6-电液式控制系统的结构和原理
电液伺服系统

电液伺服系统电液伺服系统是一种将电气信号转换为液压能量的控制系统。
它通过控制液压阀的开启和关闭来调节液压执行器的工作状态,从而实现对机械装置的精确控制。
本文档将详细介绍电液伺服系统的结构、工作原理、常见问题及解决方案等内容。
一、系统结构1.1 主机部分主机部分是电液伺服系统的核心组成部分,包括电液转换器、伺服阀、传感器等。
其中,电液转换器将电信号转换为液压能量,伺服阀通过控制液压流量来控制液压执行器的运动,传感器用于监测执行器的位置和速度。
1.2 液压执行器液压执行器是电液伺服系统中的重要组成部分,主要包括液压缸和液压马达两种。
液压缸可将液压能量转换为机械能,实现直线运动;液压马达则可将液压能量转换为机械能,实现旋转运动。
1.3 控制部分控制部分由控制器和信号处理器组成,用于接收、处理和传输控制信号。
控制器可根据输入信号的变化调节伺服阀的开启度,从而实现对电液伺服系统的精确控制。
二、工作原理2.1 系统工作流程电液伺服系统的工作流程一般包括输入信号采样、信号处理、控制指令、伺服阀控制和液压执行器动作等步骤。
具体流程如下:(1)输入信号采样:传感器将液压执行器的位置和速度等信息转换为电信号,并传输给信号处理器。
(2)信号处理:信号处理器对输入信号进行滤波、放大等处理,将其转换为控制系统可识别的信号。
(3)控制指令:控制器根据输入信号的变化相应的控制指令。
(4)伺服阀控制:控制器根据控制指令调节伺服阀的开启度,控制液压系统的流量大小。
(5)液压执行器动作:伺服阀的控制信号作用于液压执行器,使其按照要求的位置和速度进行运动。
2.2 系统控制策略电液伺服系统可采用位置控制、速度控制和力控制等不同的控制策略。
其中,位置控制可实现对执行器位置的精确控制;速度控制可实现对执行器速度的精确控制;力控制可实现对执行器施加的力或扭矩的精确控制。
三、常见问题及解决方案3.1 液压系统压力不稳定可能原因:(1)供油系统压力不稳定。
数字电液调节系统构成和控制原理

数字电液调节系统构成和控制原理作者:陈一龙来源:《电子技术与软件工程》2015年第19期摘要本文以浩良河N12MW汽轮机组为例阐述数字电液调节系统构成和控制原理。
【关键词】数字电液调节系统系统构成控制原理浩良河化肥分公司的N12MW纯凝式汽轮机组,改造前采用机械液压式调节系统,油动机波动范围在±8mm,负荷变化范围±3MW,严重影响机组的安全。
浙江中控技术股份有限公司对其进行改造,采用独立油源自容式油动机的液压系统, ECS-100硬件和AdvanTrol Pro软件平台的控制系统。
1 DEH系统控制原理控制系统生成的油动机阀位指令,经过伺服板卡、DDV电液伺服阀,形成调节油压,从而动作油动机。
油动机行程经过位移传感器(LVDT)测出,反馈至伺服板卡,使之与油动机阀位指令保持相等,实现DEH闭环控制。
控制原理如图1所示。
2 DEH系统构成2.1 液压系统构成和工作原理独立油源自容式油动机液压系统,是由油源和高压油动机两部分组成。
分别安装在前轴承箱左侧和上部,由进、回油管路相连接。
液压系统构成和工作原理如图2所示。
(1)独立油源是将电能转化成液压能,为电液执行器提供液压能源。
齿轮泵电机组是三相交流异步电机驱动齿轮泵工作。
采用一用一备形式,可进行切换或联动。
(2)油泵启动后,油源集成块组件上的充油电磁阀(1YV)得电,开始向系统和蓄能器充油。
当系统压力升高到压力开关(PS1)的设定值后,PS1动作,1YV失电,停止充油。
当系统压力下降到压力开关(PS2)的设定值后,PS2动作,1YV得电,启动充油。
(3)蓄能器组件由皮囊式蓄能器、截止阀和压力表等组成。
一方面补充系统瞬间增加的耗油及减小系统油压脉动,另一方面与油泵共同维持系统压力恒定在设定范围内。
(4)控制集成块组件由电液伺服阀、OPC电磁阀等组成。
它接受控制系统发出的指令,控制电液执行器动作。
在需要时,也接受快关信号,控制电液执行器快速关闭。
一文详解cnc电液伺服系统组成及控制原理

