高三数学:函数模型及其应用
高三数学函数模型及其应用试题答案及解析

高三数学函数模型及其应用试题答案及解析1.定义在上的函数满足,则=()A.-1B.0C.1D.2【答案】C【解析】因为2015=6×336-1,所以f(2015)=f(-1)=log(1+1)=1.选C2【考点】分段函数求值2.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=ka x,若牛奶在0℃的冰箱中,保鲜时间约为100 h,在5℃的冰箱中,保鲜时间约为80 h,那么在10℃时保鲜时间约为()A.49 h B.56 h C.64 h D.72 h【答案】C【解析】由得k=100,a5=,所以当10℃时,保鲜时间为100·a10=100·()2=64,故选C.3.(2011•湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).【答案】(1)(2)3333辆/小时【解析】(1)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)依题并由(1)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(1)函数v(x)的表达式(2)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.4.某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如表:时间(将第x天记为x)x1101118而这20天相应的销售量Q(百件/天)与x对应的点(x,Q)在如图所示的半圆上.(1)写出每天销售收入y(元)与时间x(天)的函数关系式y=f(x).(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此次测试结果应将单价P定为多少元为好?(结果精确到1元)【答案】(1)y=100QP=100,x∈[1,20],x∈N*(2)7【解析】(1)P=x∈N*,Q=,x∈[1,20],x∈N*,所以y=100QP=100,x∈[1,20],x∈N*.(2)因为(x-10)2[100-(x-10)2]≤=2500,所以当且仅当(x-10)2=100-(x-10)2,即x=10±5时,y有最大值.因为x∈N*,所以取x=3或17时,y=700max≈4999(元),此时,P=7元.答:第3天或第17天销售收入最高,按此次测试结果应将单价P定为7元为好.5.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.【答案】(1)当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元(2)当长为16米,宽为10米时总造价最低,总造价最低为38 882元.【解析】(1)设污水处理池的宽为x米,则长为米.则总造价f(x)=400×(2x+)+248×2x+80×162=1 296x++12 960=1 296(x+)+12 960≥1 296×2 +12 960=38 880(元),当且仅当x=(x>0),即x=10时取等号.∴当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元.(2)由限制条件知,∴10≤x≤16,设g(x)=x+(10≤x≤16),g(x)在上是增函数,∴当x=10时(此时),g(x)有最小值,即f(x)有最小值,即为1 296×+12 960=38 882元.∴当长为16米,宽为10米时总造价最低,总造价最低为38 882元.6.农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:根据上表所提供信息,第_____号区域的总产量最大,该区域种植密度为_____株/.{第13,14题的第一空3分,第二空2分}【答案】5,3.6【解析】由图中数据可得,,总产量,故时取得最大值,即第5号区域的总产量最大,该区域种植密度为.【考点】二次函数.7.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且. 假设该容器的建造费用仅与其表面积有关. 已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为22千元. 设该容器的建造费用为y千元. 当该容器建造费用最小时,r的值为()A.B.1C.D.2【答案】B【解析】设容器的容积为,由题意知:,又,故由于,因此.所以建造费用,因此,,此时易知,故选B.【考点】1.几何体的体积;2.基本不等式.8.设函数,.(1)解方程:;(2)令,求证:;(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.【答案】(1);(2)参考解析;(3)【解析】(1)由于函数,,所以解方程.