九年级数学下册单元练习测试题附答案

合集下载

九年级数学下册 各单元综合测试题附答案4套

九年级数学下册 各单元综合测试题附答案4套

人教版九年级数学下册第二十六章综合测试卷03一、选择题(每小题4分,共32分)1.下列函数是反比例函数的是()A .12y x =B .12y x =C .21y x =D .12y x =+2.当0x >时,函数5y x=-的图x 象在()A .第四象限B .第三象限C .第二象限D .第一象限3.反比例函数12ky x-=的图象x 经过点(2,3)-,则k 的值为()A .6B .6-C .72D .72-4.已知反比例函数1y x=,下列结论不正确的是()A .图象经过点1,1()B .图象在第一、第三象限C .当1x >时,01y <<D .当0x <时,y 随x 的增大而增大5.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,二氧化碳的密度也会随之改变,密度ρ(单位:3kg/m )是体积V (单位:3m )的反比例函数,它的图象如图26-8所示,当310 m V =时,二氧化碳的密度是()A .35 kg/mB .32 kg/mC .3100 kg/mD .31 kg/m 6.如图26-9,一次函数11y k x b =+的图象和反比例函数22k y x=的图象交2x 于1,2A (),2,1B --()两点,若12y y <,则x 的取值范围是()A .1x <B .2x -<C .20x -<<或1x >D .2x -<或01x <<7.若函数1y k x =-()和函数ky x=的图象在同一坐标系中,则其图象可为图中的()A .①③B .①④C .②③D .②④8.如果函数1ky x-=的图象与直线y x =没有交x 点,那么k 的取值范围是()A .1k >B .1k <C .1k ->D .1k -<二、填空题(每小题5分,共20分)9.试写出图象位于第二、第四象限的一个反比例函数的解析式________.10.点P 在反比例函数(0)ky k x=≠的图象上,点2,4Q ()与点P 关于y 轴对称,则反比例函数的解析式为________.11.若点,2P a ()在一次函数24y x =+的图象上,它关于y 轴的对称点在反比例函数ky x=的图象上,则该反比例函数的解析式为________.12.如图26-11,四边形OABC 是矩形,ADEF 是正方形,点A ,D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在上的图象AB 上,点B ,E 在反比例函数ky x=上,1OA =,6OC =,则正方形ADEF 的边长为________.三、解答题(共48分)13.(8分)已知变量y 与1x +成反比例,且当2x =时,1y =-,求y 和x 之间的函数解析式。

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。

九年级数学下册 各单元综合测试题及答案4套

九年级数学下册 各单元综合测试题及答案4套

人教版九年级数学下册第二十六章综合测试卷02一、选择题(30分)1.已知反比例函数ky x=的图象经过点2,3(),那么下列四个点中,也在这个函数图象上的是()A .()6,1-B .()1,6C .()2,3-D .()3,2-2.已知矩形的面积为220 cm ,设该矩形的一边长为 cm y ,另一边的长为 cm x ,则y 与x 之间的函数图象大致是()A B C D3.已知点(),P a m ,(),Q b n 都在反比例函数2y x=-的图象上,且0a b <<,则下列结论一定正确的是()A .0m n +<B .0m n +>C .m n <D .m n>4.如图,ABC △的三个顶点分别为(1,2)A ,(4,2)B ,(4,4)C .若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是()A .14k ≤≤B .48k ≤≤C .216k ≤≤D .816k ≤≤5.在同一平面直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象没有公共点,则()A .120k k +<B .120k k +>C .120k k <D .120k k >6.如果点()12,A y -,()21,B y -,()32,C y 都在反比例函数(0)ky k x=>的图象上,那么1y ,2y ,3y 的大小关系是()A .132y y y <<B .213y y y <<C .123y y y <<D .321y y y <<7.反比例函数3(0)y x x=-<的图象如图所示,则矩形OAPB 的面积是()A .3B .3-C .32D .32-8.如图,在同一平面直角坐标系中,一次函数1y kx b =+(k ,b 是常数,且0k ≠)与反比例函数2c y x=(c 是常数,且0c ≠)的图象相交于(3,2)A --,(2,3)B 两点,则不等式12y y >的解集是()A .32x -<<B .3x -<或2x >C .30x -<<或2x >D .02x <<9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B .若点C 是x 轴上任意一点,连接AC ,BC ,则ABC △的面积为()A .3B .4C .5D .610.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图象上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为1,2,OAC △与ABD △的面积之和为32,则k 的值为()A .4B .3C .2D .32二、填空题(24分)11.在ABC △的三个顶点(2,3)A -,(4,5)B --,(3,2)C -中,可能在反比例函数(0)ky k x=>的图象上的点是_________.12.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的解析式为_________.13.如图,已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点A ,过A 点作AB x ⊥轴,垂足为B ,若AOB △的面积为1,则k =_________.14.已知一次函数y ax b =+与反比例函数ky x=的图象相交于(4,2)A ,(2,)B m -两点,则一次函数的解析式为_________.15.若点(,2)A m -在反比例函数4y x=的图象上,则当函数值2y -≥时,自变量x 的取值范围是_______.16.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x =>及22(0)ky x x=>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2.则12k k -=_______.17.如图,反比例函数ky x=的图象经过ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的面积为6,则k =_______.18.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是_______.三、解答题(8+8+10+10+10=46分)19.如图,在平面直角坐标系中有三点(1,2),(3,1),(2,1)--,其中有两点同时在反比例函数ky x=的图象上,将这两点分别记为A ,B ,另一点记为C .(1)求出k 的值.(2)求直线AB 对应的一次函数的解析式.(3)设点C 关于直线AB 的对称点为O ,P 是x 轴上的一个动点,直接写出PC PD +的最小值(不必说明理由).20.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点。

