高中数学同步学案 几类不同增长的函数模型

合集下载

高中数学 3.2.1 几类不同增长的函数模型导学案 新人教A版必修1

高中数学 3.2.1 几类不同增长的函数模型导学案 新人教A版必修1
(2)三个函数的增长速度差异很大,其中y=2x增长速度最快,y=log2x增长速度最慢.
(3)一般情况下,y=ax(a>1)增长速度越来越快,一般称为爆炸式增长,y=logax(a>1)增长会越来越慢,y=xn(n>0)介于它们两个之间.
2.(1)①随着x值的增大y值的变化越来越大,所以常选用指数型函数来模拟;②随着x值的增大y值的变化越来越近似为零,所以常用对数型函数模拟;③图形中的点先升后降,所以常选用二次函数模拟;④数据点大致都落在一条直线附近,所以常选用一次函数模拟.
3.2.1几类不同增长的函数模型
班级:__________姓名:__________设计人__________日期__________
课前预习·预习案
【温馨寄语】
生活的海洋已铺开金色的路,浪花正分列两旁摇动着欢迎的花束。勇敢地去吧,朋友!前进,已吹响出征的海螺;彩霞,正在将鲜花的大旗飞舞……
【学习目标】
【当堂检测】
1.三人赛跑,假设其路过的路程和时间的函数关系分别是 , , ,他们一直跑下去,最终跑在最前面的人具有的函数关系是
A.
B.
C.
D.一样快
2.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售800台,则下列函数模型中能准确地反映销售量 与投放市场的月数 之间关系的是
2.集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合
【学习难点】
1.怎样选择数学模型分析解决实际问题
2.难点是集合特征性质的概念,以及运用特征性质描述法表示集合
【自主学习】
1.三类增长型函数图象性质的变化特征
2.三类增长型函数之间增长速度的比较
(1)指数函数 和幂函数 在区间(0,+∞)上,由于 的增长速度 的增长速度,因而总存在一个实数 ,当 时,就会有_____________( , ).

几类不同增长的函数模型

几类不同增长的函数模型

定义与公式
定义
幂函数是一种特殊的函数形式,通常表 示为`f(x) = x^n`,其中n是实数。
VS
公式
幂函数的公式为f(x) = x^n,其中x为底 数,n为指数。
幂函数增长的特点
增长率
幂函数的增长率随着n的增大而增大,即指数越大,函数增长速 度越快峭,随着x的增大,函数值 增长越来越快。
对数增长的应用
01
金融领域
对数增长函数模型被广泛应用于 金融领域,如股票价格、债券收 益率等变量的预测和分析。
02
03
环境科学
生物学
在环境科学领域,对数增长函数 模型被用于描述污染物在环境中 的扩散和稀释过程。
在生物学中,对数增长函数模型 被用于描述细菌生长、人口增长 等生物学过程。
04
幂函数增长模型

工业生产
在工业生产中,如果生产速度与 时间成正比,那么可以使用线性 增长函数来描述生产情况。通过 调整参数 k 可以控制单位时间内
生产的数量。
其他应用
线性增长函数还可以应用于描述 某些物理现象,如弹簧的伸长量
与受到的力成正比等。
02
指数增长函数模型
定义与公式
定义
指数增长函数模型是一种特殊的增长函数,其增长速度与时间成正比,通常表 示为 y = ae^rt,其中 a 为初始值,r 为增长率,t 为时间。
经济问题
高次多项式增长函数可以描述经济现象的变化 ,例如收益曲线、成本曲线等。
信号处理
高次多项式增长函数可以用于信号处理领域,例如频谱分析、滤波等。
06
分段函数增长模型
定义与公式
01
分段函数增长模型是指函数在 各个区间内具有不同的增长趋 势和公式。

人教版数学高一-新课标 几类不同增长的函数模型 同步教案

人教版数学高一-新课标 几类不同增长的函数模型 同步教案

§3.2.1几类不同增长的函数模型学案课前预习学案一、预习目标对于基本的实际问题能抽象出数学模型。

二、预习内容(预习教材P95~ P98,找出疑惑之处)阅读:澳大利亚兔子数“爆炸”有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.三、提出疑惑课内探究学案一、学习目标1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;3. 恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.学习重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

学习难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。

二、学习过程典型例题例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?反思:① 在本例中涉及哪些数量关系?如何用函数描述这些数量关系?② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.变式训练1 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染?例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:0.25y x =;7log 1y x =+; 1.002x y =. 问:其中哪个模型能符合公司的要求?反思:① 此例涉及了哪几类函数模型?本例实质如何?② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求?变式训练2经市场调查分析知,某地明年从年初开始的前n 个月,对某种商品需求总量()f n (万件)近似地满足关系()()()()113521,2,3,,12150f n n n n n =+-=.写出明年第n 个月这种商品需求量()g n (万件)与月份n 的函数关系式.四、反思总结解决应用题的一般程序:① 审题:弄清题意,分清条件和结论,理顺数量关系;② 建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型; ③ 解模:求解数学模型,得出数学结论;④ 还原:将用数学知识和方法得出的结论,还原为实际问题的意义. 五、当堂达标:课本108页2题课后练习与提高1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x 次后得到的细胞个数y 为( ).A .12x y += B. y =21x - C. y =2x D. y =2x 2. 某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( ).A. 一次函数B. 二次函数C. 指数型函数D. 对数型函数3. 一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,它的解析式为( ). A. y =20-2x (x ≤10) B. y =20-2x (x <10) C. y =20-2x (5≤x ≤10) D. y =20-2x (5<x <10)4. 某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y 与投放市场的月数x 之间的关系可写成 .5. 如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y 与净化时间t (月)的近似函数关系:t y a =(t ≥0,a >0且a ≠1).有以下叙述① 第4个月时,剩留量就会低于15;② 每月减少的有害物质量都相等;③ 若剩留量为111,,248所经过的时间分别是123,,t t t ,则123t t t +=. 其中所有正确的叙述是 .6.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售. 这样,仍可获得25%的纯利.求此个体户给这批服装定的新标价与原标价之间的函数关系.答案:例1..解:设第x 天的回报为y 元,则方案一可以用)(40*N x y ∈=进行描述,方案二可以用)(10*N x x y ∈=进行描述,方案三可以用)(24.0*1N x y x ∈⨯=-进行描述,要对三个方案进行选择,就要对增长情况进行分析。