通过换元即可转化为解二次方程.即可求得结论.(2)由于即得到.所以.所以两个一组的和为1,还剩中间一个.即可求得结论.(3)由是实数集上的奇函数,可求得.又由于对任意实数恒成立.该式的理解较困难,所以研究函数的单调性可得.函数在实数集上是递增.集合奇函数,由函数值大小即可得到变量的大小,再利用基本不等式,从而得到结论.试题解析:(1)即:,解得,(2).因为,所以,,(3)因为是实数集上的奇函数,所以.,在实数集上单调递增.由得,又因为是实数集上的奇函数,所以,,又因为在实数集上单调递增,所以即对任意的都成立,即对任意的都成立,.【考点】1.解方程的思想.2.函数的单调性.3.归纳推理的思想.4.基本不等式.9.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,要使接下来的4天中能够持续有效净化,试求的最小值(精确到0.1,参考数据:取1.4).【答案】(1)可达8天;(2)a的最小值为.【解析】(1)根据题中条件每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系已经给出,则易得一次喷洒4个单位的净化剂时的函数关系式:,这样就得到一个分段函数,对分段函数的处理常用的原则:先分开,现合并,解两个不等式即可求解; (2)中若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,根据题意从第6天开始浓度来源与两方面,这是题中的难点,前面留下的为:,后面新增的为:,所得化简即可得到:,结合基本不等式知识求出最小值,最后解一个不等式:,即可求解.试题解析:(1)因为一次喷洒4个单位的净化剂,所以浓度则当时,由,解得,所以此时. 3分当时,由解得,所以此时.综合得,若一次投放4个单位的制剂,则有效净化时间可达8天. 7分(2)设从第一次喷洒起,经x()天,浓度. 10分因为,而,所以,故当且仅当时,y有最小值为.令,解得,所以a的最小值为. 14分【考点】1.实际应用问题;2.分段函数;3.基本不等式.10.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D)有x+l∈D,且f (x+l)≥f(x),则称f(x)为M上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的8高调函数,那么实数a的取值范围是( )A. B. C. D.【答案】A【解析】当时,,则,即为上的8高调函数;当时,函数的图象如图所示,若为上的8高调函数,则,解得且.综上.【考点】1.新定义题;2.函数图像.11.要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?【答案】半圆直径与矩形的高的比为2∶1【解析】设半圆直径为2R,矩形的高为a,则2a+2R+πR=L(定值),S=2Ra+πR2=-R2+LR,当R=时S最大,此时=1,即半圆直径与矩形的高的比为2∶1时,窗户能够透过最多的光线.12.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.【答案】1036年前【解析】因a′=a·e-kt,即=e-kt.两边取对数,得lg=-ktlge.①又知14C的半衰期是5570年,即t=5570时,=.故lg=-5570klge,即klge=.代入①式,并整理,得t=-.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的是0.879,代入公式,得t=-≈1036.即古莲子约是1036年前的遗物.13.用长为90cm、宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm时,容器的容积最大.【答案】10【解析】设容器的高为xcm,即小正方形的边长为xcm,该容器的容积为V,则V=(90-2x)(48-2x)x=4(x3-69x2+1080x),0<x<12,V′=12(x2-46x+360)=12(x-10)(x-36),当0<x<10时,V′>0;当10<x<12时,V′<0.所以V在(0,10]上是增函数,在[10,12)上是减函数,故当x =10时,V最大.14.某客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过25kg按0.5元/kg收费,超过25kg的部分按0.8元/kg收费,计算收费的程序框图如图所示,则①②处应填()A.y=0.8xy=0.5xB.y=0.5xy=0.8xC.y=0.8x-7.5y=0.5xD.y=0.8x+12.5y=0.8x【答案】C【解析】设行李的质量为xkg,则所需费用为:y=即y=15.定义在R上的函数及二次函数满足:且。
函数模型及其应用(教案)

