2018年高考数学真题专题汇编----向量

合集下载

2016-2018年高考数学分类汇编:专题6平面向量 教师版

2016-2018年高考数学分类汇编:专题6平面向量 教师版

目录全国1 (2)全国2 (3)全国3 (4)北京 (6)天津 (8)上海 (11)浙江 (12)江苏 (14)全国1【2018全国1卷理6文7】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A .AC AB 4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+ 【答案】A【解析】+-=+=21,故选A【2017全国1卷理13】已知向量b a ,的夹角为602=1=,则2a b += . 【答案】:32 【解析32444=++===+【2017全国1卷文13】已知向量a =(-1,2),b =(m ,1),若向量b a +与a 垂直,则m = 。

【答案】:7【解析】:)3,1(-=+m 向量垂直则有0)(=⋅+023)1)(1=*+--⇒m (。

【2016全国1卷理13】设向量)1,(m a =,)2,1(=b ,且222b a b a +=+,则m = .【答案】:-2【解析】: 由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【2016全国1卷文13】设向量)1,(+=x x ,)2,1(=,且⊥,则x = . 【答案】32-【解析】试题分析:由题意,320230-=⇒=+⇒=⋅⇔⊥x x .全国21、【2018全国2卷文4】已知向量a , b 满足|a |=1,a ·b =-1,则a ·(2a -b )= A . 4 B . 3 C . 2 D .0 【答案】B 【解析】()22213a ab a a a b ⋅-=⋅-⋅=+=2、【2017全国2卷文4】设非零向量a ,b 满足a+b =a-b 则 A .a ⊥b B . a =bC .a ∥bD . a b >【答案】A 【解析】2222||||220a b a b a a b b a a b b a b a b+=-∴+⋅+=-⋅+∴⋅=∴⊥3、【2016全国2卷理1】)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )()31-,(B )()13-,(C )()1,∞+(D )()3∞--,【答案】A【解析】∴30m +>,10m -<,∴31m -<<,故选A .4、【2016全国2卷文13】已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】-6【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.全国3一、选择题1.【2016全国3卷理3】设集合1(,22BA =,31()22BC =,则ABC ∠=( ) A . 030B . 045C . 060 D .0120【答案】A【解析】由题意,得112222cos 112||||BA BC ABC BA BC ⨯⋅∠===⨯,所以030ABC ∠=,故选A .2.【2016全国3卷文3】设集合1(2BA =,31()2BC =,则ABC ∠=( ) A . 030B . 045C . 060D .0120【答案】A【解析】由题意,得112222cos 11||||BA BC ABC BA BC ⨯⋅∠===⨯,所以030ABC ∠=,故选A .3.【2017全国3卷理12】在矩形ABCD 中,1=AB ,2=AD ,动点P 在以点C 为圆心且与BD 相切的圆上.若AD AB AP μλ+=,则μλ+的最大值为( )A .3B . 22 CD .2 【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则C 点坐标为(2,1).∵||1CD =,||2BC =.∴BD = ∵BD 切C 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△即圆C. ∵P 在圆C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=.设P 点坐标00(,)x y ,可以设出P点坐标满足的参数方程如下:0021x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩而00(,)AP x y =,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0112x μθ==+,01y λθ==. 两式相加得:112)2sin()3λμθθθϕθϕ+=+=+=++≤ (其中sin ϕ,cos ϕ=当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3. 4.【2017全国3卷文13】知向量()2,3=-a ,()3,m =b ,且⊥a b ,则m = . 【答案】2【解析】因为 ⊥a b ,所以 0⋅=a b ,即 630m -+=,解得2m =. 5.【2018全国3卷理13】已知向量()1,2a =,()2,2b =-,()1,c λ=,若()2ca b +,则λ= .【答案】12【解析】因为()24,2a b +=,所以()242ca b λ+⇒=,所以12λ=. 6.【2018全国3卷理13】已知向量()1,2a =,()2,2b =-,()1,c λ=,若()2ca b +,则λ= .【答案】12【解析】因为()24,2a b +=,所以()242ca b λ+⇒=,所以12λ=. 北京【2018北京卷理6】设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】证明充分条件,()()ba ab b ab a b ab a b a b a b a b a ⊥∴=-++=+-+=-∴+=-01269963333222222,易知必要条件也成立,故为充分必要条件 【2018北京卷文9】设向量a =(1,0),b =(-1,m ),若a ⊥(m a -b )则m = 【答案】-1【解析】∵ ⊥(m - )∴ ·(m - )=0 ∵m - =m (1,0)-(-1,m )=(m +1,-m ) ∴(1,0)·(m +1,-m )=0 即m +1=0,∴m =-1【2017北京卷理5】设m ,n 为非零向量,则“存在负数λ,使得m n λ=”是“0m n ⋅<”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】A【解析】存在负数λ,使得n mλ=,根据共线向量基本定理,可知两向量反向共线,所以0<⋅n m 成立;反之,若0<⋅n m,则说明两向量夹角为钝角或是180°,所以不能推出两向量反向共线,所以是充分不必要条件。