人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】

人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】

人教版九年级数学下册第28章《锐角三角函数》单元测试一.选择题(共10小题,满分30分)1.在Rt△ABC中,∠C=90°,若cos A=( )A.B.C.D.2.在边长相等的小正方形组成的网格中,点A,B,C都在格点上( )A.B.C.D.3.在Rt△ABC中,∠C=90°,BC=1,那么tan B的值是( )A.B.C.D.4.∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°5.在Rt△ABC中,∠C=90°,AB=5,则tan A的值是( )A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,则sin B=( )A.B.2C.D.7.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是( )A.B.C.D.8.如图,AD是△ABC的高,AB=4,tan∠CAD=,则BC的长为( )A. +1B.2+2C.2+1D. +49.如图,半径为3的⊙O内有一点A,OA=,当∠OPA最大时,S△OPA等于( )A.B.C.D.110.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,∠C=42°,AB=60( )A.60sin50°B.C.60cos50°D.60tan50°二.填空题(共10小题,满分30分)11.在Rt△ABC中,∠C=90°,sin A= .12.用科学计算器计算: tan16°15′≈ (结果精确到0.01)13.在△ABC中,若,∠A,∠B都是锐角 三角形.14.在Rt△ABC中,∠C=90°,AC=6,那么AB的长为 .15.比较大小:sin80° tan50°(填“>”或“<”).16.在Rt△ABC中,∠C=90°,cos A= .17.在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 .18.如图,在Rt△ABC中,CD是斜边AB上的中线,AC=6,则tan A的值为 .19.如图,在Rt△ABC中,∠ACB=90°,连接CD,过点B作CD的垂线,tan A=,则cos∠DBE的值为 .20.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),水平宽度AC=m 米.三.解答题(共7小题,满分6021.已知cos45°=,求cos21°+cos22°+…+cos289°的值.22.如图,在Rt△ABC中,∠C=90°,BC=5.求sin A,cos A和tan A.23.如图,在Rt△ABC中,∠C=90˚,BC=6,求AC的长和sin A的值.24.计算:cos60°﹣2sin245°+tan230°﹣sin30°.25.计算:(1);(2)sin245°+cos245°+tan30°tan60°﹣cos30°.26.2022年8月21日,重庆市北碚区缙云山突发山火,山火无情,各地消防迅速出动,冲锋在前,然后沿着坡比为5:12的斜坡前进104米到达B处平台,继续前进到达C,沿斜坡CD前行800米到达着火点D.(1)求着火点D距离山脚的垂直高度;(2)已知消防员在平地的平均速度为4m/s,求消防员通过平台BC的时间.(保留一位小数)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈,≈1.732)27.如图,已知∠ABC和射线BD P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,并给出证明.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:如图,∵∠C=90°,∴设AC=5k,AB=13k,根据勾股定理得,BC==,所以,sin A===.故选:D.2.解:设点C到AB的距离为h,由勾股定理可知:AC==2=,由于S△ABC=32﹣×6×2﹣×7×3=9﹣8﹣3=4.∴AB•h=4,∴h=,∴sin∠BAC==,∴cos∠BAC=,故选:A.3.解:∵∠C=90°,∴tan B===.故选:D.4.解:∵∠β为锐角,且2cosβ﹣1=8,∴cosβ=,∴∠β=60°.故选:B.5.解:∵∠C=90°,AB=5,∴AC===4,∴tan A==,故选:D.6.