增长型函数模型及其应用复习教学目标:1、使学生在掌握函数基本知识要点的基础上,学会用函数的观点、思想与方法分析、解决实际问题;2、使学生学会正确理解题意,能够把实际问题转化为数学问题并灵活运用数学知识加以解决,提高学生数学建模、解模的能力.复习教学重点:提高学生应用函数的知识分析、解决问题的能力,采用研究、尝试、训练的方法解决. 复习教学难点:根据已知条件建立函数关系式,把实际问题抽象、转化为数学问题,即建立数学模型. 复习教学设计:一、基础梳理1、几种常见的函数模型(1) 一次函数模型:()()0f x ax b a b a =+≠、为常数,;(2) 二次函数模型:()()20f x ax bx c a b c a =++≠、、为常数,;(3) 指数函数模型:()()010x f x b a c a b c a a b =⋅+>≠≠、、为常数,且,;(4) 对数函数模型:()()log 010a f x b x c a b c a a b =+>≠≠、、为常数,且,;(5) 幂函数模型:()()0n f x ax b a b a =+≠、为常数,.(1) 审题:弄清题意,分清条件和结论,理顺数量关系,把握数学本质,选择数学模型;(2) 建模:由题设中的数量关系,将文字语言转化为数学符号语言,建立相应的数学模型,将实际问题转化为数学问题;(3) 解模:运用数学知识和方法解决转化得出的数学问题;(4) 还原:回到题目本身,检验求解结果的实际意义,得出结论.二、小试身手1、(巩固对不同函数增长速度的理解)下列命题不正确的是 ( C )(A) 函数()2f x x =在()0+∞, 是增函数;(B) 函数()2x f x =在()0+∞, 是增函数; (C) ()00+x ∃∈∞, ,当0x x >时,22x x >恒成立; (D) ()00+x ∃∈∞, ,当0x x >时,22x x >恒成立. 2、(指数型函数的应用) 某林场计划第一年造林1万亩,以后每年比前一年多造林20%,则三年后一共造林 ( D )(A) 1.4万亩; (B) 1.44万亩; (C) 3.6万亩; (D) 3.64万亩.三、热点考向探究热点1、一次函数、二次函数模型例1、有甲、乙两种商品,经营销售这两种商品所能获得的利润分别是P (万元)和Q (万元),它们与投入资金x (万元)的关系有以下公式:5x P =,Q =今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得的最大利润是多少? 解:设对甲种商品投资x 万元,则对乙种商品投资()3x -万元,总利润为y 万元,根据题意得:)035x y x =+≤≤,令t =,则230x t t --≤≤, , ∴ ()2213132130555220y t t t t ⎛⎫⎡=-+=--+∈ ⎪⎣⎝⎭,, 当32t =时,max 1.05y =,此时,0.753 2.25x x =-=, , 答:为获得最大利润,对甲、乙两种商品的资金投入应分别为0.75万元和2.25万元,能获得的最大利润是1.05万元.方法小结:利用一次函数、二次函数的单调性求最值时,要注意实际问题中自变量的取值范围,对于比较复杂的形式可用换元等方法进行化简.热点二:指数函数与对数函数模型例2、某工厂一、二、三月份的某产品产量分别为1万件、1. 2万件、1. 3万件,为了估测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量y (万件)与月份x 的关系,模拟函数可选用二次函数或(c b a c ab y x 、、+=为常数,0a ≠),已知四月份的产量为1. 36万件,试问用以上哪个函数作为模拟函数较好?请说明理由.解:若用二次函数模拟,设()20y ax bx c a =++≠,根据题意得:142 1.293 1.3a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解方程组得:177202010a b c =-==,,,∴ 2177202010y x x =-++,当4x =时, 1.3y =,与四月份实际产量误差0.06万件; 若用(c b a c ab y x 、、+=为常数,0a ≠)模拟,根据题意得:2311.21.3a b c a b c a b c ⋅+=⎧⎪⋅+=⎨⎪⋅+=⎩,解方程组得:417525a b c =-==,,, ∴ 417525xy ⎛⎫=-⋅+ ⎪⎝⎭,当4x =时, 1.35y =,与四月份实际产量误差0.01万件; 故:用(c b a c ab y x 、、+=为常数)作为模拟函数较好,417525x y ⎛⎫=-⋅+ ⎪⎝⎭. 方法小结:在日常生活中,增长问题常用指数函数模型和幂函数模型进行模拟,有时也可以选用对数函数模型模拟,需和实际情况进行对比,看用哪种模型更为合理.变式练习:根据统计数据发现,从2000年开始,某地区的森林面积y (万亩)与经过的年数x 的关系可用一个对数函数模型()lg 0y a x b a =+≠进行模拟,已知2002年该地区森林面积为3.6万亩,2005年该地区森林面积为4.4万亩,请据此估计该地区2020年的森林面积.