高三数学-2018年全国各地高考试题-向量、不等式高考题选 精品

高三数学-2018年全国各地高考试题-向量、不等式高考题选 精品

2018年向量、不等式高考题选一、选择题1.不等式x x x <-24的解集是( )(2018年天津文1)A .(0,2)B .(2,+∞)C .(2,4)D .(-∞,0)∪(2,+∞)2.若不等式6|2|<+ax 的解集为(-1,2),则实数a 等于(2018年北京春理11)A .8B .2C .-4D .-83.不等式2112x x ++<的解集是( ) (2018年安徽春理5)A.{}10xx -<<B. 302x x ⎧⎫-<<⎨⎬⎩⎭C. 504x x ⎧⎫-<<⎨⎬⎩⎭D. {}20x x -<<4.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于( )(2018年北京理1)A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或5.设5.1344.029.01)21(,8,4-===y y y ,则 ( )(2018年北京理2)A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 26.O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ).,0[(+∞∈++=λλOA OP 则P 的轨迹一定通过△ABC 的( )(2018年天津文8) A .外心 B .内心C .重心D .垂心7.设c bx ax x f a ++=>2)(,0,曲线)(x f y =在点))(,(00x f x P 处切处的倾斜角的取值范围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为( )(2018年天津理7)A .]1,0[aB .]21,0[a C .|]2|,0[a b D .|]21|,0[ab - 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是( )(2018年天津理9)A .14322=-y x B .13422=-y x C .12522=-y x D .15222=-y x 9.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )(2018年北京理6)A .2 B .3C .4D .510.a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的( )(2018年上海理15)A .充分非必要条件.B .必要非充分条件.C .充要条件D .既非充分又非必要条件.二、填空题1.在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线PA 与BC 所成角的大小等于 .(结果用反三角函数值表示)(2018年上海理5) 2.设集合A={x ||x |<4},B={x |x 2-4x +3>0}, 则集合{x |x ∈A 且}B A x ∉= (2018年上海理6)3.已知定点A (0,1),点B 在直线x +y=0上运动,当线段AB 最短时,点B 的坐标是 . (2018年上海文4)三、解答题1.(本小题满分12分)解不等式:.1)1(log )2(log 21221-->--x x x (2018年北京春理17)2、(本题满分12分)解不等式组:2680321{x x x x -+>+>-(2018年上海春17)3.(本小题满分12分)(2018年全国理19)已知.0>c 设P :函数x c y =在R 上单调递减. Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.4.(本小题满分14分)(2018年北京理19)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=a ,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图) (Ⅰ)若希望点P 到三镇距离的平方和为最小, 点P 应位于何处? (Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处?5.(本题满分12分)(2018年上海理18)已知平行六面体ABCD —A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB=4,AD=2.若B 1D ⊥BC ,直线B 1D 与平面ABCD 所成的角等于30°,求平行六面体ABCD —A 1B 1C 1D 1的体积.6.(本题满分16分)共3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分. (2018年上海理21) 在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB|=2|OA|,且点B 的纵坐标大于零. (1)求向量的坐标;(2)求圆02622=++-y y x x 关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线12-=ax y 上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值范围. 7.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (2018年上海理20)如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h 为6米,则隧道设计的拱宽l 是多少?(2)若最大拱高h 不小于6米,则应如何设 计拱高h 和拱宽l ,才能使半个椭圆形隧道的土方工程量最最小? (半个椭圆的面积公式为lh S 4π=,柱体体积为:底面积乘以高.本题结果精确到0.1米)8、(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分。

