镍基高温合金的研究和应用
耐高温的金属材料

耐高温的金属材料耐高温的金属材料引言:随着现代工业的发展和科学技术的进步,高温环境下的工作需求越来越多。
例如,汽车引擎、航空发动机、核电站等都需要在高温条件下正常工作。
因此,耐高温的金属材料的研究和应用日益重要。
本文将详细介绍几种常见的耐高温金属材料,并讨论其特性和应用领域。
一、镍基高温合金镍基高温合金是一种使用镍和其他合金元素制成的金属材料。
由于其优异的高温力学性能和耐腐蚀性,镍基高温合金在航空、航天、能源等领域得到广泛应用。
例如,现代喷气发动机中的涡轮叶片、燃烧室等都采用了镍基高温合金。
此外,镍基高温合金还常用于核电站、石油化工设备等高温环境中。
二、钼基高温合金钼基高温合金是以钼为基础元素的合金材料。
钼具有高熔点、高热传导性和良好的力学性能,因此钼基高温合金在高温环境下表现出色。
主要应用领域包括航空航天、航空发动机、化工装备等。
例如,超音速飞机的发动机涡轮叶片和喷管等部分常采用钼基高温合金制造。
三、钛基高温合金钛基高温合金是一种以钛为基础元素的合金材料。
钛具有低密度、高强度和良好的耐腐蚀性,在高温环境下有一定的抗氧化性能。
钛基高温合金常应用于航空航天、核工业、舰船制造等领域。
例如,宇航器中的舰身、喷管和发动机部件可以采用钛基高温合金制造。
四、铜基高温合金铜基高温合金是以铜为基础元素的合金材料。
铜具有良好的导热性和导电性,在高温环境下能保持较高的强度和韧性。
因此,铜基高温合金常用于电力工业和电子工业。
例如,高能密度电池、电子器件散热器和导线等部件通常采用铜基高温合金制造。
五、钼铜合金钼铜合金是由钼和铜按一定比例熔炼而成的合金材料。
钼具有良好的高温强度和抗氧化性能,而铜具有高热传导率和良好的导电性能。
因此,钼铜合金具有良好的耐高温特性和导热性能。
广泛应用于航空航天、电子器件和真空设备等领域。
结论:耐高温的金属材料在现代工业中起着重要的作用。
镍基高温合金、钼基高温合金、钛基高温合金、铜基高温合金和钼铜合金都具有优异的高温性能和特性。
镍基高温合金的研究与工程应用

镍基高温合金的研究与工程应用随着机械制造和航空航天工业的不断发展,对于高温高压材料的需求也越来越大。
而镍基高温合金便成为了解决这一难题的重要材料之一。
镍基高温合金具有优异的高温抗氧化性能、高强度和耐磨性等特点,成为了高端制造领域的首选材料之一。
本文将探讨镍基高温合金的研究和工程应用。
一、镍基高温合金的分类和组成镍基高温合金按所含元素定性可分为镍基合金、高温合金、超高温合金和热成形合金四类。
在这四个类别中,镍基合金和高温合金是大量被应用的两个类别。
镍基合金主要由镍、铬和铁组成,常常加入一定比例的铝、钛和钨等元素,其中铬的含量在10%~30%之间。
高温合金除包含镍、铬、铁外,还含有铝、钛、钪、钼等元素,富铝高温合金还含有少量的硼、锰、锆等元素。
二、镍基高温合金的性能镍基高温合金具有很强的高温抗氧化性能,能够保持高温下的结构稳定性,在较长时间内不会发生软化、变形和腐蚀。
这一性能通过合金中添加铝、硅、钆等元素进行增强。
同时,镍基高温合金还具有高强度和耐磨性,能够在高速摩擦和高压环境下保持稳定性能,避免失效和生产事故的发生。
三、镍基高温合金的研究目前,针对镍基高温合金的研究主要集中在材料的制备、加工、表面处理和性能优化等方面。
对于材料制备方面,热状态下的粉末冶金、熔炼和快速凝固技术是当前的研究热点。
通过这些制备方法,能够获得颗粒更细、晶粒更细的材料。
对于材料加工方面,高温合金在制造过程中需进行多次热加工和热处理,以获得其高强度、高稳定性的特点。
表面处理方面,通常蒸镀、喷涂等方法常常用于增强镍基高温合金的抗腐蚀性能。
性能优化方面,深入研究各类添加元素对于合金力学性能的影响,以及不同工艺对于合金微观结构的影响均是当前研究的方向之一。