解:∵∠C=90°,tan A=2,∴BC=2AC,∴,∴,故C正确.故选:C.7.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.8.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在Rt△ABD中,cos∠BAD=,∴cos60°=,sin60°=,∴AD=4cos60°=7×=5=4,在Rt△ADC中,tan∠CAD=,∴=,解得CD=1,∴BC=BD+CD=2+1.故选:C.9.解:如图所示:∵OA、OP是定值,∴PA⊥OA时,∠OPA最大,在直角三角形OPA中,OA=,∴PA==,∴S△OPA=OA•AP=××=.故选:B.10.解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.二.填空题(共10小题,满分30分)11.解:由sin A=知,可设a=6x,b=3x.∴tan A=.故答案为:.12.解: tan16°15′≈0.71,故答案为:4.71.13.解:∵,∴sin A=,cos B=,∴∠A=60°,∠B=60°,∴△ABC是等边三角形.故答案为:等边.14.解:∵cos A==,AC=7,∴AB==8,故答案为:8.15.解:∵tan50°>tan45°,tan45°=1,∴tan50°>1,又sin80°<2,∴sin80°<tan50°;故答案为:<.16.解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.17.解:∵|sin A﹣|+(2=2,∴sin A﹣=4,,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.18.解:在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD=10,∵AC=6,∴BC===8,∴tan A===,故答案为:.19.解:过点C作CF⊥AB,垂足为F,在Rt△ABC中,AC=3a=,∴BC=4a,AB=5a,∵D是AB的中点,∴CD=AB=a,∵△ABC的面积=AB•CF=,∴AB•CF=AC•CB,∴5aCF=3a×4a,∴CF=a,∴cos∠DCF==,∵BE⊥CD,∴∠E=90°,∴∠EDB+∠EBD=90°,∵∠FCD+∠CDF=90°,∠CDF=∠BDE,∴∠EBD=∠DCF,∴cos∠DBE=cos∠DCF=,故答案为:.20.解:∵河坝横断面迎水坡AB的坡比是1:,AC=m,∴=,∴BC=AC==3(m),在Rt△ABC中,由勾股定理得:AB==,故答案为:6.三.解答题(共7小题,满分60分)21.解:原式=(cos21°+cos289°)+(cos22°+cos588°)+…+(cos244°+cos246°)+cos445=(sin21°+cos51°)+(sin22°+cos22°)+…+(sin844°+cos244°)+cos245=44+()2=44.22.解:在Rt△ABC中,∠C=90°,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.23.解:∵△ABC中,tan A=,∴=,∴AC=8,∴AB===10,∴sin A==24.解:原式=﹣4×()6+×()2﹣=﹣2×+×﹣=﹣2+﹣=﹣.25.解:(1)=﹣4﹣7+1=﹣4;(2)sin645°+cos245°+tan30°tan60°﹣cos30°===.26.(1)如图所示,过点B,C,D分别作水平线的垂线,F,G,延长BC交AG于点H,BHGE是矩形,依题意,,AB=104米,CD=800米,在Rt△ABE中,,设BE=8k米,∴AB=13k,∵AB=104米,∴k=8,∴BE=5×2=40(米),AE=12×8=96(米),在Rt△DCH中,CD=800米,∴DG=DH+HG=DH+BE=480+40=520(米),即着火点D距离山脚的垂直高度为520米;(2)依题意,∠DAG=30°,∴米,∵Rt△DCH中,CH=cos37°×CD=≈0.8×800=640(米),又AE=96米,∴(米),∵消防员在平地的平均速度为4m/s,∴消防员通过平台BC的时间为(秒).27.解:(1)在Rt△BPE中,sin∠EBP=在Rt△BPF中,sin∠FBP=又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα=sinβ又∵α>β∴sinα>sinβ∴PE>PF.。