高中数学 3.2.1 几类不同增长的函数模型教案 新人教版必修1(2021年最新整理)

高中数学 3.2.1 几类不同增长的函数模型教案 新人教版必修1(2021年最新整理)

1
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(黑龙江省鸡西市高中数学3.2.1 几类不同增长的函数模型教案新人教版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为黑龙江省鸡西市高中数学3.2.1 几类不同增长的函数模型教案新人教版必修1的全部内容。

版必修1
图1
)求图1中阴影部分的面积
明所求面积的实际含义;
假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2 004 km
3、作业:教材104页1。

人教版高中数学教案-几类不同增长的函数模型

人教版高中数学教案-几类不同增长的函数模型

§3.2.1幾類不同增長的函數模型教案【教學目標】1. 結合實例體會直線上升、指數爆炸、對數增長等不同增長的函數模型意義,理解它們的增長差異;2. 借助資訊技術,利用函數圖像及資料表格,比較指數函數、對數函數以及冪函數的增長差異;3. 恰當運用函數的三種標記法(解析式、圖像、表格)並借助資訊技術解決一些實際問題.【教學重難點】教學重點:將實際問題轉化為數學問題,結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。

教學難點:如何選擇和利用不同函數模型增長差異性分析解決實際問題。

【教學過程】(一)預習檢查、總結疑惑檢查落實了學生的預習情況並瞭解了學生的疑惑,使教學具有了針對性。

(二)情景導入、展示目標。

材料:澳大利亞兔子數“爆炸”1859年,有人從歐洲帶進澳洲幾隻兔子,由於澳洲有茂盛的牧草,而且沒有兔子的天敵,兔子數量不斷增加,不到100年,兔子們佔領了整個澳大利亞,數量達到75億隻.可愛的兔子變得可惡起來,75億隻兔子吃掉了相當於75億隻羊所吃的牧草,草原的載畜率大大降低,而牛羊是澳大利亞的主要牲口.這使澳大利亞頭痛不已,他們採用各種方法消滅這些兔子,直至二十世紀五十年代,科學家採用載液瘤病毒殺死了百分之九十的野兔,澳大利亞人才算松了一口氣.一般而言,在理想條件(食物或養料充足,空間條件充裕,氣候適宜,沒有敵害等)下,種群在一定時期內的增長大致符合“J”型曲線;在有限環境(空間有限,食物有限,有捕食者存在等)中,種群增長到一定程度後不增長,曲線呈“S”型.可用指數函數描述一個種群的前期增長,用對數函數描述後期增長的,感知指數函數變化劇烈。

(三)典型例題例1假設你有一筆資金用於投資,現有三種投資方案供你選擇,這三種方案的回報如下:方案一:每天回報40元;方案二:第一天回報10元,以後每天比前一天多回報10元;方案三:第一天回報0 .4元,以後每天的回報比前一天翻一番. 請問,你會選擇哪種投資方案?(1)請你分析比較三種方案每天回報的大小情況思考:各方案每天回報的變化情況可用什麼函數模型來反映(2)你會選擇哪種投資方案?思考:選擇投資方案的依據是什麼?反思:① 在本例中涉及哪些數量關係?如何用函數描述這些數量關係?② 根據此例的資料,你對三種方案分別表現出的回報資金的增長差異有什麼認識?借助計算器或電腦作出函數圖像,並通過圖像描述一下三種方案的特點.解析:我們可以先建立三種投資方案所對應的模型,在通過比較他們的增長情況,為選擇方案的依據。

几种不同增长的函数模型 课件

几种不同增长的函数模型    课件

【自主解答】 (1)用①来模拟比较合适.因为该饮料在人均GDP处于中等的 地区销售量最多,然后向两边递减.而②,③,④表示的函数在区间上是单调函 数,所以②,③,④都不合适,故用①来模拟比较合适.
(2)因为人均 GDP 为 1 千美元时,年人均 A 饮料的销量为 2 升;人均 GDP 为 4 千美元时,年人均 A 饮料的销量为 5 升,把 x=1,y=2;x=4,y=5 代入 到 y=ax2+bx,得25==a1+6ab+4b, 解得 a=-14,b=94,
几类不同增长的函数模型
教材整理 几类不同增长的函数模型 1.三种函数模型的性质
性质
函数 y=ax(a>1)
在(0,+∞)上 的增减性
增函数
图象的变化
随x的增大逐渐与 y轴平行
y=logax(a>1)
增函数 随x的增大逐渐与 x轴平行
y=xn(n>0)
增函数 随n值的不同而不 同

2.三种函数增长速度的比较 (1)在区间(0,+∞)上,函数 y=ax(a>1),y=logax(a>1)和 y=xn(n>0)都是增 函数,但增长进度不同,且不在同一个“档次”上. (2)随着 x 的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于 y=xn(n>0)的增长速度,而 y=logax(a>1)的增长速度越来越慢. (3)存在一个 x0,当 x>x0 时,有 ax>xn>logax.
所以函数解析式为 y=-41x2+49x.(x∈[0.5,8]) ∵y=-14x2+94x=-41x-922+8116,∴当 x=29时,年人均 A 饮料的销售量最 多是8116 L.
函数模型的增长差异

高中数学优质教案 几类不同增长的函数模型(1)

高中数学优质教案 几类不同增长的函数模型(1)