四、镍基高温合金的应用随着工业技术的不断提高,镍基高温合金的应用领域越来越广泛。
在航空航天、军事、电力、船舶制造等领域,镍基高温合金都有广泛的应用。
一方面,镍基高温合金能够长时间保持在高温高压环境下的稳定性能,在火箭发动机、航空发动机和汽车发动机等高温机件中得到应用。
镍基高温合金生产工艺及其在核反应堆中的应用分析

镍基高温合金生产工艺及其在核反应堆中的应用分析镍基高温合金是一类具有优异高温性能的合金材料,广泛应用于航空、航天、能源等领域。
本文将介绍镍基高温合金的生产工艺及其在核反应堆中的应用分析。
一、镍基高温合金的生产工艺镍基高温合金的生产工艺主要包括原料选取、合金设计、熔炼铸造、热加工和热处理等环节。
1. 原料选取:镍基高温合金的主要成分是镍、铬、钼、钽等合金元素,其中镍是基体元素,其他元素用于合金强化和抗腐蚀。
原料选取需要保证材料的纯度和均匀性,以提高合金的性能。
2. 合金设计:根据合金的使用要求,通过调整合金元素的配比和含量,设计出具有优异高温性能的合金配方。
合金设计需要兼顾强度、塑性、耐腐蚀等综合性能。
3. 熔炼铸造:将选取的原料按照一定比例放入高温电炉中进行熔炼。
在熔炼过程中,需控制合金中各元素的含量,以及铸态组织的形成,避免夹杂物的产生。
4. 热加工:熔炼得到的合金块需要经过热加工,如热压、热挤压、热轧等,以改变合金的形状和尺寸。
热加工可以提高材料的塑性和强度,同时也能改善材料的晶粒结构和机械性能。
5. 热处理:通过热处理可以调控合金的晶粒尺寸和组织结构,提高合金的抗氧化、抗蠕变和抗疲劳性能。
热处理包括固溶处理、时效处理等环节,需根据合金的具体成分和要求进行选择。
二、镍基高温合金在核反应堆中的应用分析镍基高温合金由于其优异的高温性能,被广泛应用于核反应堆中的核燃料元件、包壳、涡轮、管道等关键部件。
1. 核燃料元件:在核反应堆中,核燃料元件是承载核燃料的重要部件。
镍基高温合金具有良好的抗辐照性能、高温强度和耐腐蚀性能,可用于制造核燃料元件的包壳和结构支撑杆。
2. 反应堆包壳:核反应堆的反应堆包壳需要承受高温和高压的环境。
镍基高温合金具有优异的耐热性和耐腐蚀性,能够在高温和强酸环境中保持稳定的性能,因此可用于制造核反应堆的包壳。
3. 涡轮:核反应堆中的涡轮是转动设备,要求具有较高的强度和耐热性。
镍基高温合金具有出色的高温强度和耐蠕变性能,适合用于制造核反应堆的涡轮叶片。
镍基高温合金用途

镍基高温合金用途镍基高温合金是一种特殊的合金材料,具有优异的高温强度、抗氧化性、耐腐蚀性和热疲劳性能,广泛应用于航空航天、能源、化工、造船等高温高压领域。
以下是镍基高温合金的主要用途:1. 航空航天领域镍基高温合金是航空发动机和航空航天器件的关键材料。
在航空发动机中,镍基高温合金用于制造叶片、叶片根部、涡轮盘、涡轮喷嘴等关键部件,这些部件需要承受高温、高压和高速运转的严苛工况,而镍基高温合金能够提供出色的耐高温性能和力学性能,保证了发动机的可靠运行。
在航空航天器件中,镍基高温合金还用于制造高温结构件、燃气轮机、燃料喷嘴等部件,保证了航空航天器件长时间运行在极端的高温环境下。
2. 能源领域镍基高温合金在能源行业也有着重要的应用。
在火电、水电和核电等发电领域,镍基高温合金用于制造锅炉管、燃气轮机、燃烧器、燃料棒等部件,这些部件需要能够承受高温、高压和腐蚀的环境,因此镍基高温合金的高温强度和抗腐蚀性能成为了关键。
此外,镍基高温合金还用于制造石油化工设备、炼油装置和化工反应器,这些设备需要在高温、高压和腐蚀性介质的环境下长时间稳定运行,镍基高温合金的优异性能能够保证设备的安全和可靠运行。
3. 化工领域化工领域也是镍基高温合金的重要应用领域之一。
镍基高温合金用于制造化工反应器、高温换热器、蒸馏塔、催化剂载体等关键设备和部件,在高温热力催化反应、高温蒸汽裂解、高温氧化、高温腐蚀等工艺中表现出色,能够保证设备长时间稳定运行,提高化工生产效率和产品质量。