九年级下册数学第一章单元测试题及参考答案

九年级下册数学第一章单元测试题及参考答案

九年级下册数学第一章单元测试题及参考答案一、选择题(每题3分,共30分)1.顺次连接对角线相等的平行四边形四边中点,所得的四边形必是()A.梯形B.菱形C.矩形D.正方形2.到三角形三边距离相等的点是三角形()A.三条中线的交点B.三条高的交点C.三条角平分线交点D.不确定3.正方形的对角线长为a,则它的对角线的交点到它的边的距离为()A.22aB.24aC.a2D.22a4.梯形上底长是4,下底长是6,则中位线夹在两条对角线之间的线段长为()A.1B.2C.3D.45.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在Cprime;处,BCprime;交AD于点E,若,则在不添加任何辅助线的情况下,图中的45deg;角有()A.6个B.5个C.4个D.3个第6题6.如图,□ABCD中,过对角线交点O引EF交BC于点E,交AD于点F,若AB=5cm,AD=7cm,OE=2cm,则四边形ABEF的周长是()A.14B.16cm,C.19cmD.24cm7.如果等腰梯形的两底之差等于它一腰的长,则这个等腰梯形的锐角是()A.60deg;B.30deg;C.45deg;D.15deg;8.顺次连接四边形四边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.对角线相等的四边形C.矩形D.对角线互相垂直的四边形9.若直角三角形斜边上的中线等于最短的直角边长,则它的最小内角等于()A.10deg;B.20deg;C.30deg;D.60deg;10.下列条件中,能判定四边形是正方形的是()A.对角线相等B.对角线互相垂直C.对角线相等且垂直D.对角线相等且互相垂直平分二、填空题(每题3分,共30分)11.等腰三角形的一个内角为80deg;,则其它两个角分别是___________.12.在中, ,则a:b:c=___________.13.已知矩形的对角线长为10cm,则它的各边中点的连线所得的四边形的周长为___________cm.14.平行四边形的两邻边长分别是6cm,8cm,夹角为30deg;,则这个平行四边形的面积是__________.15.平行四边形的两邻角之比为1:2,两条高分别为2,3,则其面积为_______.16.菱形的周长为20,且一条对角线长为5,则它的另一条对角线长为______.17.矩形ABCD的对角线AC,BD相交于点O,ang;AOD=60deg;,AB=23,AEperp;BD,垂足为E,那么BD=______,BE=________.18.四边形ABCD中,ang;A=ang;C , ,AB=3,BC=2,则CD=_______.19.梯形的上底长3cm,下底长7cm,则它的一条对角线把它分成的两部分的面积比是_________.20.梯形ABCD中, AB∥CD,中位线FE交AD、AC、BD、BC于点E、G、H、F,若DC=5,AB=11,则EH=________,GH=_________.三、解答题(每题10分,共40分)21.如图,在梯形ABCD中,AD∥BC,AB=CD=AD,ang;C=60deg;,AEperp;BD于点E,F是CD的中点,DG是梯形ABCD的高.⑴求证:四边形AEFD是平行四边形;⑵设AE=x,四边形DEGF的面积为y,求y与x的关系式..22.如图,已知矩形ABCD.⑴在图中作出沿对角线BD所在直线对折后的 ,C点的对应点为Cprime;(用尺规作图,保留清晰的作图痕迹,简要写明作法)⑵设Cprime;B与AD的交点为E,若△EBD的面积是整个矩形面积的13,求ang;CDB的度数.23.如图,在△ABC中,ang;C=2ang;B,D是BC上的一点,且ADperp;AB,E是BD的中点,连接AE.⑴求证:ang;AEC=ang;C;⑵求证:BD=2AC;⑶若AE=6.5,AD=5,那么△ABE的周长是多少?24.如图,△ABC中,AB=AC,ang;A=90deg;,BD平分ang;ABC,CEperp;BD于点E.求证:BD=2CE参考答案一、1.B2.C3.B4.A5.B6.B7.A8.B9.C 10.D二、11.50deg;,50deg;或80deg;,20deg;12.1:3:213.2014.2415.4316.5317.4,318.43319.3:720.5.53三、21.解:⑴略⑵y=S=12EFbull;DG=12×2x×3x=3x2(xgt;0)h22.解:⑵30deg;23.解: ⑶周长为25.24.提示:延长BA,CE交于点F,证△ABD≌△ACF这篇九年级下册数学第一章单元测试题的内容,希望会对各位同学带来很大的帮助。