§3.2.1几类不同增长的函数模型教学目标:知识与技能:结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.过程与方法:能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.情感、态度、价值观:体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点:怎样选择数学模型分析解决实际问题.导入新课(直接导入)请同学们回忆指数函数、对数函数以及幂函数的图象性质,本节我们通过实例比较它们的增长差异.推进新课新知探究提出问题①如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.②正方形的边长为x,面积为y,把y表示为x的函数.③某保护区有1单位面积的湿地,由于保护区努力湿地每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.④分别用表格、图象表示上述函数.⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦比较它们的增长差异.⑧另外还有哪种函数模型.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年、….④列表画出函数图象.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图象讨论它们的单调性.⑦让学生自己比较并体会.⑧另外还有与对数函数有关的函数模型.讨论结果:①y=x.②y=x2.③y=(1+5%)x,④如下表它们的图象分别为图3-2-1-1,图3-2-1-2,图3-2-1-3.图3-2-1-1 图3-2-1-2 图3-2-1-3⑤它们分别属于:y=kx+b(直线型),y=ax2+bx+c(a≠0,抛物线型),y=ka x+b(指数型).⑥从表格和图象得出它们都为增函数.⑦在不同区间增长速度不同,随着x的增大y=(1+5%)x的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y=log a x+b,我们把它叫做对数型函数.应用示例例1某工厂有216名工人接受了生产1000台GH 型高科技产品的总任务,已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.每个工人每小时能加工6个G 型装置或3个H 型装置.现将工人分成两组同时开始....加工,每组分别加工一种装置.设加工G 型装置的工人有x 人,他们加工完G 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x )(单位:小时,可不为整数). (1)写出g (x ),h (x )解析式;(2)比较g (x )与h (x )的大小,并写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务用的时间最少?解:(1)由题意,知需加工G 型装置4000个,加工H 型装置3000个,所用工人分别为x 人,216-x 人. ∴g (x )=x64000,h (x )=3)216(3000∙-x ,即g (x )=x 32000,h (x )=x-21610000 (0<x <216,x ∈N *). (2)g (x )-h (x )=x 32000x--21610000=)216(3)5432(1000x x x --∙. ∵0<x <216,∴216-x >0.当0<x ≤86时,432-5x >0,g (x )-h (x )>0,g (x )>h (x ); 当87≤x <216时,432-5x <0,g (x )-h (x )<0,g (x )<h (x ).∴f (x )=⎪⎪⎩⎪⎪⎨⎧N ∈<≤-N ∈≤<.,21687,2161000;,860,32000**x x xx x x(3)完成总任务所用时间最少即求f (x )的最小值. 当0<x ≤86时,f (x )递减, ∴f (x )≥f (86)=86320000⨯=1291000.∴f (x )min =f (86),此时216-x =130. 当87≤x <216时,f (x )递增. ∴f (x )≥f (87)=872161000-=1291000.∴f (x )min =f (87),此时216-x =129, ∴f (x )min =f (86)=f (87)=1291000, ∴加工G 型装置,H 型装置的人数分别为86,130或87,129. 变式训练1.某农产品去年各季度的市场价格如下表:今年某公司计划按去年各季度市场价格的“平衡价m ”(平衡价m 是这样的一个量:m 与各季度售价差的平方和最小)收购该种农产品,并按每个100元纳税10元(又称征税率为10个百分点),计划可收购a 万吨,政府为了鼓励公司多收购这种农产品,决定将税率降低x 个百分点,预测收购量可增加2x 个百分点, (1)根据题中条件填空,m =________(元/吨); (2)写出税收y (万元)与x 的函数关系式;(3)若要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x 的取值范围. 解:(1)∵f (m )=(m -195.5)2+(m -200.5)2+(m -204.5)2+(m -199.5)2=4m 2-1 600m +160 041,∴m =200.(2)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万吨,收购总金额为200a (1+2x %),故y =200a (1+2x %)(10-x )%=10000200a (100+2x )(10-x )=501a (100+2x )(10-x )(0<x <10).(3)原计划税收为200a ×10%=20a (万元), 依题意得501a (100+2x )(10-x )≥20a ×83.2%,即x 2+40x -84≤0. 解得-42≤x ≤2.又0<x <10,∴0<x ≤2. ∴x 的取值范围是0<x ≤2.2.假设国家收购某种农产品的价格是120元/担,其中征税标准为每100元征8元(叫税率为8%),计划可收购m 万担(其中m 为正常数),为了减轻农民负担,如果税率降低x %,预计收购量可增加(2x )%.(1)写出税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调节后不低于原计划的78%,求x 的取值范围. 解:(1)y =120m ×104[1+(2x )%]×(8-x )%=120m (-2x 2-84x +800). (2)由题意知120m (-2x 2-84x +800)≥0.78×120m ×104×8%, 解得0<x ≤2.所以x 的取值范围是0<x ≤2.例2某民营企业生产A 、B 两种产品,根据市场调查与市场预测,A 产品的利润与投资成正比,其关系如图3-2-1-8,B 产品的利润与投资的算术平方根成正比,其关系如图3-2-1-9,(注:利润与投资单位:万元)(1)分别将A 、B 两种产品的利润表示为投资的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元?(精确到1万元)图3-2-1-8 图3-2-1-9解:(1)设投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元. 由题设f (x )=k 1x ,g (x )=k 2x ,由图知f (1)=41,∴k 1=41. 又g (4)=25,∴k 2=54. 从而f (x )=41x (x ≥0),g (x )=54x (x ≥0).(2)设A 产品投入x 万元,则B 产品投入10-x 万元,企业利润为y 万元. 则y =f (x )+g (10-x )=4x +5410-x (0≤x ≤10), 令x -10=t ,则y =4102t -+54t =41-(t 25-)2+1665(0≤t ≤10),当t =25时,y max =1665≈4,此时x =10425-=3.75(万元). ∴当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润约为4万元. 变式训练某商场计划投入一笔资金采购一批紧销商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售,可获利30%,但要付出仓储费用700元,请根据商场情况,如何购销获利较多?解:设商场投资x 元,在月初出售,到月末可获利y 1元,在月末出售,可获利y 2元,则 y 1=15%x +10%(x +15%x )=0.265x , y 2=0.3x -700.图3-2-1-10利用函数图象比较大小,在直角坐标系中,作出两函数的图象如图3-2-1-10所示,得两图象的交点坐标为(20000,5300). 由图象,知当x >20000时,y 2>y 1.当x =20000时,y 1=y 2;当x <20 000时,y 2<y 1.∴当投资小于20000元时,月初出售;当投资等于20000元时,月初、月末出售均可;当投资大于20000元时,月末出售. 知能训练光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k ,通过x 块玻璃以后强度为y . (1)写出y 关于x 的函数关系式;(2)通过多少块玻璃以后,光线强度减弱到原来的31以下.(lg 3≈0.4771). 解:(1)光线经过1块玻璃后强度为(1-10%)k =0.9k ; 光线经过2块玻璃后强度为(1-10%)·0.9k =0.92k ; 光线经过3块玻璃后强度为(1-10%)·0.92k =0.93k ; 光线经过x 块玻璃后强度为0.9x k . ∴y =0.9x k (x ∈N *). (2)由题意:0.9x k <3k .∴0.9x <31.两边取对数,x lg0.9<lg 31. ∵lg0.9<0,∴x >9.0lg 31lg.∵9.0lg 31lg=3lg 213lg ≈10.4,∴x min =11.∴通过11块玻璃以后,光线强度减弱到原来的31以下. 拓展提升某池塘中野生水葫芦的面积与时间的函数关系的图象(如图3-2-1-11所示).假设其关系为指数函数,并给出下列说法: ①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2; ③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2、3 m 2、6 m 2所需的时间分别为t 1、t 2、t 3,则有t 1+t 2=t 3; ⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.哪些说法是正确的?图3-2-1-11解:①说法正确.∵关系为指数函数,∴可设y =a x (a >0且a ≠1). ∴由图知2=a 1. ∴a =2,即底数为2. ②∵25=32>30,∴说法正确.③∵指数函数增加速度越来越快,∴说法不正确. ④t 1=1,t 2=log 23,t 3=log 26,∴说法正确. ⑤∵指数函数增加速度越来越快,∴说法不正确. 课堂小结活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价. 引导方法:从基本知识和基本技能两方面来总结.答案:(1)建立函数模型;(2)利用函数图象性质分析问题、解决问题. 作业课本P107习题3.2A组1、2.。