4. 造船领域随着船舶技术的不断发展,镍基高温合金在造船领域也得到了广泛应用。
镍基高温合金用于制造船舶柴油发动机、船用燃气轮机、船用蒸汽轮机、船用锅炉等设备和部件,这些设备需要承受海水腐蚀、高温高压等恶劣环境,而镍基高温合金的耐腐蚀性和高温强度能够确保设备长时间稳定运行。
综上所述,镍基高温合金具有优秀的高温强度、抗氧化性、耐腐蚀性和热疲劳性能,能够适应航空航天、能源、化工、造船等各个领域的高温高压应用。
镍基高温合金材料的蠕变性能研究

镍基高温合金材料的蠕变性能研究蠕变是材料在高温下受到持续载荷引起的塑性变形现象。
对于镍基高温合金材料而言,蠕变性能是评价其抗高温变形和延长使用寿命的重要指标。
本文旨在探讨镍基高温合金材料的蠕变性能,并进行相应的研究。
一、引言镍基高温合金材料是一类具有优异高温性能和耐热腐蚀性能的材料,被广泛应用于航空航天、能源、化工等领域。
然而,在高温环境下,镍基高温合金材料长时间持续受到应力载荷的作用,会发生蠕变现象,导致材料性能下降甚至失效,因此研究镍基高温合金材料的蠕变性能具有重要意义。
二、蠕变机制蠕变是材料在高温下受到应力作用导致的塑性变形,其机制主要包括晶体滑移、晶体自扩散和晶体再结合等过程。
晶体滑移是指晶体中原子沿着晶格面产生位错滑移,从而引起材料的塑性变形。
晶体自扩散是指晶体内部的原子在热激活下从一处扩散到另一处,以消除应力集中,促进材料的变形。
晶体再结合是指塑性变形过程中,一些位错会因为碰撞而合并,从而减少其数量。
三、蠕变实验为了研究镍基高温合金材料的蠕变性能,通常会进行蠕变实验。
蠕变实验一般分为恒应力蠕变实验和恒应变蠕变实验两种。
恒应力蠕变实验是在一定温度下施加恒定应力,测量材料的蠕变应变随时间的变化。
恒应变蠕变实验是在一定应变速率下施加应变,测量材料的蠕变应力随时间的变化。
四、影响蠕变性能的因素镍基高温合金材料的蠕变性能受到多种因素的影响,包括温度、应力、应变速率、合金化元素等。
温度是影响蠕变性能最重要的因素,一般情况下,随着温度的升高,蠕变应变增加。
应力是引起蠕变的主要驱动力,较高的应力会加剧蠕变现象。
应变速率是指应变的施加速度,较高的应变速率会导致更明显的蠕变现象。
合金化元素可以通过调整合金的成分和微观结构来改善蠕变性能。
五、蠕变寿命预测蠕变寿命预测是研究镍基高温合金材料蠕变性能的重要内容。
通过分析蠕变实验数据并建立相应的蠕变寿命模型,可以预测材料在实际使用中的抗蠕变寿命。
常用的蠕变寿命模型包括应力指数模型、应变指数模型和损伤力学模型等。
镍基高温合金材料的蠕变性能测定

镍基高温合金材料的蠕变性能测定蠕变是材料在高温和高应力条件下的一种时间依赖性变形,对于镍基高温合金材料来说,蠕变行为的研究尤为重要。
本文将介绍镍基高温合金材料蠕变性能的测定方法及其应用。
一、引言镍基高温合金材料具有优异的高温抗氧化、耐蠕变和抗疲劳性能,在航空航天、能源等领域得到广泛应用。
然而,由于工作条件的复杂性,蠕变行为的研究成为保证材料可靠性和安全性的关键。
二、蠕变性能的测定方法1. 短期蠕变实验短期蠕变实验是测定材料在高温下加载时瞬时蠕变变形的一种方法。
实验通常以恒定应力或变应力加载,结合不同温度和时间进行测试。
通过记录应力-时间曲线和蠕变应变-时间曲线,可以得到蠕变应变速率、蠕变曲线等参数。
这种实验方法可以快速获取材料的初步蠕变性能。
2. 恒应力蠕变实验恒应力蠕变实验是测定材料在高温下长期蠕变变形的一种方法。
实验中,加载恒定应力到材料上,记录蠕变应变随时间的变化情况。
通过分析蠕变曲线,可以得到蠕变应力、蠕变速率、蠕变寿命等参数。
这种实验方法能较好地模拟材料在实际工作条件下的蠕变行为。
3. 应变速率控制蠕变实验应变速率控制蠕变实验是测定材料在高温下不同应变速率下的蠕变行为的一种方法。
通过加载具有不同应变速率的变形,记录蠕变应变-时间曲线以及应力-应变曲线,可以得到应变速率对蠕变性能的影响。