鲁教版(五四制)九年级数学下册《第三章 圆》单元检测卷-带答案

鲁教版(五四制)九年级数学下册《第三章 圆》单元检测卷-带答案

鲁教版(五四制)九年级数学下册《第三章圆》单元检测卷-带答案(时间:90分钟满足:120分)一、选择题(每小题3分,共30分)1.下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.其中,说法正确的有()A.1个B.2个C.3个D.4个2.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°题2 题3 题43.如图,在⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠OAB=60°,∠ADC=85°,则∠OCB 的度数是()A.25°B.27.5°C.30°D.35°4.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点PB.点QC.点MD.点R5.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM;OC=3:5,则AB的长为()A.2√91B.16C.12D.8题5 题76.在Rt△ABC中,∠C=90°,∠B=30°,BC=4 cm,以点C为圆心,2 cm长为半径作圆,⊙C于AB的位置关系是()A.相离B.相切C.相交D.相切或相交7.一把直尺、一个60°的直角三角板和光盘如图摆放,A为60°直角三角板的斜边与直尺的交点,AB=3,则光盘的直径是()A.3B.3√3C.6D.6√38.如图,AB是圆锥的母线,BC为底面直径,已知BC=6 cm,圆锥的侧面积为15π cm2,则sin∠ABC的值为()A.34 B.35C.45D.539.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE 的度数为()A.56°B.62°C.68°D.78°10.如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(每小题4分,共24分)11.如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=60°,则∠BAD= .题11 题1212.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r= .13.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a= cm.题13题1414.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12 mm,测得钢珠顶端离零件表面的距离为9 mm,如图所示,则这个小孔的直径AB= mm.15.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以点A为圆心,AB长为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为 .16.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=√3x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2的̂的长是 .长为半径画弧交x轴正半轴于点A3……按此作法进行下去,则A2024B2023三、解答题(共66分)̂上的一点(点P不与点D,E重合),求∠CPD 17.(10分)如图,正五边形ABCDE内接于⊙O,P为DE的余角的度数.18.(10分)如图,⊙0为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧 BC的交点E.(保留作图痕迹,不写作法)(2)若(1)中的点E到弦BC 的距离为3, 求弦CE的长.19.(10分)如图,在△ABC中,∠ACB=90°, BO为△ABC 的角平分线,以点O为圆心,OC为半径作⊙, AD=2, 求BO的长.0,与线段AC交于点D.(1)求证:AB 为⊙0的切线.(2)若tan A=3420.(12分)如图,AB是⊙O的弦,C是⊙0外一点,OC⊥OA, CO交AB于点P,交⊙O于点D, 且CP=CB.(1)判断直线BC与⊙0的位置关系,并说明理由;(2)若∠A=30°, 0P=1,求图中阴影部分的面积.21.(12分)(威海中考)已知AB为⊙0的直径,AB=2,弦DE=1, 直线AD与BE相交于点C,弦DE在⊙0上运动且保持长度不变, ⊙0的切线DF交BC 于点F.(1)如图①,若 DE∥AB, 求证:CF=EF.(2)如图②,当点E运动至与点B重合时,试判断 CF与 BF是否相等,并说明理由.22.(12分)在古代,智慧的劳动人民已经会使用”石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杯”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图①,两个固定长度的“连杆”AP, BP的连接点P在⊙O上, 当点P在⊙0上转动时,带动点A, B 分别在射线OM, ON 上滑动, OM⊥ON.当AP与⊙0相切时,点B恰好落在⊙0上,如图②.请仅就图②的情形解答下列问题.(1)求证:∠PAO=2∠PBO.(2)若⊙O的半径为5,AP=203,求BP的长.参考答案一、选择题序号 1 2 3 4 5 6 7 8 9 10答案 C C D B B B D C C C二、填空题11. 30°;12. 1 ;13. √3;14. 6√3;15. 25 ;16. 22024π3;三、解答题17.54°.18.(2)√30.19.(2)3√5.20.(1)相切;(2)√32−π4.21.(1)连接OD,OE,△ODE为正三角形,△AOD和△BOE是正三角形,△CDE是正三角形;(2)此时BC为切线.22.(1)∠PAO=∠POD=2∠PBO.(2)AO=25,△AOP∽△OPD,OD=4,PD=3,CD=1,PC=√10,BP=3√10.3。