高中数学优质教案 几类不同增长的函数模型

高中数学优质教案 几类不同增长的函数模型

3.2.1 几类不同增长的函数模型●三维目标1.知识与技能在掌握好函数基本性质的前提下,使学生探求函数在实际中的应用,并学会利用函数知识建立数学模型解决实际问题.2.过程与方法(1)培养学生应用数学的意识分析问题、解决问题的能力;(2)培养学生的综合实践和自主学习的能力.3.情感、态度与价值观体验函数是描述宏观世界变化规律的基本数学模型,认识事物之间的普遍联系与相互转化,在实践研究中,培养学生的创新精神,团结协作精神,激发学生学习数学的兴趣.二、重点与难点重点:将实际问题转化为函数模型,训练学生通过实践探求函数在实际中的应用.难点:怎样选择适当的数学模型分析解决实际问题.重难点突破:主要利用信息技术从图、表两方面对知识讲解.首先对具体函数y=2x,y =x2,y=log2x的增长的差异性进行比较.在比较函数y=2x,y=x2的增长的差异性时,分别选择了三个不同的步长进行研究,这样就更能反映了这两类函数的增长的特点,在教学时要让学生体会到为什么要选择三种不同的步长加以研究,能让学生在解决具体问题时可以针对不同的情况进行合理的选择.在比较幂函数与对数函数的增长的差异性时可利用类比的方法.然后将结论推广到一般的指数函数y=a x(a>1)、对数函数y=log a x(a>1)、幂函数y=x n(n>0)在区间(0,+∞)的增长的差异性,即存在一个x0,当x>x0时,a x>x n>log a x,充分体现了“指数爆炸”、“直线上升”、“对数增长”的特点.整个过程向学生渗透从具体到一般、数形结合的数学思想方法,培养学生全面分析问题、解决问题的能力.【问题导思】函数y=2x,y=log2x及y=x2的图象如图所示.1.当x∈(2,4)时,函数y=x2与y=2x哪一个增长得更快一些?【提示】y=x2.2.当x∈(4,+∞)时,函数y=x2与y=2x哪一个增长得更快一些?【提示】y=2x.3.是否存在一个x0,使x>x0时恒有2x>x2>log2x成立?【提示】存在.1.三种函数模型的性质(1)在区间(0,+∞)上,函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但增长速度不同,且不在同一个“档次”上.(2)在区间(0,+∞)上随着x的增大,y=a x(a>1)增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.(3)存在一个x0,使得当x>x0时,有log a x<x n<a x.【思路探究】解答本题的关键是在同一坐标系中画出它们的图象,结合图象说明它们的增长情况.【自主解答】分别在同一个坐标系中画出三个函数的图象,如图,从图象上可以看出函数y=0.5e x-2的图象首先超过了函数y=ln(x+1)的图象,然后又超过了y=x2-1的图象,即存在一个满足0.5e x0-2=x20-1的x0,当x>x0时,ln(x+1)<x2-1<0.5e x-2.规律方法1.判断不同函数增长模型的差异有两种方法,一是根据图象判断,二是根据函数的变化量的情况判断.2.三种函数模型的表达形式及其增长特点(1)指数函数模型:能用指数型函数f(x)=ab x+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增大的速度越来越快,常称之为“指数爆炸”.(2)对数函数模型:能用对数型函数f(x)=m log a x+n(m,n,a为常数,m≠0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(3)幂函数模型:能用幂型函数f(x)=axα+b(a,b,c,α为常数,a≠0,α≠1)表达的函数模型,其增长情况由a和α的取值确定,常见的有二次函数模型和反比例函数模型.变式训练三个变量y1,y2,y3随着变量x的变化情况如下表:A.y1,y2,y3B.y2,y1,y3 C.y3,y2,y1D.y1,y3,y2【解析】通过指数型函数、对数型函数、幂函数型函数的增长规律比较可知,对数型函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数型函数的增长是爆炸式增长,y2随x的变化符合此规律;幂函数型函数的增长速度越来越快,y1随x的变化符合此规律,故选C.【答案】 C,例B(x2,y2),且x1<x2.(1)请指出示意图中曲线C1,C2分别对应哪一个函数;(2)结合函数图象示意图,判断f(6),g(6),f(2012),g(2012)的大小.【思路探究】根据指数函数、幂函数增长差异进行判断.【自主解答】(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)∵f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),∴1<x1<2,9<x2<10.∴x1<6<x2,2012>x2.从图象上可以看出,当x1<x<x2时,f(x)<g(x),∴f(6)<g(6).当x>x2时,f(x)>g(x),∴f(2012)>g(2012).又∵g(2012)>g(6),∴f(2012)>g(2012)>g(6)>f(6).规律方法1.解答此类问题的关键是明确“指数爆炸”、“对数增长”等函数增长差异,需注意幂函数的增长是介于两者之间的.2.体会数形结合思想,明确图形是函数关系的直观反映.互动探究本例中若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a、b的值,并说明理由.【解】a=1,b=9.理由如下:令φ(x)=f(x)-g(x)=2x-x3,则x1,x2为函数φ(x)的零点,由于φ(x)在[1,13]上为连续函数,φ(1)=1>0,φ(2)=-4<0,φ(9)=29-93<0,φ(10)=210-103>0,所以函数φ(x)=f(x)-g(x)的两个零点x1∈[1,2],x2∈[9,10],因此a=1,b=9.例3案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?【思路探究】作出函数图象→观察图象得到结论【自主解答】借助工具作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x 的图象始终在y=3和y=0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.规律方法不同的函数增长模型描述增长速度的差异:(1)线性函数增长模型适合于描述增长速度不变的变化规律; (2)指数函数增长模型适合于描述增长速度急剧的变化规律; (3)对数函数增长模型适合于描述增长速度平缓的变化规律;(4)幂函数增长模型适合于描述增长速度一般的变化规律.