这种实验方法可以实现对材料蠕变行为的精确控制,对于研究材料在复杂工况下的蠕变行为具有重要意义。
三、蠕变性能的应用镍基高温合金材料的蠕变性能对其在高温和高应力条件下的应用至关重要。
蠕变性能的测定结果对于优化材料设计、提高组织结构和工艺等方面有着重要指导意义。
1. 材料设计通过研究材料的蠕变行为,可以了解材料在高温和高应力条件下的变形机制,为材料设计提供重要依据。
通过合理选择合金元素、优化相组成和比例,可以改善材料的蠕变抗力,提高其在高温环境下的耐久性。
2. 工艺改进蠕变性能的测定结果可以指导工艺改进。
通过调整热处理工艺、控制晶粒尺寸和形态,可以有效提高镍基高温合金材料的蠕变性能,降低在高温应力下的变形。
高温合金材料研究及其在航空发动机中的应用

高温合金材料研究及其在航空发动机中的应用一、高温合金材料的概述高温合金材料是指在高温下具有不同程度抗氧化、耐腐蚀、机械性能和热物性能的金属材料。
常见的高温合金材料包括镍基、铜基、钴基、铁基等多种。
这些材料常用于制造航空发动机、核电站、化工设备和航天器等高温环境下的零部件。
由于高温合金材料的高温强度和耐腐蚀性能较好,因此在航空发动机中有着重要的应用。
二、高温合金材料的分类1. 镍基高温合金:镍基高温合金具有优异的高温性能,其在700℃以上的高温下具有较好的高温强度、耐蠕变性和抗氧化腐蚀性能。
因此在制造高温零部件中广泛应用。
其主要应用于航空发动机叶片、涡轮盘和燃烧器等高温零部件。
2. 铜基高温合金:铜基高温合金主要以铜为主体,添加了一些其他元素合金而成。
它具有优秀的高温高强度、高硬度、抗蠕变性能和抗氧化性能,在制造高温零部件中得到广泛应用。
它主要用于喷气发动机叶盘、涡轮盘、热交换器和汽轮发电机等。
3. 钴基高温合金:钴基高温合金强度高,具有较高的耐腐蚀性和耐磨损性,因此在高温和强腐蚀性环境下应用广泛。
由于钴基高温合金的成本较高,因此只应用于特定的领域,如高压液氧涡轮机和航空、航天设备中的高温零部件等。
4. 铁基高温合金:铁基高温合金以铁元素为主体,加入适量的铬、钨、钼等元素。
其具有较好的高温强度和抗氧化性能,在航空发动机、热电站和石化设备等高温领域得到广泛应用。
三、高温合金材料的制备1. 熔铸法:熔铸法是将各种合金材料按照一定比例混合后放入熔炉中熔化,并进行精炼和浇铸成型的方法。
它可以制备各种形状的高温合金材料,在制造大规模的、不同形状的精密零部件时,熔铸法具有优越性。
2. 粉末冶金法:粉末冶金法是一种直接在原位反应产生高温合金材料的方法。
该方法可以在制造高温合金材料时控制合金中的微量元素,并在材料中产生微观尺寸的粉末。
它可以制备出各种材料的粉末,随后使用冷压、模压、等静压等方法制备出各种形状的零部件。
K465镍基高温合金的研究共3篇

K465镍基高温合金的研究共3篇K465镍基高温合金的研究1K465镍基高温合金的研究随着工业化的发展,高温合金已经成为一种非常重要的材料。
高温合金具有高温下的稳定性和耐腐蚀性,在一些高温环境下有着广泛的应用。
K465镍基高温合金是一种应用广泛的高温合金。
K465镍基高温合金是一种有着优秀高温性能的金属材料。
它的主要成分是镍、铬和钼。
在高温下,K465合金具有良好的耐氧化性和耐腐蚀性。
这种合金在高温下还具有高的强度和良好的塑性。
K465合金是一种适用于航空、化工等领域的高性能材料。
K465镍基高温合金的研究是一项重要的课题。
近年来,K465合金的研究已经成为了材料科学领域的研究热点之一。
在国内外的研究者的共同努力下,K465高温合金已经取得了一系列的进展。
在K465镍基高温合金的研究中,研究者首先需要了解合金的组成和结构。
这项工作是研究的基础。
合金的组成和结构可以影响合金的性能和应用范围。
随着先进技术的不断发展,合金组成和结构的分析方法也得到了很大的提升。