一文详解cnc电液伺服系统组成及控制原理
为了提高液压系统控制精度,将传统的电液伺服控制方式改为数控液压伺服控制方式。
充分利用先进的计算机技术,采用PLC控制步进电机,不仅能够满足数控液压系统的快速性和可靠性要求,而且大大降低了成本。
本文首先介绍了数控液压伺服系统的组成,其次介绍了数控液压伺服阀的结构和工作原理,最后介绍了液压泵站,具体的跟随小编一起来了解一下。
一、数控液压伺服系统的组成系统由数控装置、数控伺服阀、数控液压缸或液马达、液压泵站4大部分组成。
系统框图如图1所示。
(1)数控装置:包括控制器、驱动器和步进电机。
之所以要采用步进电机,是由于计算机技术的飞速发展,使步进电机的性能在快速性和可靠性方面能够满足数控液压系统的要求,而其价格低廉,又由于数控液压系统结构的改进,所需步进电机功率较小,不需采用宽调速伺服电机等大功率伺服电机系统,就能大大降低成本。
(2)液压缸、液马达和液压泵站是液压行业的老产品,只要按数控液压伺服系统的要求选取精度较高的即可应用。
(3)伺服控制元件是液压伺服系统中最重要、最基本的组成部分,它起着信号转换、功率放大及反馈等控制作用。
所以整个数控液压伺服系统的关键部件就是数控伺服阀,它必需将电脉冲控制的步进电机的角位移精确地转换为液压缸的直线位移(或液马达的角位移)。
也可以说,只要有了合格的数控伺服阀,就能获得不同的数控液压伺服系统。
二、数控液压伺服阀的结构和工作原理1、数控液压伺服阀的结构
数控液压伺服阀的结构如图2所示,数控液压缸的结构如图3所示
2、工作原理
1)数控液压伺服阀和液压缸匹配工作原理。
工程机械电液控制系统

工程机械电液控制系统简介工程机械电液控制系统是指通过电气与液压相结合的方式,对工程机械进行控制和调节的系统。
该系统使用了电气控制和液压驱动,通过电液转换器进行信号的传递和执行器的控制,从而实现对工程机械的运动、位置、力量等参数的调节和控制。
本文将详细介绍工程机械电液控制系统的结构、工作原理以及应用领域。
结构工程机械电液控制系统主要由以下几个部分组成:1.电控部分:包括控制器、传感器、执行器等电气元件。
控制器负责接收和处理输入信号,通过传感器获取机械的运动状态和环境参数,然后通过执行器输出相应的控制信号,实现对机械的控制和调节。
2.液压部分:包括液压传动系统、液压执行元件等。
液压传动系统负责将电气信号转换成液压信号,通过液压执行元件控制机械的运动、位置、力量等参数。
3.电液转换器:用于将电气信号转换成液压信号,实现电气与液压的相互转换。
常用的电液转换器包括电磁阀、电液换向阀等。
4.连接件:用于连接电气元件和液压元件,实现信号和能量的传递。
工作原理工程机械电液控制系统的工作原理如下:1.电控部分接收输入信号,并经过处理后输出控制信号。
2.控制器通过传感器获取工程机械的运动状态和环境参数。
传感器将这些参数转换成电信号,并传输给控制器。
3.控制器根据输入信号和传感器的反馈信号,进行逻辑运算和控制计算,并生成相应的控制信号。
4.控制信号通过连接件传递给电液转换器,将电信号转换成液压信号。
5.液压部分接收液压信号,并经过液压传动系统的传递和液压执行元件的作用,控制和调节工程机械的运动、位置、力量等参数。
6.工程机械根据液压部分的控制信号,进行相应的动作和运动。
应用领域工程机械电液控制系统广泛应用于各个领域的工程机械中,如挖掘机、装载机、推土机、起重机等。
它们通过电气和液压的相互协作,实现了对机械的高效控制和操作。
在工程机械的挖掘方面,电液控制系统能够精确控制挖斗的位置、速度和力量,提高挖掘效率和准确性。
在装载方面,可以根据物料的不同特性,调节装载斗的位置和倾斜角度,实现高效的装载和卸载操作。
机电一体化——电液控制系统设计