因此,需抓住题中蕴含的数学信息,恰当、准确地建立相应变化规律的函数模型来解决实际问题.变式训练某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,从小到大排列为( )A .B ,A ,C B .A ,C ,B C .A ,B ,CD .C ,A ,B【解析】 A 种债券的收益是每100元收益3元;B 种债券的利率为51.4-5050,所以100元一年到期的本息和为100×⎝⎛⎭⎫1+51.4-50502≈105.68(元),收益为5.68元;C 种债券的利率为100-9797,100元一年到期的本息和为100⎝⎛⎭⎫1+100-9797≈103.09(元),收益为3.09元. 【答案】 B数形结合思想在函数中的应用典例 (12分)电信局为了配合客户的不同需要,现设计A ,B 两种优惠方案,这两种方案的应付电话费y (元)与通话时间x (分钟)之间的关系如图3-2-2所示(实线部分).(注:图中MN ∥CD )图3-2-2(1)若通话时间为2小时,则按方案A ,B 各付话费多少元? (2)方案B 从500分钟以后,每分钟收费多少元? (3)通话时间在什么范围内,方案B 才会比方案A 优惠?【思路点拨】 两种方案都是由线性函数组成的分段函数,结合图形可求出函数的解析式,然后再根据题意解题.【规范解答】 由图可知M (60,98),N (500,230),C (500,168),MN ∥CD .1分 设这两种方案的应付话费与通话时间的函数关系分别为f A (x ),f B (x ), 则f A (x )=⎩⎪⎨⎪⎧ x 310x +x ,f B (x )=⎩⎪⎨⎪⎧x 310x +x 3分(1)易知,通话2小时,两种方案的话费分别为116元,168元.4分 (2)因为f B (n +1)-f B (n )=310(n +1)+18-310n -18=0.3(n >500),6分所以方案B 从500分钟以后,每分钟收费0.3元.7分 (3)由图可知,当0≤x ≤60时,有f A (x )<f B (x ). 当x >500时,f A (x )>f B (x ).9分当60<x ≤500时,168=310x +80,解得x =8803.当60<x <8803时,f B (x )>f A (x );当8803≤x ≤500时,f A (x )>f B (x ).11分即当通话时间在⎝⎛⎭⎫8803,+∞时,方案B 才会比方案A 优惠.12分 思维启迪1.对于给出图象的应用性问题,首先我们可以根据函数图象用待定系数法求出解析式,然后再用函数解析式来解决问题,最后再转化成具体问题,作出解答.2.对于借助函数图象表达题目信息的问题,读懂图象是解题的关键.课堂小结1.直线上升、指数爆炸、对数增长对于直线y =kx +b (k ≥0)、指数函数y =a x (a >1)、对数函数y =log b x (b >1),当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快,并且直线上升,其增长量固定不变.2.函数模型选取的择优意识解题过程中究竟选用哪种增长的函数模型,要根据题目的具体要求进行抽象和概括,灵活地选取和建立数学模型.3.要注意化归思想和数形结合思想的运用.当堂检测1.下列函数中,随x 的增大,增长速度最快的是( ) A .y =1 B .y =x C .y =3xD .y =log 3x【解析】 结合函数y =1,y =x ,y =3x 及y =log 3x 的图象可知,随着x 的增大,增长速度最快的是y =3x .【答案】 C2.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用()A.一次函数B.二次函数C.指数型函数D.对数型函数【解析】结合“直线上升,对数增长,指数爆炸”可知,只有D选项对数型函数符合题设条件,故选D.【答案】 D3.四个变量y1,y2,y3,y4随变量x变化的数据如下表:【解析】指数型函数呈“爆炸式”增长.从表格中可以看出,四个变量y1,y2,y3,y4均是从5开始变化,变量y4的值越来越小,但是减小的速度很慢,故变量y4关于x不呈指数型函数变化;而变量y1,y2,y3的值都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.【答案】y24.函数f(x)=lg x,g(x)=0.3x-1的图象如图3-2-3所示.图3-2-3(1)试根据函数增长差异找出曲线C1,C2对应的函数;(2)比较函数增长差异〔以两图象交点为分界点,对f(x),g(x)的大小进行比较〕.【解】(1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x).课后检测一、选择题1.四人赛跑,假设其跑过的路程和时间的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是() A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x【解析】显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,故选D.【答案】 D2.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图3-2-4所示,由图中给出的信息可知,营销人员没有销售时的收入是()图3-2-4A.310元B.300元C.290 D.280元【解析】由射线线经过点(1,800),(2,1 300)得其解析式为y=500x+300(x≥0),∴当x=0时,y=300.【答案】 B3.一天,亮亮发烧了,早晨他烧得很厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么发烫.下列各图中能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是()【解析】 观察图象A ,体温逐渐降低,不合题意;图象B 不能反映“下午体温又开始上升”;图象D 不能体现“下午体温又开始上升”与“直到半夜才感觉身上不那么发烫”.故选C.【答案】 C4.若x ∈(0,1),则下列结论正确的是( ) A .2x >x 12>lg xB .2x >lg x >x 12C .x 12>2x >lg xD .lg x >x 12>2x【解析】 如图所示,由图可知当x ∈(0,1)时,2x >x 12>lg x .【答案】 A5.