2018年高考真题文科数学分类汇编专题3三角与向量

2018年高考真题文科数学分类汇编专题3三角与向量

专题3三角与向量(2018全国1卷)7. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算. (2018全国1卷)8. 已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D.的最小正周期为,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 详解:根据题意有,所以函数的最小正周期为,且最大值为,故选B.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.(2018全国1卷)11. 已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C.D.【答案】B【解析】分析:首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.详解:根据题的条件,可知三点共线,从而得到,因为,解得,即,所以,故选B.点睛:该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果. (2018浙江卷)9.已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为,向量b 满足b 2−4e •b +3=0,则|a −b |的最小值是( )A .−1B .+1C . 2D . 2−9.答案:A解答:设(1,0)e = ,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+= 22(2)1x y ⇒-+=如图所示,a OA = ,b OB = ,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min11a b CD -=-= .(其中CD OA ⊥.)(2018全国1卷)16. △的内角的对边分别为,已知,,则△的面积为________.【答案】【解析】分析:首先利用正弦定理将题中的式子化为,化简求得,利用余弦定理,结合题中的条件,可以得到,可以断定A 为锐角,从而求得,进一步求得,利用三角形面积公式求得结果.详解:根据题意,结合正弦定理 可得,即,结合余弦定理可得, 所以A 为锐角,且,从而求得,所以△的面积为,故答案是.点睛:该题考查的是三角形面积的求解问题,在解题的过程中,注意对正余弦定理的熟练应用,以及通过隐含条件确定角为锐角,借助于余弦定理求得,利用面积公式求得结果. (2018全国2卷)4. 已知向量,满足,,则A. 4B. 3C. 2D. 0 【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:7. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.(2018全国2卷)10. 若在是减函数,则的最大值是A.B.C.D.【答案】C【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A. 点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.(2018全国3卷)4.若,则()A.B.C.D.4.答案:B解答:.故选B.1sin3α=cos2α=897979-89-227cos212sin199αα=-=-=(2018全国3卷)6.函数 的最小正周期为( ) A .B .C .D .6.答案:C解答:,∴的周期.故选C.(2018全国3卷)11.的内角,,的对边分别为,,.若的面积为,则( )A .B .C .D .11.答案:C 解答:,又,故,∴.故选C.(2018北京卷)7. 在平面坐标系中,是圆上的四段弧(如图),点P 在其中一段上,角以O x 为始边,OP 为终边,若,则P 所在的圆弧是(A ) AB(B ) CD (C ) EF(D ) GH【答案】C【解析】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段为余弦线,有向线段为正弦线,有向线段为正切线.()2tan 1tan xf x x=+4π2ππ2π22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x =====+++()f x 22T ππ==ABC ∆A B C a b c ABC ∆2224a b c +-C =2π3π4π6π2222cos 1cos 442ABC a b c ab C S ab C ∆+-===1sin 2ABC S ab C ∆=tan 1C =4C π=A选项:当点在上时,,,故A选项错误;B选项:当点在上时,,,,故B选项错误;C选项:当点在上时,,,,故C选项正确;D选项:点在上且在第三象限,,故D选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线进行比较.(2018天津卷)6. 将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可. 详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得函数的一个单调递增区间为,选项A正确,B错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项C,D错误;本题选择A选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.(2018天津卷)8. 在如图的平面图形中,已知,则的值为A. B. C. D. 0【答案】C【解析】分析:连结MN,结合几何性质和平面向量的运算法则整理计算即可求得最终结果.详解:如图所示,连结MN,由可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. (2018全国2卷)15. 已知,则__________.【答案】【解析】分析:利用两角差的正切公式展开,解方程可得.详解:,解方程得.点睛:本题主要考查学生对于两角和差公式的掌握情况,属于简单题型,解决此类问题的核心是要公式记忆准确,特殊角的三角函数值运算准确.(2018全国3卷)13.已知向量,,.若,则________.13.答案:解答:,∵,∴,解得.(2018北京卷)9. 设向量a =(1,0),b =(−1,m ),若,则m =_________.【答案】 【解析】分析:根据坐标表示出,再根据,得坐标关系,解方程即可.详解:,,由得:,,即.点睛:此题考查向量的运算,在解决向量基础题时,常常用到以下:设,则①;②.(2018北京卷)14. 若的面积为,且∠C 为钝角,则∠B =_________;的取值范围是_________. 【答案】(1).(2).