现代的分析方法可以从微观和宏观两个方面对材料进行分析。
在K465镍基高温合金的研究中,还需要对合金的物理和化学性质进行研究。
材料的性质直接影响着材料的应用。
通过实验方法,可以对K465合金的物理和化学性质进行深入的了解,为合金的应用和改进提供科学依据。
在K465镍基高温合金的研究中,研究者也需要了解合金在高温环境下的行为。
高温下的合金的性能与室温下的合金不同,因此了解合金在高温环境下的行为对高温合金的应用和改进至关重要。
高温实验平台的建设和实验方法的研究也是这一领域的重要方向。
总的来说,K465镍基高温合金的研究是一项复杂而重要的课题。
在这一领域,需要有跨学科的研究和合作。
随着高温合金研究的不断深入,K465合金的应用范围也将会不断扩大,为科技的进步和工业的发展做出越来越大的贡献综上所述,K465镍基高温合金的研究需要综合运用现代分析方法,深入了解其组成、结构、物理和化学性质以及在高温环境下的行为,从而开发出更优质的合金材料,促进科技和工业的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50当代化工研究Chenmical I ntermediate技术应用与研究2017•07镇基高温合金的研究承*应用*王睿(江苏省常州市武进区前黄高级中学国际分校江苏213000)摘要:镍基高温合金是通常以镍铬为合金基体,并根据具体需求加入不同的合金元素,从而形成的单一奥氏体基体组织。
由于镍元素在 化学稳定性、合金化能力和想稳定性上的优势,镍基高温合金相对于铁基和钴基高温合金具有更优异的高温强度、抗疲劳性能、抗热腐蚀 性、组织稳定性等性能•经过几十年发展和完善,我国高温合金领域在合金设计方法、合金种类、冶炼和热处理工艺、工业化管理等方面 均取得了较大的进展,而凭借其独特的优势,镍基高温合金已经成为当代航空航天和燃气轮机工业中地位最重要的高温结构材料.本文主要从常见镍基高温合金分类、冶炼工艺和处理方式、强化机理以及合金化等方面,简要介绍了镍基高温合金的主要研究进展和实际应用。
关鍵词:镍基高温合金;航空航天中图分类号:T文献标识码:AResearch and Application of Nickel - Based High Temperature AlloyWangRui(Qianhuang High School International Branch,Wujin District,Changzhou City,Jiangsu Province,Jiangsu,213000) Abstract: Nickel-base high-temperature alloys are usually made o f n ickel-chromium alloy and different alloy elements are added according to specific requirements, thus f orming a single austenitic matrix. Because o f t he advantages o f c hemical stability, alloying ability and relative stability of n ickel element, Nickel-base high-temperature alloys has more excellent high temperature strength, fatigue resistance, thermal p roperties, such as corrosion resistance, stability of t he organization. After decades of d evelopment and improvement, the