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y (万公顷)关于年数x (年)的函数关系较为近似的是( )A.y=0.2x B.y=110x2+2xC.y=2x10D.y=0.2+log16x 【解析】取x=1,2,3代入各选项函数解析式中检验即可.【答案】 C二、填空题6.函数y=2x与函数y=x2的图象共有________个交点.【解析】如图所示,函数y=2x与函数y=x2的图象共有3个交点.【答案】 37.若a>1,n>0,那么当x足够大时,a x,x n,log a x的大小关系是________.【解析】由三种函数的增长特点可知,当x足够大时,总有log a x<x n<a x.【答案】log a x<x n<a x8.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后显示的图象如图3-2-5所示.现给出下列说法:图3-2-5①前5min温度增加的速度越来越快;②前5min温度增加的速度越来越慢;③5min以后温度保持匀速增加;④5min以后温度保持不变.其中正确的说法是________.(填序号)【解析】因为温度y关于时间t的图象是先凸后平,即5min前每当t增加一个单位增量Δt,则y相应的增量Δy越来越小,而5min后是y关于t的增量保持为0,则②④正确.【答案】②④三、解答题9.画出函数f (x )=x 与函数g (x )=14x 2-2的图象,并比较两者在[0,+∞)上的大小关系.【解】 函数f (x )与g (x )的图象如下.根据图象易得:当0≤x <4时,f (x )>g (x );当x =4时,f (x )=g (x );当x >4时,f (x )<g (x ).10.为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”和“便民卡”在某市范围内每月(30天)的通话时间x (分)与通话费y 1(元)、y 2(元)的关系分别如图3-2-6(1)、图(2)所示.图(1) 图(2)图3-2-6(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮助用户计算,在一个月(30天)内使用哪种卡便宜.【解】 (1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B (30,35),C (30,15)分别代入y 1,y 2得k 1=15,k 2=12. ∴y 1=15x +29(x ≥0),y 2=12x (x ≥0). (2)令y 1=y 2,即15x +29=12x ,则x =9623. 当x =9623时,y 1=y 2,两种卡收费一致;当x <9623时,y 1>y 2,即便民卡便宜; 当x >9623时,y 1<y 2,即如意卡便宜. 11.某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品有0.5立方米污水排出,为了净化环境,工厂设计两套方案对污水进行处理,并准备实施.方案一:工厂的污水先净化处理后再排出,每处理1立方米污水所用原料费2元,并且每月排污设备损耗费为30 000元;方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需付14元的排污费.问:(1)工厂每月生产3 000件产品时,你作为厂长,在不污染环境,又节约资金的前提下应选择哪种方案?通过计算加以说明;(2)若工厂每月生产6 000件产品,你作为厂长,又该如何决策呢?【解】 设工厂生产x 件产品时,依方案一的利润为y 1,依方案二的利润为y 2,由题意知y 1=(50-25)x -2×0.5x -30 000=24x -30 000,y 2=(50-25)x -14×0.5x =18x .(1)当x =3 000时,y 1=42 000,y 2=54 000,∵y 1<y 2,∴应选择方案二处理污水.(2)当x =6 000时,y 1=114 000,y 2=108 000,∵y 1>y 2,∴应选择方案一处理污水.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.1 几类不同增长的函数模型知识点一常见的增长模型1.线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.2.指数函数模型能利用指数函数(底数a>1)表达的函数模型叫指数函数模型.指数函数模型的特点是随自变量的增大,函数值的增长速度越来越快,常形象地称为指数爆炸.3.对数函数模型能用对数函数(底数a>1)表达的函数模型叫做对数函数模型,对数函数增长的特点是随自变量的增大,函数值增长速度越来越慢.4.幂函数模型幂函数y=x n(n>0)的增长速度介于指数增长和对数增长之间.函数模型的选取(1)当描述增长速度变化很快时,常常选用指数函数模型.(2)当要求不断增长,但又不会增长过快,也不会增长到很大时,常常选用对数函数模型.(3)幂函数模型y=x n(n>0)则可以描述增长幅度不同的变化,n值越小(n≤1)时,增长较慢;n值较大(n>1)时,增长较快.知识点二指数函数y=a x(a>1),对数函数y=log a x(a>1)和幂函数y=x n(n>0)增长速度的比较1.在区间(0,+∞)上,函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但增长速度不同,且不在同一个“档次”上.2.在区间(0,+∞)上随着x的增大,y=a x(a>1)增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)函数y=x2比y=2x增长的速度更快些.( )(2)当a>1,n>0时,在区间(0,+∞)上,对任意的x,总有log a x<x n<a x成立.( )答案:(1)×(2)×2.下列函数中,随x的增大,增长速度最快的是( )A.y=3x B.y=1 000xC.y=log2x D.y=x3解析:指数函数模型增长速度最快.答案:A3.设a=log123,b=⎝⎛⎭⎪⎫130.2,c=213,则( )A.a<b<c B.c<b<a C.c<a<b D.b<a<c解析:∵由指数函数、对数函数的性质可知:a=log123<log121=0,0<b=⎝⎛⎭⎪⎫130.2<1,c=213>1,∴有a<b<c.故选A.答案:A4.某同学最近5年内的学习费用y(千元)与时间x(年)的关系如图所示,则可选择的模拟函数模型是( )A.y=ax+b B.y=ax2+bx+cC.y=a·e x+b D.y=aln x+b解析:由散点图和四个函数的特征可知,可选择的模拟函数模型是y=ax2+bx+c.