(参考数据:lg 20.30≈)解:由题意得:lg 2 3.6lg 5 4.4a b a b ⋅+=⎧⎨⋅+=⎩,解方程组得:23a b ==,, ∴ 2lg 3y x =+,当20x =时,()2lg 20321lg 23 5.6y =+=++≈,答:估计该地区2020年的森林面积约为5.6万亩.四、课堂教学小结:解答应用题的要求:认真审题,合理建模,仔细运算,检查作答.常见的增长类函数模型:一次、二次函数模型、指数函数模型、对数函数模型、幂函数模型. 常用的数学方法:待定系数法.五、分层练习:A 级:1、(人教A 版教材第101页练习改编,检验学生对不同函数增长速度的掌握)已知()2f x x =,()2x g x =,()2log h x x =,当()4+x ∈∞, 时,对三个函数的增长速度进行比较,下列结论正确的是 ( C )(A) ()()()f x g x h x >>; (B) ()()()g x h x f x >>;(C) ()()()g x f x h x >>; (D) ()()()f x h x g x >>.2、(( B )(A) y a bx =+; (B) x y a b =+; (C) 2y ax b =+; (D) b y a x=+. 3、(检验学生对指数函数型模型的掌握) 将甲桶中的a 升水缓慢注入空桶中,t 分钟后甲桶中剩余的水符合指数衰减曲线nt y ae =,假设5分钟后甲桶和乙桶的水量相等,若再过m 分钟后甲桶的水只有8a ,则m = ( D ) (A) 7; (B) 8; (C) 9; (D) 10.4、(检验学生对数学建模的掌握) 商店经销一种洗衣粉,年销量为6000袋,每袋进价为2. 8元,销售价为3. 4元,全年分若干次进货,每次进货均为x 袋,已知每次进货运输费用为62. 5元,全年保管费为x 5.1元,要使利润最大,每次进货量应为 500 袋.B 级:1、(2011年湖北高考,检验学生对指数型函数增长情况的综合应用)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002t M t M -=,其中0M 为0t =时铯137的含量.已知30t =时,铯137含量的变化率是10ln 2-(太贝克/年),则()60M = ( D )(A) 5太贝克; (B) 75ln 2太贝克; (C) 150ln 2太贝克;(D)150太贝克.2、(增长型函数模型的综合应用)某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿的市场售价与上市时间的关系用图甲的一条折线表示;西红柿的种植成本与上市时间的关系用图乙的抛物线表示:)(1) 写出图甲表示的市场售价与时间的函数关系式()t f P =;写出图乙表示的种植成本与时间的函数关系式()t g Q =;(2) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?答案:(1)()()()⎩⎨⎧≤-≤≤+-=30020030022000300t t t t t f <, , ,()()()300010015020012≤≤+-=t t t g , ; (2) 第50天上市收益最大.六、考题赏析(2011年湖北17题) 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(I) 当0200x ≤≤时,求函数()v x 的表达式;(II) 当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()()f x x v x =⋅可以达到最大,并求出最大值(精确到1辆/小时).解:(I) 由题意:当()02060x v x ≤≤=时,;当()20200x v x ax b ≤≤=+时,设,再由已知得12000320602003a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩,, 解得,,故函数()v x 的表达式为()()600201200202003x v x x x ≤≤⎧⎪=⎨-<≤⎪⎩, ,, . (II) 依题意并由(I)可得()()600201200202003x x f x x x x ≤<⎧⎪=⎨-<≤⎪⎩, ,, , 当()020x f x ≤≤时,为增函数,故当20x =时,其最大值为6020=1200⨯;当20200x <≤时,()()()220011100002003323x x f x x x +-⎡⎤=-≤=⎢⎥⎣⎦, 当且仅当200x x =-,即100x =时,等号成立。
高三数学函数模型及其应用1-P

函数模型及其应用

演 实 战
沙
切
∵R(x)在[0,210]上是增函数,∴x=210时,
场 点
脉
兵
搏 核 心
R(x)有最大值为-15(210-220)2+1 680=1 660.