()=1,2a ()=2,2-b ()=1,λc ()2∥c a +b λ=122(4,2)a b += //(2)c a b + 1240λ⨯-⨯=12λ=【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则为钝角,,故.点睛:此题考查解三角形的综合应用,余弦定理的公式有三个,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含的表达式的最值问题是解题的第二个关键.(2018江苏卷)7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.(2018江苏卷)12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设,则由圆心为中点得易得,与联立解得点D 的横坐标所以.所以, 由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.(2018江苏卷)13. 在中,角所对的边分别为,,的平分线交于点D ,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值. 详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.(2018浙江卷)13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =,b =2,A =60°,则sinB =_________________,c =___________________13. 3解答:由正弦定理sin sin a bA B =2sin B =,所以sin 7B =由余弦定理,222cos 2b c a A bc +-=,得214724c c+-=,所以3c =.(2018全国1卷)17. 在平面四边形中,,,,.(1)求; (2)若,求.【答案】(1) . (2).【解析】分析:(1)根据正弦定理可以得到,根据题设条件,求得,结合角的范围,利用同角三角函数关系式,求得;(2)根据题设条件以及第一问的结论可以求得,之后在中,用余弦定理得到所满足的关系,从而求得结果.详解:(1)在中,由正弦定理得.由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得.所以.点睛:该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理、同角三角函数关系式、诱导公式以及余弦定理,在解题的过程中,需要时刻关注题的条件,以及开方时对于正负号的取舍要从题的条件中寻找角的范围所满足的关系,从而正确求得结果.(2018北京卷)16. 已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)将化简整理成的形式,利用公式可求最小正周期;(2)根据,可求的范围,结合函数图像的性质,可得参数的取值范围.详解:(Ⅰ),所以的最小正周期为.(Ⅱ)由(Ⅰ)知.因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为.点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负.(2018天津卷)16. 在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B–).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A–B)的值.【答案】(Ⅰ)B=;(Ⅱ)b=,【解析】分析:(Ⅰ)由正弦定理有,结合,可得.则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.则..结合两角差的正弦公式可得(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,详解:即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.(2018天津卷)17. 如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】分析:(Ⅰ)由面面垂直的性质定理可得AD⊥平面ABC,则AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.由几何关系可知∠DMN(或其补角)为异面直线BC与MD所成的角.计算可得.则异面直线BC与MD所成角的余弦值为.(Ⅲ)连接CM.由题意可知CM⊥平面ABD.则∠CDM为直线CD与平面ABD所成的角.计算可得.即直线CD与平面ABD所成角的正弦值为.详解:(Ⅰ)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM=.因为AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN=.在等腰三角形DMN中,MN=1,可得.所以,异面直线BC与MD所成角的余弦值为.(Ⅲ)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=.又因为平面ABC⊥平面ABD,而CM平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD==4.在Rt△CMD中,.所以,直线CD与平面ABD所成角的正弦值为.点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.(2018江苏卷)16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. (2018江苏卷)17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.(2018浙江卷)18.(14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(−,−)(1)求sin(α+π)的值(2)若角β满足sin (α+β)=,求c osβ的值18.答案:(1)45;(2)5665-或1665. 解答:(1)445sin()sin 15απα-+=-=-=.(2)∵()βαβα=+-,∴cos cos[()]βαβα=+-, ∵5sin()13αβ+=,∴12cos()13αβ+=±, 又∵4sin 5α=-,且α终边在第三象限,∴3cos 5α=-. ①当12cos()13αβ+=时,cos cos()cos sin()sin βαβααβα=+++12354362056()()1351356565--=⨯-+⨯-==-. ②当12cos()13αβ+=-时,cos cos()cos sin()sin βαβααβα=+++1235416()()()13513565=-⨯-+⨯-=.。