答案:B类型一几类函数模型的增长差异例1 (1)下列函数中,增长速度最快的是( )A.y=2 018x B.y=x2 018C.y=log2 018x D.y=2 018x(2)四个自变量y1,y2,y3,y4随变量x变化的数据如表:x 1 5 10 15 20 25 30y1 2 26 101 226 401 626 901y2 2 32 1 024 32 768 1.05×106 3.36×107 1.07×109y3 2 10 20 30 40 50 60y4 2 4.322 5.322 5.907 6.322 6.644 6.907 则关于x呈指数型函数变化的变量是________.【解析】(1)比较幂函数、指数函数与对数函数、一次函数可知,指数函数增长速度最快.(2)以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.【答案】(1)A (2)y2,(1)由题意,指数函数增长速度最快.(2)观察变量y1,y2,y3,y4的变化情况→找出增长速度最快的变量→该变量关于x呈指数型函数变化跟踪训练1 分析指数函数y=2x与对数函数y=log2x在区间[1,+∞)上的增长情况.解析:指数函数y=2x,当x由x1=1增加到x2=3时,x2-x1=2,y2-y1=23-21=6;对数函数y=log2x,当x由x1=1增加到x2=3时,x2-x1=2,而y2-y1=log23-log21≈1.585 0.由此可知,在区间[1,+∞)上,指数函数y=2x随着x的增长函数值的增长速度快,而对数函数y=log2x 的增长速度缓慢.在同一平面直角坐标系内作出函数y=2x和y=log2x的图象,从图象上可观察出函数的增长变化情况.如图:类型二三类函数图象综合运用例2 判断方程2x=x2有几个实根.【解析】设y1=x2,y2=2x,作出这两个函数的图象,由图象知,方程一定有一个负根,当x>0时,开始y1=x2在y2=2x图象的下方,但此时由于y1=x2比y2=2x增长的速度快,所以存在x0当x>x0时,y1=x2的图象就会在y2=2x的上方,故此时产生一个实根x0,但最终还是y2=2x比y1=x2增长得快,故存在x1,当x>x1时,y2=2x的图象又在y1=x2的上方,故又产生一个实根x1,以后就永远是y2=2x比y1=x2增长得快了,故再没有实根了,故此方程有三个实根.(1)根据指数函数与幂函数增减得快慢以及图象的上下位置判断出是否有实根.(2)对于较复杂的方程根的个数问题,利用数形结合法较为方便,其解题步骤为:①先设出两个可画图象的函数;②画出两个函数的图象;③由图象观察,其交点横坐标的个数即为方程实数解的个数.方法归纳由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数.跟踪训练2 函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.(1)指出曲线C1,C2分别对应哪一个函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).解析:(1)由题图知,C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.(2)当x∈(0,x1)时,g(x)>f(x);当x∈(x1,x2)时,g(x)<f(x);当x∈(x2,+∞)时,g(x)>f(x).f(x)=lgx图象是曲线.g(x)=0.3x-1图象是直线.类型三函数模型的选择问题例3 某皮鞋厂今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双.由于产品质量好、款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受订单不至于过多或过少,需要估计以后几个月的产量.厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人.假如你是厂长,就月份x,产量为y给出三种函数模型: y=ax+b,y=ax2+bx+c,y=ab x+c,你将利用哪一种模型去估算以后几个月的产量?【解析】由题意,将产量随时间变化的离散量分别抽象为A(1,1),B(2,1.2),C(3,1.3),D(4,1.37)这4个数据.(1)设模拟函数为y =ax +b 时,将B,C 两点的坐标代入函数式,得⎩⎪⎨⎪⎧3a +b =1.3,2a +b =1.2,解得⎩⎪⎨⎪⎧a =0.1,b =1.所以有关系式y =0.1x +1.由此可得结论为:在不增加工人和设备的条件下,产量会每月上升1 000双,这是不太可能的. (2)设模拟函数为y =ax 2+bx +c 时,将A,B,C 三点的坐标代入函数式,得⎩⎪⎨⎪⎧a +b +c =1,4a +2b +c =1.2,9a +3b +c =1.3,解得⎩⎪⎨⎪⎧a =-0.05,b =0.35,c =0.7.所以有关系式y =-0.05x 2+0.35x +0.7.结论为:由此法计算4月份的产量为1.3万双,比实际产量少700双,而且由二次函数性质可知,产量自4月份开始将每月下降(图象开口向下 ,对称轴为x =3.5),不合实际.(3)设模拟函数为y =ab x+c 时,将A,B,C 三点的坐标代入函数式,得⎩⎪⎨⎪⎧ab +c =1,①ab 2+c =1.2,②ab 3+c =1.3.③由①,得ab =1-c,代入②③,得⎩⎪⎨⎪⎧b 1-c +c =1.2,b 21-c +c =1.3.则⎩⎪⎨⎪⎧c =1.2-b 1-b ,c =1.3-b21-b 2,解得⎩⎪⎨⎪⎧b =0.5,c =1.4.则a =1-c b =-0.8.所以有关系式y =-0.8×0.5x +1.4.结论为:当把x =4代入得y =-0.8×0.54+1.4=1.35.比较上述三个模拟函数的优劣,既要考虑到误差最小,又要考虑生产的实际,如:增产的趋势和可能性.经过筛选,以指数函数模拟为最佳,一是误差小,二是由于厂房新建,随着工人技术和管理效益逐渐提高,一段时间内产量会明显上升,但经过一段时间之后,如果不更新设备,产量必然趋于稳定,而该指数函数模型恰好反映了这种趋势.因此选用指数函数y =-0.8×0.5x+1.4模拟比较接近客观实际.通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型. 方法归纳数学知识来源于客观实际,服务于实际问题.数学是人们认识世界、改造世界的工具,其中函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要不同的函数模型来描述.