high temperature alloys in China have made great p rogress in the aspects o f a lloy design methods, alloy types, smelting and h eat treatment p rocesses, industrialization management, etc. With their unique advantages, Ni - based superalloys have become the most important high temperature structural materials in the aerospace and gas turbine industries. In this paper, the main research progress and p ractical application o f n ickel-based superalloy are briefly introduced f rom the aspects o f classification, smelting p rocess and treatment, strengthening mechanism and alloying of c ommon Ni - based s uperalloys.Key words•nickel-base high-temperature alloys-, aerospace1.引言高温合金特指以镍、钴、铁或三者与铬的合金为基体,能够承受苛刻的机械应力和600°C以上高温环境的一类高温 结构材料。
它一般具有较高的室温和高温强度、良好的抗蠕 变性能和疲劳性能、优良的抗氧化性和抗热腐蚀性能、优异 的组织稳定性和使用可靠性。
上个世纪50年代初,我国通过仿照前苏联,自主研制 并生产了出第一款高温合金GH3030,从而拉开了我国对于高 温合金研究和应用的序幕。
20世纪60年代初,我国投入大量 人力和物力研究高温合金等军工领域用材料,许多高温合金 的研究和生产中心在此时得以建立,并且弓丨进了大量的科研 和检测设备。
这一阶段,考虑到我国本身存在“缺钴少镍”的情况,因此我国在高温合金领域特别是铁基高温合金上取 得了前所未有的突破,研究和生产均出具规模,生产了诸如 GH4037、K417等多个牌号的高温合金。
但是由于基体本身化学和物理性质的原因,铁基高温合 金在多方面均远逊色与同成分的镍基高温合金,因此在改革 开放后,镍基高温合金逐渐成为我国高温合金研究和生产的 主体,通过全面紧扣镍原矿,引进欧美技术,我国在粉末镍 基高温合金,单晶镍基高温合金和定向凝固柱晶高温合金等 尖端领域均取得了重大突破,先后推出了 FGH系列粉末涡轮 盘材料,第一、二代单晶镍基高温合金DD402、DD26等。
本文主要从镍基高温合金常见分类、冶炼和制备工艺、强化机理和合金化、实际应用等几个方面来简要介绍了镍基 高温合金的研究发展。
2.镍基高温合金的分类镍基高温合金具有许多种类,通常按照成型工艺的不 同,将其分为铸造高温合金和变形高温合金。
铸造高温合金 由铸造工艺制备,通常分为等轴晶、定向柱晶和单晶三种。
而变形高温合金普遍由粉末工艺制备,分为粉末高温合金和 弥散强化型高温合金,通常具有良好的冷热加工性能和力学 性能。
⑴粉末高温合金利用粉末冶金工艺制造而成的高温合金称为粉末高温合 金。
传统铸造-锻造工艺制成的高合金化高温合金,存在宏 观偏析严重、难于成型、疲劳性低等缺点,因此在工艺生产 中并未大规模使用。
随着粉末工艺的推广,通过在真空或惰 性气体气氛下,以制粉工艺将高合金化难变形高温合金制成 细小粉末,再通过不同的成形法制成目标合金。
由于晶粒细 小、成分均匀、微观偏析轻微,故相对于传统铸造合金,粉 末高温合金往往在热加工性能,屈服强度和疲劳强度等力学 性能上均得到较大提升。