高考专题---平面向量-2018年高考数学(理)---精校解析 Word版

高考专题---平面向量-2018年高考数学(理)---精校解析 Word版

母题五 平面向量【母题原题1】【2018上海卷,8】在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且||=2,则⋅的最小值为______.【答案】3-【解析】依题意设(0,),(0,)E a F b 不妨设a b >,则||2,(1,),(2,),2a b AE a BF b a b -===-=+所以22(1,)(2,)22(2)22(1)3AE BF a b ab b b b b b ⋅=⋅-=-+=-++=+-=+-,故所求最小值为3-.【母题原题2】【2017上海卷,7】如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为,则的坐标为________【答案】【母题原题3】【2016上海卷,14】如图,在平面直角坐标系中,O 为正八边形的中心,.任取不同的两点,点P 满足0i j OP OA OA ++=,则点P 落在第一象限的概率是_____________.【答案】528【名师点睛】本题主要考查古典概型概率的计算.解答本题时,关键在于能够准确地确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好地考查考生的数学应用意识、基本运算求解能力、数形结合思想等.【命题意图】考查平面向量的基础知识、基本运算、基本应用;考查运算求解能力以及运用数形结合思想分析与解决问题的能力;考查转化与化归思想的应用.【命题规律】平面向量的数量积、模、夹角是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何、不等式等知识相结合,以工具的形式出现.浙江卷涉及模的最值问题考查最多.【答题模板】基于平面向量的双重性,解答平面向量最值问题:一般可以从两个角度进行思考:一是利用其“形”的特征,将其转化为平面几何的有关知识进行解决;二是利用其“数”的特征,通过坐标转化为代数中的有关问题进行解决.【方法总结】1.平面向量数量积的计算方法①已知向量a ,b 的模及夹角θ,利用公式a·b =|a ||b|cos θ求解; ②已知向量a ,b 的坐标,利用数量积的坐标形式求解.(2)对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算. 2.向量数量积的性质(1)如果e 是单位向量,则a ·e =e ·a . (2)a ⊥b ⇔a ·b =0.(3)a ·a =|a |2,|a (4)cos θ=||||⋅a ba b .(θ为a 与b 的夹角)(5)|a ·b |≤|a ||b |.3.利用向量夹角公式、模公式,可将有关角度问题、线段长问题转化为向量的数量积来解决.同时应注意: (1)两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.(2)两向量夹角的范围为[0,π],特别当两向量共线且同向时,其夹角为0,共线且反向时,其夹角为π. (3)在利用向量的数量积求两向量的夹角时,一定要注意两向量夹角的范围.1.【上海市虹口区2018届高三下学期教学质量监控(二模)】在中,,点、是线段的三等分点,点在线段上运动且满足k ⋅=,当⋅取得最小值时,实数的值为( )A. B. C. D. 【答案】C【解析】2.【上海市黄浦区2018届高三4月模拟(二模)】在给出的下列命题中,是假命题的是( ) A. 设是同一平面上的四个不同的点,若,则点必共线 B. 若向量是平面上的两个不平行的向量,则平面上的任一向量都可以表示为,且表示方法是唯一的 C. 已知平面向量满足,且,则是等边三角形D. 在平面上的所有向量中,不存在这样的四个互不相等的非零向量,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直 【答案】D【解析】由 则点必共线,故A正确;由平面向量基本定理可知B 正确;由可知为的外心,由可知为的重心,故为的中心,即是等边三角形,故C 正确;故选D.3.【2017-2018上海市杨浦区高三数学一模】设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足0AB AC ⋅= , 0AC AD ⋅= , 0AD AB ⋅=,用1S 、2S 、3S 分别表示ABC ∆、ACD ∆、ABD ∆的面积,则123S S S ++的最大值是( ) A.12B. 2C. 4D. 8 【答案】B点睛:本题考查球的内接多面体及基本不等式求最值问题,能够把几何体扩展为长方体,推知多面体的外接球是同一个球,是解答本题的关键.4.