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)一.选择题(共10小题,满分30分)1.已知在Rt△ABC中,∠C=90°,AC=3,BC=4,则tan A的值为()A.B.C.D.2.在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半3.在直角坐标系中,P是第一象限内的点,OP与x轴正半轴的夹角α的正切值是,则cos α的值是()A.B.C.D.4.计算sin45°的值等于()A.B.C.D.5.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值是()A.B.C.D.6.在Rt△ABC中,∠C=90°,若sin A=,则cos B的值是()A.B.C.D.7.已知tan A=0.85,用计算器求∠A的大小,下列按键顺序正确的是()A.B.C.D.8.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是()A.B.C.D.9.在△ABC中,已知∠C=90°,AC=4,sin A=,那么BC边的长是()A.2B.8 C.4D.1210.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.0二.填空题(共10小题,满分30分)11.如图,在平面直角坐标系内有一点P(5,12),那么OP与x轴正半轴的夹角α的余弦值.12.若α为锐角,且,则m的取值范围是.13.用科学计算器计算: tan16°15′≈(结果精确到0.01)14.如果3sinα=+1,则∠α=.(精确到0.1度)15.计算:sin225°+cos225°﹣tan60°=.16.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且c=3a,则tan A 的值为.17.在Rt△ABC中,∠C=90°,如果AC=4,sin B=,那么AB=.18.已知∠A是锐角,且tan A=2,那么cos A=.19.已知∠A+∠B=90°,若,则cos B=.20.化简=.三.解答题(共7小题,满分60分)21.如图,在Rt△ABC中,∠C=90°,BC=6,tan A=.求AB的长和sin B的值.22.已知cos45°=,求cos21°+cos22°+…+cos289°的值.23.计算下列各题:(1);(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.24.在△ABC中,∠C=90°,BC=3,AB=5,求sin A,cos B,tan A的值.25.如图,在所示的直角坐标系中,P是第一象限的点,其坐标是(6,y),且OP与x轴的正半轴的夹角α的正切值是,求角α的正弦值.26.如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cos A的值.27.如图,已知∠ABC和射线BD上一点P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m,试比较PE、PF的大小;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,且α>β.试判断PE、PF的大小,并给出证明.参考答案与解析一.选择题1.解:如图所示:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴tan A==.故选:B.2.解:根据锐角三角函数的定义,知各边的长度都扩大2倍,那么锐角A的大小不变,所以其正切值不变.故选:C.3.解:如图:过点P作PE⊥x轴于点E,∵tanα=,∴设PE=4x,OE=3x,在Rt△OPE中,由勾股定理得OP=,∴cosα=.故选:C.4.解:sin45°=故选:C.5.解:∵∠C=90°,AB=5,BC=3,∴AC===4,∴tan A==,故选:D.6.解:Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴cos B=sin A=,故选:C.7.解:根据计算器功能键,先按反三角2ndF,再按正切值.故选:A.8.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.9.解:由sin A==,不妨设BC=2k,则AB=3k,由勾股定理得,AC2+BC2=AB2,即(4)2+(2k)2=(3k)2,解得k=4(取正值),所以BC=2k=8,故选:B.10.解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.二.填空题(共10小题,满分30分)11.解:过P作PA⊥OA,∵P点坐标为(5,12),∴OA=5,PA=12,由勾股定理得,OP===13.∴cosα==.故答案为:.12.解:∵0<cosα<1,∴0<<1,解得,故答案为:.13.解: tan16°15′≈0.71,故答案为:0.71.14.解:∵3sinα=+1,∴sinα=,解得,∠α≈65.5°,故答案为:65.5°.15.解:∵sin225°+cos225°=1,tan60°=,∴sin225°+cos225°﹣tan60°=1﹣,故答案为:1﹣.16.解:在Rt△ABC中,∠C=90°,c=3a,∴b===2a,∴tan A===,故答案为:.17.解:∵sin B=,∴AB===6.故答案是:6.18.解:设∠A所在的直角三角形为△ABC,∠C=90°,∠A、∠B、∠C所得的边为a,b,c,∵tan A=2,即=2,设b=k,则a=2k,∴c==k,∴cos A==,故答案为:.19.解:由∠A+∠B=90°,若,得cos B=,故答案为:.20.解:∵tan30°=<1,∴原式=1﹣tan30°=1﹣=.三.解答题(共7小题,满分60分)21.解:∵在Rt△ABC中,∠C=90°,BC=6,tan A==,∴AC=12,∴AB===6,∴sin B===.22.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245 =(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.23.解:(1)=(2×﹣)+=2﹣+=2;(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.=×﹣×+()2+()2=﹣1++=.24.解:∵在△ABC中,∠C=90°,BC=3,AB=5,根据勾股定理可得:AC=4,∴sin A=,cos B==,tan A==.25.解:作PC⊥x轴于C.∵tanα=,OC=6∴PC=8.则OP=10.则sinα=.26.(1)证明:法一、连接AD、OD,∵AC是直径,∴AD⊥BC,∵AB=AC,∴D是BC的中点,又∵O是AC的中点,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.法二、连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AB=AC,∴∠OCD=∠B,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.(2)解:由(1)知OD∥AE,∴∠FOD=∠FAE,∠FDO=∠FEA,∴△FOD∽△FAE,∴,∴,∴,解得FC=2,∴AF=6,∴Rt△AEF中,cos∠FAE====.27.解:(1)在Rt△BPE中,sin∠EBP==sin40°在Rt△BPF中,sin∠FBP==sin20°又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα,sin∠FBP==sinβ又∵α>β∴sinα>sinβ∴PE>PF.。

九年级数学下册 各单元综合测试题含答案4套

九年级数学下册 各单元综合测试题含答案4套

所以撤离的最长时间为 7 5 2 (h). 所以撤离的最小速度为 3 2 1.5 (km/h). (3)当 y 4 时,由 y 322 得, x 80.5, 80.57 73.5 (h).
x 所以矿工至少在爆炸后 73.5h 才能下井. 19.【答案】(1)因为 OA OB OD 1,
18.(9 分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是 CO .在一次矿 难事件的调查中发现:从零时起,井内空气中 CO 的浓度达到 4 mg/L ,此后浓度呈直线型增加,在第 7 小 时达到最高值 46 mg/L ,发生爆炸;爆炸后,空气中的 CO 浓度成反比例下降.如图所示,根据题中相关信 息回答下列问题: (1)求爆炸前后空气中 CO 浓度 y 与时间 x 的函数解析式,并写出相应的自变量的取值范围. (2)当空气中的 CO 浓度达到 34 mg/L 时,井下 3km 的矿工接到自动报警信号,这时他们至少要以多少千 米每小时的速度撤离才能在爆炸前逃生? (3)矿工只有在空气中的 CO 浓度降到 4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸 后多少小时才能下井?
,由反比例函数
y

