人教版数学九年级下册《28.1锐角三角函数》《正弦》训练有答案
人教版九年级数学下册《28.1 锐角三角函数》提升练习题-带有答案

人教版九年级数学下册《28.1 锐角三角函数》提升练习题-带有答案学校:班级:姓名:考号:一、选择题1.已知α是锐角sinα=cos30°,则α的值为()A.30°B.60°C.45°D.无法确定2.已知√32<cosA<sin80°,则锐角A的取值范围是()A.60°<A<80°B.30°<A<80°C.10°<A<60°D.10°<A<30°3.如图,在Rt△ABC中∠ACB=90°,BC=1,AB=2则下列结论正确的是()A.sin A=√32B.tan A=12C.cos B=√32D.tan B=√34.在Rt△ABC中∠C=90∘,∠B=35∘,AB=则BC的长为()A.7sin35∘B.7cos35∘C.7tan35∘D.7cos35∘5.如图,在ΔABC中AB=AC,AD⊥BC于点D.若BC=24,cosB=1213则AD的长为()A.12 B.10 C.6 D.56.如图,点A,B,C在正方形网格的格点上,则sin∠ABC=()A.√26B.√2626C.√2613D.√13137.如图,在△ABC中,∠BAC=90°, AB=20, AC=15,△ABC的高AD与角平分线CF交于点E,则DEAF的值为()A .35B .34C .12D .23 8.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A .34B .43C .35D .45 二、填空题 9.如果cosA =√32,那么锐角A 的度数为 °. 10.在Rt △ABC 中,∠C =90°,若AB =4,sinA = ,则斜边上的高等于 .11.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,CD ⊥AB ,垂足为D ,则tan ∠BCD 的值是 .12.如图所示,在四边形 ABCD 中 ∠B =90°,AB =2,CD =8,AC ⊥CD 若 sin∠ACB =13 ,则 cos∠ADC = .13.如图,在半径为6的⊙O 中,点A 是劣弧BC ⌢的中点,点D 是优弧BC ⌢上一点∠tanD =√33,则BC 的长为 .三、解答题14.计算: .15.先化简,再求代数式m2−2m+1m3−m ÷m−1m的值,其中m=tan60°−2sin30°16.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.17.在直角梯形ABCD中AB∥CD,∠ABC=90°,∠DAB=60°,AB=2CD对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.(1)求证:△FOE≌△DOC;(2)求sin∠OEF的值.参考答案1.B2.D3.D4.B5.D6.B7.A8.D9.3010.482511.3412.4513.6√314.解:原式15.解:m=tan60°−2sin30°=√3−2×12=√3−1m2−2m+1 m3−m ÷m−1m=(m−1)2m(m+1)(m−1)×mm−1=1m+1将m=√3−1代入上式,得:1 m+1=√3−1+1=√3316.解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x ∴EC= √(3x)2+(4x)2 =5xEM= √x2+(2x)2 = √5 xCM= √(2x)2+(4x)2 =2 √5 x∴EM2+CM2=CE2∴△CEM是直角三角形∴sin ∠ECM= EM CE = √55 17.(1)证明:∵E ,F 为线段OA ,OB 的中点 ∴AB ∥EF 且AB =2EF∵AB =2CD∴EF =CD EF//CD∴∠OCD=∠OEF ,且∠DOC=∠FOE在△FOE 和△DOC 中:{∠DOC =∠FOE∠OCD =∠OEF CD =EF∴△FOE ≌△DOC(AAS);(2)解:过D 点作DH ⊥AB 于H∵∠DAB=60°∴AH=√33DH ,设DH=√3x ,则AH=x ∵AB ∥CD ,∠DHB=∠ABC=90°∴四边形DCBH 为矩形∴BC=DH=√3x ,CD=BH又AB=2CD∴BH=AH=x在Rt △ABC 中,由勾股定理可知:AC =√AB 2+BC 2=√(2x)2+(√3x)2=√7x ∵AB ∥EF 得到∠OEF=∠OAB∴sin∠OEF =sin∠OAB =BC AC =√3x√7x =√217.。
人教版九年级数学下册《锐角三角函数》检测题含答案

人教版九年级数学下册《锐角三角函数》检测题含答案第二十八章 锐角三角函数 28.1 锐角三角函数 第1课时 正弦和余弦01 基础题 知识点1 正弦1.如图,在Rt △ABC 中,∠C =90°,若AB =5,AC =4,则sin B =(B )A .35B .45C .34D .432.(唐山玉田县月考)在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值(C )A .扩大2倍B .缩小12C .不变D .无法确定3.(天津和平区汇文中学单元检测)在△ABC 中,若三边BC ,CA ,AB 满足BC ∶CA ∶AB =5∶12∶13,则sin A 的值是(C )A .512B .125C .513D .12134.在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若2a =3c ,则∠A 25.如图所示,在Rt △ABC 中,∠C =90°,a ∶c =2∶3,求sin A 和sin B 的值.解:在Rt △ABC 中,∠C =90°,a ∶c =2∶3, 设a =2k ,c =3k(k>0), 则b =c 2-a 2=5k.∴sin A =a c =2k 3k =23,sin B =b c =5k 3k =53.6.如图,在△ABC 中,∠C =90°,sin A =1213,AB =26,求△ABC 的周长.解:在Rt △ABC 中,∠C =90°,AB =26,sin A =BC AB =1213,∴BC =24,AC =AB 2-BC 2=262-242=10. ∴△ABC 的周长为26+24+10=60.知识点2 余弦7.(湖州中考)如图,已知,在Rt △ABC 中,∠C =90°,AB =5,BC =3,则cos B 的值是(A )A .35B .45C .34D .438.(承德六校一模)如图,△ABC 的顶点都在正方形网格的格点上,则cos C 的值为(D )A .12B .32C .55D .2559.已知在Rt △ABC 中,∠C =90°,sin A =35,则cos B 的值为(B )A .74 B .35 C .34 D .4502 中档题10.