面临一个实际问题,选择合适的数学模型是一件非常重要的事情,根据三种不同的增长模型的特点,选择符合自己的模型,才能产生更大的经济效益.跟踪训练3 1626年,有人从印第安人手里以60荷兰基尔特(相当于24美元)的代价借用纽约的曼哈顿岛,并在借据上注明:归还此岛时,对方要还本付息,年利率是6%,但借据上没有注明利息是按单利计算还是按复利计算.事隔354年之后的1980年,双方当事人的后代到法院打官司说是利息支付不公,要求法院判明是非.法官请数学家作了计算,结果使法官大吃一惊.请问按两种方法计算出的本息和分别是多少?解析:若按单利算,本息和是24×6%×354+24=533.76(美元).若按复利算,本息和是24(1+6%)354≈2.2×1010(美元).理解单利、复利的概念.利用公式来计算.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列函数中,随x的增大,增长速度最快的是( )A.y=1 B.y=xC.y=2x D.y=log3x解析:结合函数y=1,y=x,y=2x及y=log3x的图象可知,随着x的增大,增长速度最快的是y=2x.答案:C2.如图所示给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是( )A.指数函数:y=2t B.对数函数:y=log2tC.幂函数:y=t3 D.二次函数:y=2t2解析:由散点图可知,与指数函数拟合最贴切,故选A.答案:A3.已知a,b,c,d四个物体沿同一方向同时开始运动,假设其经过的路程和时间x的函数关系分别是f1(x)=x2,f2(x)=x 12,f3(x)=log2x,f4(x)=2x,如果运动时间足够长,则运动在最前面的物体一定是( )A.a B.bC.c D.d解析:根据四种函数的变化特点,指数函数是一个变化最快的函数.当运动时间足够长时,最前面的物体一定是按照指数函数运动的物体.答案:D4.在同一坐标系中画出函数y=log a x,y=a x,y=x+a的图象,可能正确的是( )解析:函数y=a x与y=log a x的单调性相同,由此可排除C;直线y=x+a在y轴上的截距为a,则选项A中0<a<1,选项B中a>1,显然y=a x的图象不符,排除A,B,选D.答案:D5.y1=2x,y2=x2,y3=log2x,当2<x<4时,有( )A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y2>y3>y1解析:在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.答案:B二、填空题(每小题5分,共15分)6.已知函数f(x)=3x,g(x)=2x,当x∈R时,f(x)与g(x)的大小关系为________.解析:在同一直角坐标系中画出函数f(x)=3x,g(x)=2x的图象,如图所示,由于函数f(x)=3x的图象在函数g(x)=2x图象的上方,则f(x)>g(x).答案:f(x)>g(x)7.据报道,青海湖水在最近50年内减少了10%,如果按此规律,设2013年的湖水量为m,从2013年起,过x年后湖水量y与x的函数关系是________.解析:设湖水量每年为上年的q%,则(q%)50=0.9,所以q%=0.9150,所以x年后湖水量y=m·(q%)x=m·0.950x.答案:y =0.950x ·m8.某工厂8年来某种产品总产量C 与时间t(年)的函数关系如图所示,以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变,其中说法正确的序号是________.解析:由t∈[0,3]的图象联想到幂函数y =x α(0<α<1),反应了C 随时间的变化而逐渐增长但速度越来越慢.由t∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确.答案:②③三、解答题(每小题10分,共20分)9.每年的3月12日是植树节,全国各地在这一天都会开展各种形式的植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,现有两种方案如下:方案一:每年植树1万平方米; 方案二:每年树木面积比上一年增加9%. 哪个方案较好?解析:方案一:5年后树木面积为:10+1×5=15(万平方米). 方案二:5年后树木面积是10(1+9%)5≈15.386(万平方米), 因为15.386>15,所以方案二较好.10.某公司拟投资100万元,有两种投资方案可供选择:一种是年利率为10%,按单利计算,5年后收回本金和利息;另一种是年利率为9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)解析:本金100万元,年利率为10%,按单利计算,5年后的本息和是100×(1+10%×5)=150(万元). 本金100万元,年利率为9%,按每年复利一次计算,5年后的本息和是100×(1+9%)5≈153.86(万元). 由此可见,按年利率为9%每年复利一次计算的投资方式要比按年利率为10%单利计算的更有利,5年后多得利息3.86万元. [能力提升](20分钟,40分)11.四个函数在第一象限中的图象如图所示,a 、b 、c 、d 所表示的函数可能是( )∵8lg 3-lg 2=80.477-0.301≈45.45,∴x>45.45.故经过46 h,细胞总数超过1010个.14.某医疗研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y 与时间t 之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定,每毫升血液中含药量不少于4 μg 时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问:一天中怎样安排服药时间(共4次)效果最佳?解析:(1)依题意得y =⎩⎪⎨⎪⎧6t ,0≤t≤1,-23t +203,1<t≤10.(2)设第二次服药时在第一次服药后t 1小时,则-23t 1+203=4,解得t 1=4,因而第二次服药应在11:00.设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为前两次服药后的含药量的和,即有-23t 2+203-23(t 2-4)+203=4,解得t 2=9,故第三次服药应在16:00.设第四次服药在第一次服药后t 3小时(t 3>10),则此时第一次服进的药已吸收完,血液中含药量应为第二、第三次的和,即有-23(t 3-4)+203-23(t 3-9)+203=4,解得t 3=13.5,故第四次服药应在20:30.。

相关文档
最新文档