6.电液控制系统设计6.1概述电液控制系统是常用机电一体化系统之一。
它是将计算机电控和液压传动结合在一起,既发挥了计算机控制或电控制技术的灵活性,又体现了液压传动的优势,充分显示出大功率机电控制技术的优越性。
电液控制系统的种类很多,可以从不同的角度分类,而每一种分类方法都代表一定的特征:1)根据输入信号的形式和信号处理手段可人为数字控制系统、模拟控制系统、直流控制系统、电液开关控制系统。
2)根据输入信号的形式和信号处理手段可分为数字控制系统、模拟控制系统、直流控制系统、交流控制系统、振幅控制系统、相位控制系统。
3)根据被控量的物理量的名称可分为置控制系统、速度控制系统、力或压力控制系统等。
4)根据动力元件的控制方式可分为阀控系统和泵控系统。
5)根据所采用的反馈形式可分为开环控制系统、闭环系统和半闭环控制系统。
本章主要介绍电液控制系统的组成、控制元件,系统数字模型以及系统的设计。
6.2电液控制元件电液控制元件主要包括电液伺服阀、电液比例阀、电液数字阀以及由数字阀组成的电液步进缸、步进马达、步进泵等。
它胶是电液控制系统中的电-液能量转换元件,也是功率放大元件,它能够将小功率的电信号输入转换为大功率的液压能(流量与压力)或机械能的输出。
在电液控制系统中,将电气部分与液压部分连接起来,实现电液信号的转换与放大,主要有电液伺服阀、电液比例阀、电液数字阀以及各种电磁开关阀等。
电液控制阀是电液控制系统的核心,为了正确地设计和使用电液控制系统,就必须掌握不同类型电液控制阀的原理和性能。
6.2.1控制元件的驱动6.2.1.1电气—机械转换器电气—机械转换器有“力电机(马达)”、“力矩电机(马达)”以及直流伺服电动机和步进电动机等,它将输入的电信号(电流或电压)转换为力或力矩输出,去操纵阀动作,推行一个小位移。
因此,电气-机械转换器是电液控制阀中的驱动装置,其静态特性和动态特性在电液控制阀的设计和性能中都起着重要的作用。
电液控制-机液伺服系统

四、液压转矩放大器
Hale Waihona Puke 反馈机构为 螺杆、螺母 液压马达轴完全跟 踪阀芯输入转角而 转动。但输出力矩 比输入力矩要大得 多,故称液压转矩 放大器。
电液步进马达
以惯性负载为主时,可分析得
方框图为:
则系统方框图为:
§系统稳定性分析
液压伺服系统的动态分析和设计一般都是以稳定性要求为 中心进行的。
令G(s)为前向通道的传递函数,H(s)为反馈通道的传递函 数,由以上的方框图可得系统的开环传递函数为:
含有一个积分环节,故系统为Ⅰ型系统。
可绘制开环系统伯德图,如下图所示:
对伯德图的分析
幅值穿越频率ωc≈Kv 相位穿越频率ωc=ωg 为了使系统稳定, 必须有足够的相位裕 量和增益裕量。 由图可见,相位裕 度已为正值,为使幅 值裕度为正值,可计 算求得要求: K 2
与全闭环系统相比,半闭环系统的稳定性好得多,但精度较低。
综上所述,由于结构柔度的影响,产生了结构谐振和液压谐 振的耦合,使系统出现了频率低、阻尼比小的综合谐振,综合谐 振频率ωn和综合阻尼比ξn常常成为影响系统稳定性和限制系统频 宽的主要因素,因此提高具有重要意义。 提高ωn 就需要提高结构谐振频率ωs,就要求负载惯量减小 (但已由负载特性决定),结构刚度增大(提高安装固定刚度和 传动机构刚度,尤其是靠近负载处的传动机构的结构刚度)。 增大执行元件到负载的传动比,可提高液压固有频率;提高 液压弹簧刚度的方法也可提高液压固有频率,从而提高综合谐振 频率。
反馈从活塞输出端Xp取出时,构成为半闭环系统,其方框图 为:
此时系统开环传函中含有二阶微分环节,当ωs2和ωn靠得很 近时,会有零极点相消现象,使综合谐振峰值减小,从而改善 系统稳定性,如曲线b所示。 系统闭环传函为:
电液比例控制阀结构及原理