【上海市松江、闵行区2018届高三下学期质量监控(二模)】已知向量、的夹角为,,,若,则实数的值为___________.【答案】【解析】由题意可得:,且,则:,据此有:,解得:.5.【上海市普陀区2018届高三下学期质量调研(二模)】点1F , 2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足: 2122MN MF MF =⋅ ,则122MF MF +的最大值为__________.【答案】6【解析】设()00,m x y ,由2212x y +=,得()()()120,1,1,0,1,0N F F -,则由2122MN MF MF =⋅ ,可得()222200001222x y x y +-=-+,化为()2214x y ++=,可设002{ 21x sin y sin αα==-,()()12=2cos 1,21,24cos 2,42MF sin MF sin αααα--=+- , ()1226cos 1,63MF MF sin αα+=+-,122MF MF +==== 6122MF MF +的最大值为66.【方法点睛】本题主要考查椭圆的简单性质,平面向量的数量积公式,以及三角函数求最值问题,属于难题. 求最值问题常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求最值;②图象法;③不等式法;④单调性法;⑤换元法:常用代数或三角代换法,用换元法求值域时需认真分析换元参数的范围变化,利用三角换元后往往利用辅助角公式结合三角函数的单调性求解.6.【上海市黄浦区2018届高三4月模拟(二模)】已知向量在向量方向上的投影为,且,则=_______.(结果用数值表示) 【答案】【解析】由题向量在向量方向上的投影为,即即答案为-6.7.【上海市十二校2018届高三联考】在ABC ∆中, 120BAC ︒∠=, 2AB =, 1AC =,D 为线段BC上任一点(包含端点),则AD BC ⋅ 的最大值为________【答案】2∴cos 75AD BC AD BC ADB k ⋅=⨯⨯∠=-,分类讨论:①k =0时,D 与B 重合,由余弦定理得cosABC ∠==, 5AD BC ⋅=- ; ②01k < 时, 5752k -<- ;∴52AD BC -⋅; 则AD BC ⋅的取值范围为[−5,2].其最大值为2.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 8.【上海市崇明区2018届高三第一次高考模拟考试】在ABC 中,边上的中垂线分别交于点若,则_______【答案】4【解析】设,则,,又,即,故答案为.9.【上海市浦东新区2018届高三数学一模】已知向量()1,2a =-, ()3,4b =,则向量a在向量b的方向上的投影为________ 【答案】-110.【上海市交通大学附属中学2018届高三上学期开学摸底考试】如图,四个棱长为1的正方体排成一个正四棱柱, AB 是一条侧棱, ()1,2,,16i P i =⋯是上、下底面上其余十六个点,则()1,2,,16i AB AP i ⋅=⋯ 的不同值的个数为__________.【答案】2【解析】 由题意得, i i AP AB BP =+,则()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅ ,因为i AB BP ⊥ ,所以21i AB APAB ⋅== , 所以()1,2,,8i AB AP i ⋅=的不同的值的个数为1.11.【2016-2017年上海市闵行区高三4月质量调研考试(二模)】已知定点()1,1A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP O '=,是坐标原点,则PQ 的取值范围是 .【答案】12.【2016-2017年上海市普陀区高三下学期质量调研(二模)】在△ABC 中, D 、E 分别是AB 、AC 的中点, M 是直线DE 上的动点.若△ABC 的面积为1,则2M B M C B C⋅+ 的最小值为 .【解析】因为D、E分别是AB、AC的中点,且M是直线DE上的动点,所以M到直线BC的距离等于A到直线BC的距离的一半,所以1122MBC ABCS S==,则11sin22MBCS MB MC BMC=∠=,所以1sinMB MCBMC=∠,则c o sc o ss i nB M CM B M C M B M C B M CB M C∠⋅=∠=∠,由余弦定理,得当1cos2BMC∠>时,0y'<,当1cos2BMC∠<时,0y'>,即当1cos2BMC∠=时,2cossinBMCyBMC-∠=∠。