k x
k<0
的性质可得 y1<y2 ,所以 y1 y2<0 ,即 y1 y 2 的值是负数.
所以 y1 y 2 的值不确定.
4.【答案】B
【解析】因为二次函数 y ax2 bxc a 0 的图象开口向下,所以 a<0.
因为对称轴经过 x 轴的负半轴,所以 a , b同号,所以 b<0 .
交于 2,0 点即可;若是反比例函数 y k ,需 k>0,且 x>0 .另外,还可以写其他函数解析式,只要满足 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学下册单元练习测试题附答案九年级数学下册单元练习测试题附答案一、选择题(本题有10小题,每小题3分,共30分)1.已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过点( )A.(2,1) B.(2,-1) C.(2,4) D.(-1,-2)2.抛物线y=3(x-1)2+2的顶点坐标是( )A.(-1,-2)B.(-1,2)C.(1, 2)D.(1,-2)3. 如图,点A、B、C在⊙O上,若∠C=35°,则的度数为( )A.70°B.55°C.60°D.35°4. 如图,在直角△ABC中,∠C=90°,若AB=5,AC=4,则tan∠B=( )(A)35 (B)45 (C)34 (D)435.如图,在⊙O中,AB是弦,OC⊥AB于C,若AB=16, OC=6,则⊙O的半径OA等于( )A.16B.12C.10D.86.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒。

当你抬头看信号灯时,看到黄灯的概率是( )A、 B、 C、 D、7.如图,在△ABC中,∠C=900,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为( )A.3B.4C.5D.68. 如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )9.下列图形中四个阴影三角形中,面积相等的是( )10.函数y1=x(x≥0),y2=4x(x0)的图象如图所示,下列四个结论:①两个函数图象的交点坐标为A (2,2); ②当x2时,y1y2; ③当0﹤x﹤2时,y1y2; ④直线x=1分别与两函数图象交于B、C两点,则线段BC的长为3;则其中正确的结论是( )A .①②④ B.①③④ C.②③④ D.③④二、填空题(本题有6小题,每小题4分,共24分)11.扇形半径为30,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为。

12.如图,D是△ABC中边AB上一点;请添加一个条件: ,使△ACD∽△ABC。

13.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于。

[来源:Z_]14.如图,若点在反比例函数的图象上,轴于点,的面积为3,则。

15.如图,点P的坐标为(3,0 ), ⊙P的半径为5,且⊙P与x轴交于点A,B,与y轴交于点 C、D,则D的坐标是。

16. 如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线ln⊥x 轴于点(n,0);函数y= x的图象与直线l1,l2,l3,…ln 分别交于点A1,A2,A3,…An,函数y=2x的图象与直线l1,l2,l3,…ln分别交于点B1,B2,B3,…Bn.如果△OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S 3,…四边形An﹣1AnBnBn﹣1的面积记作Sn,那么S2012= 。

三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(本题6分)求下列各式的值:(1) -(2)已知,求的值.18.(本题6分)如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30° ;求楼CD的高。

(结果保留根号)19.(本题6分)李明和张强两位同学为得到一张星期六观看足球比赛的入场券,设计了一种游戏方案:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,记下数字后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为奇数,张强得到入场券;否则,李明得到入场券.(1)请你用树状图(或列表法)分析这个游戏方案所有可能出现的结果;(2)这个方案对双方是否公平?为什么?20.(本题8分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC= ,OE=3;求:(1)⊙O的半径;(2)阴影部分的面积。

21.(本题8分)如图,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)若正方形的边长为4,设AE=x,BF=y,求y与x的函数关系式;并求当x取何值时,BF的长为1.22.(本题10分)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。

(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积,值是多少?(3)若墙的可用长度为8米,求围成花圃的面积。