电液比例控制阀结构及原理电液比例控制阀(Electro-hydraulic proportional control valve)是一种通过电信号控制液压工作机构运动的装置。
它将电信号转化为液压信号,通过控制液压系统的液压阀门来调节油液的流量和压力,从而达到对液压系统运动进行精确控制的目的。
首先是电磁比例阀部分,它是通过电磁线圈的磁性效应控制液压阀门的开启和关闭。
电磁比例阀由铁芯、阀芯、阀阀座和电磁线圈等组成。
电磁线圈环绕在铁芯上,在线圈中通电产生磁场时,铁芯会被磁化,吸引阀芯与阀座之间的间隙关闭。
电磁线圈通电后,油液进入阀芯的控制腔,从而控制阀芯的位置和开口大小,进而控制液压油的流量和压力。
当电磁线圈断电时,铁芯失去磁性,阀芯与阀座之间的间隙打开,油液再次流动。
其次是液压比例执行机构部分,它是通过液压油的力学性能将电信号转化为液压信号,并通过调节活塞的位移或液压系统的压力来控制液压工作机构。
液压比例执行机构由油缸、活塞和杆等组成。
当电磁线圈通电时,液压油从阀芯的控制腔进入液压比例执行机构的缸腔,使活塞移动,从而实现对液压工作机构的控制。
当电磁线圈断电时,液压油从液压比例执行机构的缸腔排出,活塞回到初始位置。
整个电液比例控制阀工作的原理是将电信号转化成了液压信号,通过控制液压系统的流量和压力,来精确控制液压工作机构的运动。
通常情况下,电液比例控制阀通过调节电磁比例阀的阀芯位置来控制油液的流量,通过调节液压比例执行机构的液压力来控制油液的压力。
通过不同的电信号输入可以实现对液压工作机构的精确控制,达到所需的运动参数。
课件:电液模块结构及工作原理

2
不同工况下的油路图
三档工作:
油路走向:
1→3→15→28→30→
N89→32→33→34→
3
36→37,N92不工作。
1
45 44
15 41
28 3ห้องสมุดไป่ตู้ 38 39
BYD6DT35变速器简介
二、BYD6DT35结构特点剖析
油路
此部分涉及电控及液压方 面的专业知识,感兴趣的 同事可以咨询谭工或查阅 相关更详细的资料
1/3档传 感器
内部是集成电路板,也 是DCT的控制程序,预 先嵌入的控制程序(换
档策略),控制整个变 速器工作。
2/4档传感器
BYD6DT35变速器简介
二、BYD6DT35结构特点剖析
电液控制模块
电液控制单元被 集成在机电一体 控制模块中。在 这个控制单元中, 都是电磁阀、压 力控制阀、液压 选择阀以及多路 转换器等。各种 电磁阀接收来自 控制程序的指令, 控制各分管油路 压力,实现相应 机械动作。
N233安全阀1:一般处于作用位置,5欧姆电阻用来隔离第1部分齿轮传动系的安全电 磁阀,使这部分传动系无法得到档位。如失效,则只有2档。Normally Applied 5 Ohm solenoid – A safety solenoid that isolates section 1 of the gear train so gears are not available from that section . During failure only 2 nd gear is available.
二、BYD6DT35结构特点剖析
电液控制模块 电磁阀细节
N215、N216离合压力控制阀:一般处于限压位置,大约5欧姆电阻调节离合器的油压。 随引擎扭矩而变化。它的失效会导致离合器提前损坏。如在作用位置上失效,会在 车辆刹车时导致引擎熄火。Normally Low Pressure 5 Ohmapprox solenoid – Regulates pressure to the Clutch. Influenced by engine torque. Failure couldcause premature failure of the clutch. Failure in the on position will cause engine stall at a stop.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ON
ON
液力式自动变速器 电液式控制系统实例 1、本田Accord电控自动变速器 2、大众01M电控自动变速开关、ECU、电磁阀组成。 传感器——节气门位置sensor,发动机转速 sensor,车速sensor,输入轴sensor,变速器 油温度sensor等; 控制开关——超速挡开关、模式开关 (Economy、Power、Normal、Manual、 Snow)、多功能开关、空挡起动开关、变速 器油温开关; 电磁阀
第6章 电控液压系统 的结构和原理
概述
ECT(电子控制液力自动变速器,Electronic Controlled Automatic Transmission)的自动控制依靠 电液式控制系统完成; 电液控制系统由电子控制装置、液压阀及相应的液压 执行元件两部分组成; 特点:自动换挡的控制系统是由ECU来完成的——车 速、加速度、节气门、选挡范围等控制换挡信号变成 相应的电信号; 优点:可根据工况自由合理选择换挡规律——得到更 理想的燃油经济性和动力性;可简化液压系统,提高 控制精度和反应速度,并可实现与整车其它控制系统 的匹配——广泛被采用。