高考文科数学分类汇编:专题五平面向量

高考文科数学分类汇编:专题五平面向量

《2018年高考文科数学分类汇编》第五篇:平面向量一、选择题1.【2018全国一卷7】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 2.【2018全国二卷4】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .03.【2018天津卷8】在如图的平面图形中,已知1=OM ,2=ON ,120=∠MON ,2,2,BM MA CN NA ==则·BC OM 的值为 A.15- B.9- C.6- D.04.【2018浙江卷9】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A .3−1B .3+1C .2D .2−3二、填空题1.【2018全国三卷13】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.2.【2018北京卷9】设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________.3.【2018江苏卷12】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 .4.【2018上海卷8】在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______[参考答案一、选择题1.A2.B3.C4.A二、填空题 1.21 2.1- 3.3 4.3-。

2018年高考文科数学分类汇编专题五平面向量

2018年高考文科数学分类汇编专题五平面向量

《2018年高考文科数学分类汇编》、选择题1.【2018全国一卷7】在厶ABC 中,AD 为BC 边上的中线,D .押 4A C2 .【2018全国二卷4】已知向量a , b 满足|a | =1 , a b = -1,则a (2a-b )二n4.【2018浙江卷9】已知a, b, e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为-, 3 向量b 满足b 2- 4e - b +3=0,则|a - b |的最小值是、填空题 1.【2018全国三卷13】已知向量a = 1,2 , b = 2, -2 , c = 1,入.若c // 2a+b ,则■二2. ___________________________________________________________________________ 【2018 北京卷 9】设向量 a = (1,0) , b = (- 1,m )若 a - (m a -b ),贝V m= __________________3. 【2018江苏卷12】在平面直角坐标系 xOy 中,A 为直线I : y = 2x 上在第一象限内的点,T TB(5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB CD = 0,则点A 的横坐标为 _______ .第五篇:平面向量A . 3AB 一1 AC 4 4 E 为AD 的中点,则B . 3C . 2D . 03.【2018天津卷8】在如图的平面图形中,已知 OM =1 , ON =2 , MON=120 , BM = 2MA,CN =2NA,则的值为A. -15B.-9C.-6D.0B . 3+1C . 24. 【2018上海卷8】在平面直角坐标系中,已知点 A (-1 , 0), B (2, 0), E, F是y轴上的两个动点,且I存i=2,贝y AE• BF的最小值为 ______ [参考答案一、选择题1.A2.B二、填空题11.2 3.C 4.A2. -13.34.一3。

高考(2018)数学(理)真题分类解析:专题12-平面向量

高考(2018)数学(理)真题分类解析:专题12-平面向量

专题 平面向量考纲解读明方向分析解读 1.从“方向”与“大小”两个方面理解平面向量的概念.2.结合图形理解向量的线性运算,熟练掌握平行四边形法则与三角形法则.3.向量共线的条件要结合向量数乘的意义去理解,并能灵活应用.4.向量的概念与运算是必考内容.5.本节在高考中主要考查平面向量的线性运握求向量坐标的方法,掌握平面向量的坐标运算.3.能够根据平面向量的坐标运算解决向量的共线、解三角形等有关问题.4.用坐标表示的平面向量共线的条件是高考考查的重点,分值约为5分,属中低档题.求向量长度的方法.3.会用向量数量积的运算求向量夹角,判断或证明向量垂直.4.利用数形结合的方法和函数的思想解决最值等综合问题.2018年高考全景展示1.【2018年浙江卷】已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.2.【2018年理数天津卷】如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为A. B. C. D.【答案】A【解析】分析:由题意建立平面直角坐标系,然后结合点的坐标得到数量积的坐标表示,最后结合二次函数的性质整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则,,,,点在上,则,设,则:,即,据此可得:,且:,,由数量积的坐标运算法则可得:,整理可得:,结合二次函数的性质可知,当时,取得最小值.本题选择A选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.【2018年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.4.【2018年理新课标I卷】在△中,为边上的中线,为的中点,则A. B. C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5.【2018年理数全国卷II】已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:6.【2018年江苏卷】在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.7.【2018年全国卷Ⅲ理】已知向量,,.若,则________.【答案】【解析】分析:由两向量共线的坐标关系计算即可。

2018高考试题分类汇编——平面向量

2018高考试题分类汇编——平面向量

2018高考分类汇编 ——平面向量1、【北京理】6.设a ,b 均为单位向量,则“33-=+a b a b ”是“⊥a b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案:C ;解析:33-=+a b a b 等号两边分别平方得0⋅=a b 与⊥a b 等价,故选C. 考点:考查平面向量的数量积性质及充分必要条件的判定; 备注:高频考点.2、【北京文】9.设向量(,),(,)101==-a b m ,若()⊥-a ma b ,则=m ⎽⎽⎽⎽⎽⎽. 答案:1-【解析】因为(,),(,),101a b m ==- 所以(,)(,)(,).011ma b m m m m -=--=+- 由()⊥-a ma b 得()0a ma b ⋅-=, 所以()10a ma b m ⋅-=+=,解得.1m =-【考点】本题考查向量的坐标运算,考查向量的垂直。