突
破
∴年产量为210吨时,可获得最大利润1 660万元.
课 时
提
升
练
菜单
高三总复习·数学(理)
提
素
考向二 指数函数模型的应用
养 满
分
研
指
动
[典例剖析]
高三总复习·数学(理)
提
素
养
满
分
研
指
动
导
向
考
纲
考
演
向
实
第九节 函数模型及其应用
战 沙
场
切
点
脉
兵
搏
核
心
突
破
ห้องสมุดไป่ตู้
课
时
提
升
练
菜单
高三总复习·数学(理)
提
素
养
满
分
研
指
动
导
向
考纲要求:1.了解指数函数、对数函数以及幂函数的增
考
纲 考
长特征,知道直线上升、指数增长、对数增长等不同函数类
演
向
实
型增长的含义.2.了解函数模型(如指数函数、对数函数、幂
纲
考 向
数模型和实验数据,可以得到最佳加工时间为(
)
演 实
战
沙
场
切
点
脉
兵
搏
核
心
突
破
课
时
高三数学一轮复习 2.9函数模型及其应用课件

f1 x , x D 1,
(6)分段函数模型:
y
f
2
x
,
x
D 2,
图象特点是每一段自变量
f
n
x
,
x
D
n
,
变化所遵循的规律不同.可以先将其当作几个问题,将各段的变
化规律分别找出来,再将其合到一起,要注意各段自变量的取值
范围,特别是端点.
3.建立函数模型解决实际应用问题的步骤(四步八字) (1)审题:阅读理解、弄清题意,分清条件和结论,理顺数量关系, 弄清数据的单位等. (2)建模:正确选择自变量,将自然语言转化为数学语言,将文字 语言转化为符号语言,利用数学知识,建立相应的数学模型. (3)求模:求解数学模型,得出数学结论. (4)还原:将数学问题还原为实际问题.
5.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期
是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数
关系式是
.
【解析】已知本金为a元,利率为r,则 1期后本利和为y=a+ar=a(1+r), 2期后本利和为y=a(1+r)+a(1+r)r=a(1+r)2, 3期后本利和为y=a(1+r)3, … x期后本利和为y=a(1+r)x,x∈N. 答案:y=a(1+r)x,x∈N
③图(3)的建议是:提高票价,并保持成本不变;
④图(3)的建议是:提高票价,并降低成本.
其中所有正确说法的序号是( )A.①③Fra bibliotekB.①④
C.②③
D.②④
【解析】选C.对于图(2),当x=0时,函数值比图(1)中的大,表示 成本降低,两直线平行,表明票价不变,故②正确;对于图(3),当 x=0时,函数值不变表示成本不变,当x>0时,函数值增大表明票 价提高,故③正确.
高三数学高考中常用函数模型归纳及应用

○高○考中常用函数模型....归纳及应用 山东莘县观城中学 郭银生 岳红霞高中数学中,函数是重点内容,函数思想贯穿于数学的每一个领域,函数图象是数形结合的常用工具。
复杂的函数问题也是有简单的基本初等函数组合而成,熟练掌握常见的函数模型对解决函数综合问题大有裨益。
高考试题中,函数问题是“大块头”,各套试题所占比重在30%以上。
现归纳常用的函数模型及其常见应用如下: 一. 常数函数y=a判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。
关于方程解的个数问题时常用。
例1.已知x ∈(0, π],关于方程2sin(x+3π)=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[3,2] C.( 3,2] D.( 3,2)解析;令y=2sin(x+3π), y=a 画出函数y=2sin(x+3π),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点,由图象知( 3,2),选D二. 一次函数y=kx+b (k ≠0)函数图象是一条直线,易画易分析性质变化。
常用于数形结合解决问题,及利用“变元”或“换元”化归为一次函数问题。
有定义域限制时,要考虑区间的端点值。
例2.不等式2x 2+1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( )A .-2≤x ≤2 B.431- ≤x ≤0 C.0≤x ≤471+ D. 471-≤x ≤413-解析:不等式可化为m(x-1)- 2x 2+1≥0设f(m)= m(x-1)- 2x 2+1若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需⎩⎨⎧≥-≥0)2(0)2(f f ,解之可得答案D 三.二次函数y=ax 2+bx+c (a ≠0)二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。
高三理科数学第一轮复习§2.9:函数模型及其应用

