不是几何概型,因为区间[-10,10]上的整数只有21个(是有限的),不满足无限性特征;④是几何概型,因为在边长为4 cm 的正方形和半径为1 cm 的圆内均有无数多个点,且这两个区域内的任何一个点都有相等可能被投到,故满足无限性和等可能性. 【答案】B2.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底长分别为a 3与a2,高为b .向该矩形内随机地投一点,则所投的点落在梯形内部的概率为( )A.112B.14C.512D.712【解析】S 矩形=ab ,S 梯形=12(13a +12a )b =512ab .故所投的点在梯形内部的概率为P =S 梯形S 矩形=512abab =512.【答案】C3.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________【解析】由于方程x 2+x +n =0(n ∈(0,1))有实根,∴Δ≥0,即1-4n ≥0,∴n ≤14,又n ∈(0,1),∴有实根的概率为P =141-0=14.【答案】144.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.【解析】大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A ,则事件A 构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P (A )=2400=0.005.【答案】0.0055.已知一只蚂蚁在边长为4的正三角形内爬行,求此蚂蚁到三角形三个顶点的距离均超过1的概率.解设正三角形ABC 的边长为4,其面积为4 3.分别以A ,B ,C 为圆心,1为半径在△ABC 中作扇形,除去三个扇形剩下的部分即表示蚂蚁距三角形三个顶点的距离均超过1的区域,其面积为43-3×12×π3×12=43-π2,故所求概率P =43-π243=1- 3 π24.。
高中数学 3.3.1几何概型教案 新人教A版必修3
3. 3.1几何概型教材分析:和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率.它也是一种等可能概型.教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.教学目标:1. 通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用.2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.3. 通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.教学重点与难点:是随机模拟部分.这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.教学过程:一、问题情境如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.问题:在下列两种情况下分别求甲获胜的概率.二、建立模型1. 提出问题首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比.接着提出这样的问题:变换图中B 与N的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性).题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型.注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积).2. 引导学生讨论归纳几何概型定义,教师明晰———抽象概括如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A的概率的计算公式如下:3. 再次提出问题,并组织学生讨论(1)情境中两种情况下甲获胜的概率分别是多少?(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min的概率.通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.三、典型例题1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以解法2:设X,Y是0~1之间的均匀随机数.X+6.5表示送报人送到报纸的时间,Y+7表示父亲离开家去工作的时间.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A).教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即假设正方形的边长为2,则由于落在每个区域的豆子数是可以数出来的,所以这样就得到了π的近似值.另外,我们也可以用计算器或计算机模拟,步骤如下:(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;(2)经平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出落在圆内a2+b2<1的豆子数N1,计算(N代表落在正方形中的豆子数).可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高.本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.[练习]1. 如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域.2. 利用随机模拟方法计算图30-5中阴影部分(y=1和y=x2围成的部分)的面积.3. 画一椭圆,让学生设计方案,求此椭圆的面积.作业:课本3.3.1几何概型课前预习学案一、预习目标1. 了解几何概型,理解其基本计算方法并会运用.2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.二、预习内容1.,简称为几何概型.2.在几何概型中,事件A的概率的计算公式如下:3. 讨论:(1)情境中两种情况下甲获胜的概率分别是多少?( 2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.三、提出疑惑课内探究学案一、学习目标:了解几何概型,理解其基本计算方法并会运用.学习重点与难点:几何概型的计算方法.二、学习过程:例1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.解法1:解法2:例2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.解:用计算器或计算机模拟,步骤如下:(1) (2) (3) 三、反思总结 1、数学知识: 2、数学思想方法: 四、当堂检测 一、选择题1. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长 都不小于1 m 的概率是.A.21 B.31 C.41D.不确定 2. 已知地铁列车每10 min 一班,在车站停1 min.则乘客到达站台立即乘上 车的概率是A.101 B.91 C.111 D.81 3. 在1万 km 2的海域中有40 km 2的大陆架贮藏着石油,假如在海域中任意 一点钻探,钻到油层面的概率是.A.2511 B.2491 C.2501 D.2521二、填空题1. 