23.(本题10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.⑴如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;⑵如图2,当点D在边BC的延长线上时,其他条件不变,请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并说明理由;⑶如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.24.(本题12分)如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2;(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.18.(本题6分)(36﹢12 )米;19.(本题6分)(1)略; (2)∵P(奇数)=4∕9,P(偶数)=5∕9;∴这个方案对双方不公平; (注:每小题3分)20.(本题8分)(1)半径为6; (2)S阴影=6π-9 ; (注:每小题4分)21.(本题8分)(1)略; (2)y= - x2+x; 当x=2时,BF=1;(注:第①小题3分,第②小题关系式3分,X值2分)22.(本题1 0分)(1)y﹦-4x2+24x (0(3)∵24-4x≤8,∴ x≥4;又∵当x≥3时,S随x增大而减小;∴当x﹦4时,S值﹦32(平方米);(注:第①小题4分,第②小题3分,第③小题3分)23.(本题10分)(1)①由⊿ADB≌⊿AFC可得;② 结论∠AFC=∠ACB+∠DAC成立;(2)∵同理可证⊿ADB≌⊿AFC,∴∠AFC=∠ACB-∠DAC;(3)∠AFC+∠ACB+∠DAC=180°(或∠AFC=2∠ACB -∠DAC等);(注:第①小题4分,第②小题3分,第③小题3分)24.(本题10分)(1)A (-1,0)、 B(3, 0);直线AC解析式为y﹦-X-1;(2)设P点坐标(m ,-m-1),则E点坐标(m ,m2-2m-3);∴PE= -m2+m+2 ,∴当m﹦时, PE值= ;(3)F1(-3, 0)、 F2(1,0)、 F3(4+ , 0)、 F4(4- , 0);(注:每小题4分)学数学的小方法有良好的学习兴趣,试着去培养数学得兴趣,久而久之,你就会发现数学并不是那么得难,试着多看看有关数学的动漫以及书本,都可以培养你对数学的兴趣。

课前复习,试着看一看书上的原话,没看懂的地方用记号笔画上,等上课的时候认真听课,把没听懂的地方听懂,也可以举手问老师,老师会为你讲解。

重视对概念的理解,不要去把那些能理解的话死记硬背下来,理解就行,实在不行就举例子,如:因为正数大于0,负数小于0,所以正数大于负数。

一步步去把它推导出来,当然,基础还是要背的,其他理解了就行。

强大的空间想象力,学习几何图形都需要强大的空间想象力,而培养空间想象力的方法就是:1.善于画图,多画图,2.用教学器具培养你的观察想象力,3.如第一个,学,练习,画,有助于想象力的培养。

4.自己多做实验,使抽象化的物体变的立体起来。

找一个学习超好,班里前3的人作为“敌人”,试着把他作为你的仇人,想想自己为什么超不过他,为什么学习没他强,试着激怒自己,并努力超过他,有时候,成功是需要敌人的帮助的。

正确面对事实,假如你在一次考试中考差了,不要灰心,多想想自己为什么会错在那个地方,做好考后一百分,这样后,把错题写在错题本上,并把方法和错题答法写在上面,有助于你的下一次考试成绩提高,用名人的一句话来说:没有失败,何有成功?以及爱迪生说的:失败乃成功之母。

考差的时候多想想这些话,鼓励自己。

课内认真听讲,课后努力复习。

上课要跟着老师思路来,老师讲哪里你看哪里,不懂下课就去问,上课积极举手,养成听课好习惯,下课休息时光去上个厕所就回来,趴在课桌上想想老师讲过的内容,脑内放电影,提高效率。

多做题,养成良好习惯。

想要学好数学,多做题是难免的,当你攻克完一道题以后,不要急着去做下一题,试着用其他办法,看能不能做出这道题,做不出,要积极询问老师,老师会为你讲解,你只需要把方法记住,套路记住就行了。

实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

学数学必须遵循的规律01第四个原则:学习数学必须遵循从具象到形象再到抽象的规律。

数学,本是源自生活,为了解决具体的问题而生。

可以说,一点也不神秘,更不会深奥。

为什么我们学起来又会那么困难?原因在于我们学习数学的方法是错误的,我们没有按照大脑工作的习惯来学习,没有遵循从具象到形象再到抽象的规律,太急功近利了,使得这么一门本来很具体的学科变得很晦涩难懂。

02大脑分左右脑,左脑负责逻辑思维,右脑负责图像记忆。

人类学东西,一般会从右脑开始,先有个大概的形象,才能进一步通过左脑去思考。

可以说,右脑在很多方面的效率是优于左脑的,这是长期进化的结果。

打个比方,如果我们看见一只老虎,不是赶紧跑,而是先在脑子里思考一番,看看有没有危险,那么,我们很快就会一命呜呼了。

如果用右脑来处理则简单多了,一看见老虎这个形象,身体立刻反应,起身就逃。

正是这种本能且未经思考的快速反应才使得人类可以在恶劣的环境中得以自保,繁衍生息。

左脑在什么时候会更有效率?在处理更复杂的环境下,左脑更有效率。

左脑可以根据以往经验的分析、判断,从而辨析每一种情况的真实性,并作出对应的反应。

还拿看见老虎打比方,看见老虎就跑,这是右脑的工作,可是,如果一思考,老虎此时正被关在动物园里的玻璃房,很安全,那还用跑吗?在这里,左脑发挥作用了,进行了逻辑思考。

相关文档
最新文档