3、【1卷文7理6】6.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A.3144AB AC - B.1344AB AC - C.3144AB AC + D.1344AB AC + 答案:A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A .4、【2卷理】4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3C .2D .0【答案】B【解析】2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .5、【2卷文】4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .0【答案】B解析:向量,a b 满足1,1a a b =⋅=-,则2(22213a a b a a b ⋅-=-⋅=+=),故选B . 6、【3卷文理】13.已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= .12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 点评:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题. 7、【上海】8.在平面直角坐标系中,已知点(1,0)A -、(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF ⋅的最小值为 . 答案:3- 解析:设(0,),(0,2)E mF m +,则(1,),(A E m B F m==-+,2(2)AE BF m m ⋅=-++2222(1)3m m m =+-=+-,最小值为3-.解法2:()()2AE BF AO OE BO OF AO BO AO OF OE BO OE OF OE OF ⋅=+⋅+=⋅+⋅+⋅+⋅=⋅-取EF 中点G ,则21OE OF OG ⋅=-.显然20OG ≥(当E F 、关于原点对称). 所以1OE OF ⋅-≥.则3AE BF ⋅-≥.8、【天津理】8.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==,若点E 为边CD 上的动点,则AE BE ⋅的最小值为( ) A .2116 B .32 C .2516D .3【答案】A【基本解法1】连接AC ,则易证明ABC ADC △≌△,所以60DAC BAC ∠=∠=︒BCDE所以BC CD ==(01)DE DC λλ=<<,则()()()()(1)AE BE AD DE BC CE AD DC BC DCλλ⋅=+⋅+=+⋅--2(1)AD BC DC BC DC λλλ=⋅+⋅--2cos30cos 60(1)AD BC DC BC DC λλλ=⋅︒+⋅︒--22331213322416λλλ⎛⎫=-+=-+ ⎪⎝⎭,当14λ=时,AE BE ⋅取得最小值,最小值为2116. 【基本解法1】连接AC ,则易证明ABC ADC △≌△,所以60DAC BAC ∠=∠=︒, 所以BC CD ==D为坐标原点,,DA DC 所在方向为,x y 轴正方向建立如图所示平面直角坐标系,过B 作BF x ⊥轴于点FBD则1cos 60,sin 6022AF AB BF AB =︒==︒=,所以3,22B ⎛ ⎝⎭,设(0DE λλ=<<,则(1,0),(0,)A E λ,223321(1,),2216AE BE λλλλ⎛⎛⋅=-⋅-=-+=+ ⎝⎭⎝⎭, 当4λ=时,AE BE ⋅取得最小值,最小值为2116. 9、【天津文】8.在如图的平面图形中,已知1,2,120OM ON MON ==∠=︒,BCDE2,2BM MA CN NA ==,则BC OM ⋅的值为( )A .15-B .9-C .6-D .0A BCMNO【答案】C解析:)(333-=+-=+=)(33-==, 则633)(32-=-⋅=⋅-=⋅OM OM ON OM OM ON OM BC .10、【浙江卷】9.已知a b e ,,是平面向量, e 是单位向量,若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -⋅+=,则a b -的最小值是( )A1 B1 C .2 D.2 【答案】A解析:解法1:(配方法)由2430b e b -⋅+=得22441b e b e -⋅+=,即()221b e -=,因此21b e -=.如图,OE e =,2OF e =,3POE π∠=,则向量b 的终点在以F 为圆心,1为半径的圆上,而a 的终点A 在射线OP 上,a b AB -=,问题转化为圆上的点与射线1.H解法2:(向量的直径圆式)由2430b e b -⋅+=,得22430b e b e -⋅+=,所以()()30b e b e -⋅-=,如图,,3,OE e OH e OB b ===,则0EB EH ⋅=,即终点B 在以EH 为直径的圆上,以下同解法1.解法3:(绝对值性质的应用)由2430b e b -⋅+=,得22441b e b e -⋅+=,即()221b e -=,因此21b e -=,而由图形得23a e -≤, 所以()()222231a b a e b e a e b e -=------=-≥,所以a b -的最小值为1.解法4:(坐标法)设a b e ,,起点均为原点,设(1,0)e =r ,(,)b x y =r ,则a r的终点A 在射线(0)y x =>上,由2430b e b -⋅+=,得22430x y x +-+=,即22(2)1x y -+=,所以向量br的终点在圆22(2)1x y -+=上,a b -rr 的最小值即为求圆上一点到射线(0)y x =>上一点的最小距离, 1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学真题专题汇编----向量
一、填空题
1.(北京理6改)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的_________条件(从“充分而不必要”、“必要而不充分条件”、“充分必要”、“既不充分也不必要”中选择)
1.充分必要
2.(北京文9)设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________.
2.-1
3.(全国卷I 理6改)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =_________. (用,AB AC 表示)
3.3144
AB AC - 4.(全国卷II 理4)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b _________. 4.3
5.(全国卷III 理13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________. 5.
12
6.(天津理8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ⋅uu u r uu u r 的最小值为_________.
6. 2116
7.(天津文8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·
BC OM 的值为_________.
7.6-
8.(浙江9)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3
,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是_________. 8.3−1
9.(上海8).在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF ⋅的最小值为_________.
9.-3。

相关文档
最新文档