第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第12讲模块复习:函数模型及其应用教案

2019年暑季课程苏教版高三数学第12讲:《函数模型及其应用》教案一、教学目标1。
能够应用函数知识构造函数模型,解决简单的实际生活中的优化问题、2、能利用函数与方程、不等式之间的关系,解决一些简单问题、二、知识梳理1、几种常见函数模型(1)一次函数模型:(为常数,);(2)反比例函数模型:(为常数,);(3)二次函数模型:(为常数,),二次函数模型是高中时期应用最为广泛的模型,在高考的应用题考查中是最为常见的;(4)指数函数模型:(为常数,;(5)对数函数模型:(为常数,);(6)幂函数模型:(为常数,);(7)分式函数模型:;(8)分段函数模型。
2、解应用题的方法与步骤用框图表示如下:三、题型突破题型一一次函数、二次函数模型例1某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式能够近似地表示为,已知此生产线年产量最大为210吨、(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,能够获得最大利润?最大利润是多少?变式迁移1马上开工的上海与周边城市的城际列车铁路线将大大缓解交通的压力,加速城市之间的流通、依照测算,假如一列火车每次拖4节车厢,每天能来回16次;假如每次拖7节车厢,则每天能来回10次。
每天来回次数是每次拖挂车厢个数的一次函数,每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数、(注:营运人数指火车运送的人数)、题型二分段函数模型例2.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用下图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用下图(2)的抛物线表示、(1)写出图中(1)表示的市场售价与时间的函数关系式;写出图中(2)表示的种植成本与时间的函数关系式;(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价与种植成本的单位:元/102,k g,时间单位:天)变式迁移2 某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1、80元,当用水超过4吨时,超过部分每吨3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:设矩形的长为 x m,宽为2004-x m,则 S= x·2004-x=14(-x2+200x).当 x=100 时,Smax=2 500 m2.
答案:2 500 m2
教学ppt
8
1.解答函数应用题的一般步骤 (1)审题:弄清题意,分清条件和结论,理顺数量 关系,初步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语 言转化为符号语言,利用数学知识,建立相应的数学 模型; (3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义.
但它们的增长速度不同,且不在同一个档次上,因此在
(0,+∞)上,总会存在一个x0,使x>x0时有
.
ax>xn>logax.
教学ppt
3题改编)f(x)=x2,g(x)=2x,h(x)=log2x,当 x∈(4,+∞)时,对三个函数的增长速度进行比较,下列
选项中正确的是
()
3.在解决二次函数的应用问题时,一定要注意定义 域.
教学ppt
14
1.一根均匀的轻质弹簧,已知600 N的范围内,其长 度y(m)与所受拉力x(N)成一次函数关系,现测得当 它在100 N的拉力作用下,长度为0.55 m;在300 N 的拉力作用下长度为0.65 m,那么弹簧在不受拉力 作用时,其自然长度是多少?当在700 N的拉力下, 弹簧会出现什么情况?
如果不获利,则国家至少需要补贴多少元才能使该单位
不亏损? [自主解答] 设该单位每月获利为 S,
则 S=100x-y
=100x-12x2-200x+80
000
=-12x2+300x-80 000
=-12(x-300)2-35 000,
教学ppt
12
因为 400≤x≤600, 所以当 x=400 时,S 有最大值-40 000. 故该单位不获利,需要国家每月至少补贴 40 000 元,才能不亏损.
在一个x0,当x>x0时有
a.x>xn
教学ppt
2
(2)对数函数y=logax(a>1)与幂函数y=xn(n>0)
对数函数y=logax(a>1)的增长速度,不论a与n值的 大小如何总会 慢于 y=xn的增长速度,因而在定义域内
总存在一个实数x0,使x>x0时有 logax<xn .