如下图,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形, 向大正方形内随机投点,则所投的点落入小正方形内的概率是________.2. 如下图,在一个边长为a 、b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为31a 与21a ,高为b ,向该矩形内随机投一点,则所投的点落在梯形内部的概率为________.aa a b1123三解答题1在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率. 答案一、选择题1. B2. A3. C 二、填空题1. 942. 125三、解答题 解:在AB 上截取AC ′=AC ,于是P (AM <AC )=P (AM <C A ')=答:AM 的长小于AC 的长的概率为22. 22=='AB AC AB C A 课后练习与提高1.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率是________.2. 如下图,在直角坐标系内,射线OT 落在60°的终边上,任作一条射线OA ,则射线落在∠xOT 内的概率是________.3. 如下图,在半径为1的半圆内,放置一个边长为21的正方形ABCD ,向半圆内任投一点,该点落在正方形内的概率为_________.4. 在1 L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL ,含有麦锈病种子的概率是多少?。
示范教案(3.3.1 几何概型)
3.3 几何概型3.3.1 几何概型教学目标:德育目标:教学重点:教学难点:课时安排1课时教学过程导入新课复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.推进新课提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31.第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.应用示例例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A 发生.由几何概型的求概率公式得P (A )=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6.打开收音机的时刻X 是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X 服从[0,60]上的均匀分布,X 称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.课堂小结作业课后反思。
高中数学新人教版A版精品教案《3.3.1 几何概型教学设计》
几何概型教学设计(高中数学必修3第三章第3节第一课时)一、教材分析1、教材的地位和作用“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。
《几何概型》共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。
2、教学重点与难点重点:掌握几何概型的判断及几何概型中概率的计算公式。
难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
通过数学建模解决实际问题。
[理论依据]本课是一节概念新授课,因此把掌握几何概型的判断及几何概型中概率的计算公式作为教学重点。
教学难点是在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
此外,学生通过数学建模解决实际问题也较为困难,因此也是本节课的难点。
二、教学目标1、[知识与技能目标](1)体会几何概型的意义。
(2)了解几何概型的概率计算公式2、[过程与方法目标]通过转盘游戏,将有限个等可能结果推广到无限个等可能结果,让学生经历概念的建构这一过程,感受数学的拓广过程。
通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法。
3、[情感与态度目标]体会概率在生活中的重要作用,感知生活中的数学,激发提出问题和解决问题的勇气,培养其积极探索的精神。
三、教学方法,教学模式,教学手段本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学。
四、教学过程提出问题引入课题一、复习旧知巩固旧知回顾古典概型的特征和概率公式二、提出问题引入课题口答1:在区间[0,9]上任取一个整数a,则]3,0[∈a的概率为提出问题2:在区间[0,9]上任取一个实数a ,则]3,0[∈a的概率为通过学生回顾古典概型的特征和概率公式,从学生熟悉并且容易解决的一个古典概型问题,稍加修改,转变成为一个几何概型的问题,学生思考后仍然解决不了,从而引出课题以境激情建构概念三、创设情境构建概念转盘游戏:如图所示,规定指针指向金额区域表示中奖问题1:图1中转盘中奖的概率是多少?(图1)问题2:若换成图2的转盘,中奖概率是多少(蓝红区域面积比为3:2)(图2)问题3:再换成图3的转盘,中奖概率是多少呢通过等分猜想引入几何概型,学生猜想依次得到概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发 生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客 车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所 以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时 间段的位置无关,这符合几何概型的条件. 解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站 等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得 P(A)=(60-40)/60=1/3. 即此人等车时间不多于10分钟的概率为1/3. 点评:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一 刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上 的均匀随机数. 变式训练
几何概型的基本特点: a.试验中所有可能出现的结果(基本事件)有无限多个; b.每个基本事件出现的可能性相等. (5)几何概型的概率公式:
P(A)=. (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区 别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另 外两种概型的概率计算公式的含义也不同. 应用示例
对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区 域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随 机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这 里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试 验,称为几何概型.