目前我国常用的粉末高温合金主要 有FGH系列等,其中80年代研制的FGH95是目前强度最高的粉 末尚温合金。
⑵定向柱晶髙温合金通过定向凝固技术,使得合金内的横向晶界被消除,制 备出只保留了平行于主应力轴的单一晶界的合金称为定向柱 晶高温合金。
定向凝固柱晶工艺通过螺旋选晶器或籽晶法,只允许一个柱状晶生长,可制成消除一切晶界的单晶涡轮叶 片或导向叶片。
定向柱晶高温合金具有优异的高温强度和屈2017•07技术应用与研究当代化工研究Chenmical I ntermediate服强度,并且相较于单晶高温合金,工艺更为简单、制作成 本和检验成本也更低,因此定向柱晶高温合金被广泛应用于 涡轮叶片的制造。
⑶单晶髙遇合金采用定向凝固工艺消除所有晶界的高温合金称为单晶高 温合金。
单晶高温合金同样采用定向凝固技术,但是在型壳 设计上增加了单晶选择通道。
由于合金内一切晶界被消除,合金化程度很高,其高温强度、疲劳性能等力学性能相对于 等轴晶和定向柱晶高温合金有了大幅度的提高,因此在尖端 航空领域,单晶高温合金得到广泛应用,比如美国F35战斗 机涡轮叶片所采用的的即使第三代镍基单晶高温合金CMSX- 10。
但是单晶高温合计由于制造成本相对较高、工艺复杂,因此使用受到局限。
3.常见的镍基高温合金的制备方法不同种类的镍基高温合金采用的制备方式截然不同,定 向柱晶高温合金和单晶高温合金均采用定向凝固技术,粉末 高温合金采用粉末冶金工艺方法生产,而传统的铸造高温合 金采用铸-锻工艺生产。
粉末高温合金和单晶高温合金是时 下应用最前沿的两类镍基高温合金,因此对于其制备方法的 研究是具有直接代表意义的。
(1)定向凝固技术制备单晶高温合金和定向柱晶高温合金通常采用定向 凝固技术,二者差别在于单晶高温合金往往会增设单晶选择 通道。
现在常用的定向凝固技术有,高速凝固法(HRS)、液态金属冷却法(LMC)、发热剂法(E P)和功率降低法 (PD)等,这其中高速凝固法和液态金属凝固冷却法是目前 应用最广的制造工艺。
高速凝固法(HRS)通过在加热区底部增设了隔热挡 板,并且在水冷底盘添加水冷套,使浇注后型壳与加热器之 间发生了相对移动,增大了挡板附近的温度梯度,从而实现 细化组织,消除晶界各异性的目的。
液态金属冷却法(LMC)则是通过加入一个冷却剂槽,通常以锡为冷却剂。
当合金熔体浇注成型后,将其从加热器 中移出并逐渐匀速浸入到液态锡冷却剂中,这样在合金凝固 表面和内部形成了较大的温度梯度,促使晶粒以单一方向生 长。
通过控制诸如冷却剂温度、浸入速率等参数可以调整合 金的晶粒尺寸。
⑵粉末冶金工艺粉末冶金工艺通常分为粉末制备和粉末固结两个阶段。
目前在实际生产中的粉末制备工艺主要采用气体雾化法和旋 转电极法。
气体雾化法又被称为M法,首先将真空熔炼过的 母合金加入到雾化设备中,在真空环境下进行重熔,熔解 的合金经由漏嘴流出后,在髙压气体流的冲击下被雾化成粉 末,其中氩气是最常用的气体。
旋转电极法则是将合金料在 高速旋转,利用固定的钨电极产生等离子弧来连续熔化合金 料,这样在离心力的作用下,形成的液滴飞出形成了细小的 粉末。
粉末制备成功后,需要进行固结以便成形。
由于传统的 高温合金粉末中往往含有难烧结且易氧化元素,因此在传统 的直接烧结工艺下成形相当困难,必须引入高温高压气氛。
目前常见的粉末固结方式有真空热压成形、热等静压成形、热挤压和锻造、电火花烧结等成型方法,其中热等静压和热挤压是国内常用的两个工艺。
4. 镍基高温合金的强化机理镍基高温合金的强化效应通常组织强化和工艺强化两种。
第一种是因为高温合金中的合金元素和基体元素相互作用,引起组织的变化而产生的强化效应。
工艺强化是通过改良生产工艺、处理方式、锻造工艺等来实现对高温合金性能的提升。
众多强化方式中,合金化对于高温合金性能的改变尤为重要。