由(1)(2)可以看出三种增长型的函数尽管均为增函数,
教学ppt
9
以上过程用框图表示如下:
2.解函数应用题常见的错误 (1)不会将实际问题抽象转化为函数模型或转化不全面; (2)在求解过程中忽视实际问题对变量参数的限制条件.
教学ppt
10
一次函数与二次函数模型
[例 1] 为了保护环境,发展低碳经济,某单位在国家
科研部门的支持下,进行技术攻关,采用了新工艺,把二
A.f(x)>g(x)>h(x)
B.g(x)>f(x)>h(x)
C.g(x)>h(x)>f(x)
D.f(x)>h(x)>g(x)
解析:由图象知,当x∈(4,+∞)时,增长速度由大到小
依次为g(x)>f(x)>h(x). 答案:B
教学ppt
4
2.在某种新型材料的研制中,实验人员获得了下列一组 实验数据.现准备用下列四个函数中的一个近似地表 示这些数据的规律,其中最接近的一个是 ( )
教学ppt
16
分段函数模型
[例 2] (2012·孝感统考)某公司生产一种产品,每年
需投入固定成本 0.5 万元,此外每生产 100 件这样的产
品,还需增加投入 0.25 万元,经市场调查知这种产品年
需求量为 500 件,产品销售数量为 t 件时,销售所得的
氧化碳转化为一种可利用的化工产品.已知该单位每月的
处理量最少为 400 吨,最多为 600 吨,月处理成本 y(元)与
月处理量 x(吨)之间的函数关系可近似地表示为:y=12x2-
200x+80 000,且每处理一吨二氧化碳得到可利用的化工产
品价值为 100 元.
教学ppt
11
该单位每月能否获利?如果获利,求出最大利润;
教学ppt
6
4.一种产品的成本原为a元,在今后的m年内,计划使 成本平均每年比上一年降低p%,成本y是经过年数 x(0<x≤m)的函数,其关系式y=f(x)可写成_______. 解析:依题意有y=a(1-p%)x(0<x≤m). 答案:y=a(1-p%)x(0<x≤m)
教学ppt
7
5.有一批材料可以建成200 m的围墙, 如果用此材料在一边靠墙的地方围 成一块矩形场地,中间用同样的材 料隔成三个面积相等的矩形(如图所示),则围成的 矩形最大面积为______________.(围墙厚度不计)
1.三种增长型函数模型的图像与性质
增函数 越来越快
增函数 越来越慢
y轴
x轴
教学ppt
增函数
1
2.三种增长型函数之间增长速度的比较
(1)指数函数y=ax(a>1)与幂函数y=xn(n>0)
在区间(0,+∞),无论n比a大多少,尽管在x的一定范 围内ax会小于xn,但由于ax的增长 快xn于的增长,因而总存
A.y=2x C.y=12(x2-1)
B.y=log2x D.y=2.61cos x
解析:通过检验可知,y=log2x较为接近.
答案:B
教学ppt
5
3.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧
时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图
象表示为图中的
()
解析:由题意h=20-5t,0≤t≤4.结合图象知应选B. 答案:B
教学ppt
15
解:设y=kx+b(k、b为常数), 由题意知当x=100时,y=0.55,即0.55=100k+b; 当x=300时,y=0.65,即0.65=300k+b. ∴kb==00..050. 0 5 , ∴y=0.000 5x+0.5(0≤x≤600). 当x=0时,y=0.5. ∴当弹簧在不受拉力作用时,其自然长度是0.5 m,而 当受力为700 N时,此弹簧已受破坏.
教学ppt
13
1.在实际问题中,有很多问题的两变量之间的关系 是一次函数模型,其增长特点是直线上升(自变量的系数 大于0)或直线下降(自变量的系数小于0),构建一次函数 模型,利用一次函数的图像与单调性求解.
2.有些问题的两变量之间是二次函数关系,如面积 问题、利润问题、产量问题等.构建二次函数模型,利 用二次函数图像与单调性解决.