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成 比例,则称这样的概率模型为几何概率模型(geometric models of probability),简称几何概型.
思路1 例1 判断下列试验中事件A发生的概率是古典概型,还是几何概型. (1)抛掷两颗骰子,求出现两个“4点”的概率; (2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针 指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率. 活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断. 解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能 的,因此属于古典概型; (2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在 阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长 度有关,因此属于几何概型.
于是事件A发生的概率P(A)=. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面
积为×π×1222 cm2的大圆内,而当中靶点落在面积为×π×12.22 cm2的黄心 内时,事件B发生,于是事件B发生的概率P(B)==0.01.
(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反, 反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置靶面内任何一点 都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的 点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事 件是无限的. (4)几何概型.
第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶 面直径为122 cm的大圆内的任意一点.
在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能 性”,但是显然不能用古典概型的方法求解.
考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳 子三等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段 的长度等于绳长的,
为解决这个问题,我们学习几何概型. 思路3
在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可 能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例 如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一
个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可 能出现的结果都是无限多个.这就是我们要学习的几何概型. 推进新课 新知探究 提出问题 (1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率? (2)试验1.取一根长度为3 m的绳子,拉直后在任意位置剪断.问剪得两段的 长都不小于1 m的概率有多大? 试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色, 红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶 心直径为12.2 cm.运动员在70 m外射箭.假设射箭都能射中靶面内任何一 点都是等可能的.问射中黄心的概率为多少? (3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么? (4)什么是几何概型?它有什么特点? (5)如何计算几何概型的概率?有什么样的公式? (6)古典概型和几何概型有什么区别和联系? 活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过 的知识解决,教师引导学生比较概括. 讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正, 反)、(反,正)、(反,反).每种结果出现的概率相等,P(正,正) =P(正,反)=P(反,正)=P(反,反)=1/4.两次出现相同面的概率为. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可 以是长度为3 m的绳子上的任意一点.
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可
视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可
利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量 的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是 连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从 [0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想 是用频率估计概率.
本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中 的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生 相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进 行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性 与规律性,体会随着试验次数的增加,结果的精度会越来越高.
均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随 机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学 定义,要求学生体会如果X落到[0,1]区间内任何一点是等可能的,则称X 为[0,1]区间上的均匀随机数. 三维目标
1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念; 掌握几何概型的概率公式:
3.3 几何概型
3.3.1 几何概型 整体设计
教学分析
这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机 模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所 以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容. 几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不 是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件 的例子,概率为1的事件不是必然事件的例子.
P(A)=,学会应用数学知识来解决问题,体会数学知识与现实世界的联 系,培养逻辑推理能力.
2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会 根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是 几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意 识. 重点难点 教学重点:理解几何概型的定义、特点,会用公式计算几何概率. 教学难点:等可能性的判断与几何概型和古典概型的区别. 课时安排
概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图中的阴影区域g就
表示“晚报在晚餐开始之前被送到”.容易求得g的面积为,G的面积为1.由
几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P(A)=.
变式训练
在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫
升,则取出的种子中含有麦锈病的种子的概率是多少?
点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性 和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区 域长度有关. 例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等 待的时间短于10分钟的概率.
活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机 是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随 机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能 的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而 与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概 率计算公式计算. 解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于 [50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A) =(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6. 打开收音机的时刻X是随机的,可以是0—60之间的任何时刻,且是等可能 的.我们称X服从[0,60]上的均匀分布,X称为[0,60]上的均匀随机数. 变式训练
在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海 域中任意一点钻探,钻到油层面的概率是多少? 分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而 40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率. 解:记“钻到油层面”为事件A,则P(A)=0.004. 答:钻到油层面的概率是0.004. 例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送 到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚 餐.则晚报在晚餐开始之前被送到的概率是多少? 活动:学生读题,设法利用几何概型公式求得概率.
1课时 教学过程
导入新课 思路1