如图,△ABC 的顶点是正方形网格的格点,则sin A 的值为(B )A .12B .55C .1010D .255解析:如图,连接CD 交AB 于O ,根据网格的特点,CD ⊥AB ,在Rt △AOC 中,CO =12+12=2,AC =12+32=10.则sin A =OC AC =210=55.11.(怀化中考改编)在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,求BC 的长度.解:∵sin A =BC AB =45,∴设BC =4x ,AB =5x.又∵AC 2+BC 2=AB 2,∴62+(4x)2=(5x)2,解得x =2或x =-2(舍去). ∴BC =4x =8 cm .12.如图,菱形ABCD 的边长为10 cm ,DE ⊥AB ,sin A =35,求DE 的长和菱形ABCD 的面积.解:∵DE ⊥AB , ∴∠AED =90°.在Rt △AED 中,sin A =DE AD ,即DE 10=35.解得DE =6.∴菱形ABCD 的面积为10×6=60(cm 2). 13.如图,已知⊙O 的半径为5 cm ,弦AB 的长为8 cm ,P 是AB 延长线上一点,BP =2 cm ,求cos P 的值.解:作OC ⊥AB 于C 点. 根据垂径定理, AC =BC =4.∴CP =4+2=6(cm ).在Rt △OAC 中,OC =52-42=3(cm ). 在Rt △OCP 中,根据勾股定理,得 OP =CO 2+CP 2=32+62=35(cm ).故cos P =PC PO =635=255.03 综合题14.(鄂州中考)如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =(D )A .34B .43C .35D .45人教版九年级数学下册《28.1锐角三角函数》检测题含答案2第2课时 锐角三角函数01 基础题 知识点1 正切1.(湖州中考)如图,已知Rt △ABC 中,∠C =90°,AC =4,tan A =12,则BC 的长是(A )A .2B .8C .2 5D .45 2.(金华中考)在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tan A 的值是(A )A .34B .43C .35D .453.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tan B ′的值为(B )A .12B .13C .14D .244.已知等腰三角形的腰长为6 cm ,底边长为10 cm ,55.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,若BC =2,AB =3,求tan ∠BCD.解:∵CD ⊥AB ,∴∠ADC =90°. ∴∠A +∠ACD =90°.又∠BCD +∠ACD =∠ACB =90°, ∴∠BCD =∠A.在Rt △ABC 中,AC =AB 2-BC 2=32-22= 5. ∴tan A =BC AC =25=255.∴tan ∠BCD =tan A =255.知识点2 锐角三角函数6.(宜昌中考)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列选项中,错误的是(C )A .sin α=cos αB .tanC =2C .sin β=cos βD .tan α=17.已知在Rt △ABC 中,∠C =90°,sin A =35,则tan B 的值为(A )A .43B .45C .54D .348.(福州中考)如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是(C )A .(sin α,sin α)B .(cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)9.在Rt △ABC 中,∠C =90°,AC =7,BC =24.(1)求AB 的长;(2)求sin A ,cos A ,tan A 的值. 解:(1)由勾股定理,得AB =AC 2+BC 2=72+242=25.(2)sin A =BC AB =2425,cos A =AC AB =725,tan A =BC AC =247. 02 中档题 10.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为(A )A .13B .2-1C .2- 3D .1411.(河北模拟)如图,半径为3的⊙A 经过原点O 和点C(0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为(C )A .13B .2 2C .24D .22312.(泸州中考)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是(A )A .24 B .14 C .13 D .23解析:由AD ∥BC ,可得△ADF ∽△EBF ,根据相似三角形的性质,可得AD EB =AF EF =DF BF ,因为点E 是边BC 的中点,AD =BC ,所以AD EB =AF EF =DFBF =2.设EF =x ,可得AF =2x ,在Rt △ABE 中,易证△AFB ∽△BFE ,则BF =2x ,再由AD EB =AF EF =DFBF =2,可得DF =22x ,在Rt △DEF 中,tan ∠BDE =EF DF =x 22x =24,故选A .13.如图,在菱形ABCD 中,DE ⊥AB ,cos A =45,BE =2,则tan ∠DBE =3.14.如图所示,在Rt △ABC 中,∠C =90°,sin A =33,求cos A ,tan B 的值.解:∵sin A =BC AB =33,∴设BC =3k ,AB =3k(k>0). 由勾股定理,得AC =AB 2-BC 2=(3k )2-(3k )2=6k. ∴cos A =63,tan B = 2.15.(承德六校一模)如图,在Rt △ABC 中,∠C =90°,BC =8,tan B =12,点D 在BC 上,且BD =AD ,求AC 的长和cos ∠ADC 的值.解:∵在Rt △ABC 中,BC =8,tan B =AC BC =12,∴AC =12BC =4.设AD =x ,则BD =x ,CD =8-x ,在Rt △ADC 中,由勾股定理,得(8-x)2+42=x 2,解得x =5, ∴AD =5,CD =8-5=3. ∴cos ∠ADC =DC AD =35.03 综合题16.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB BC =23,求tan ∠DCF 的值.解:∵四边形ABCD 是矩形, ∴AB =CD ,∠D =90°. ∵AB BC =23,且由折叠知CF =BC , ∴CD CF =23. 设CD =2x ,CF =3x(x>0), ∴DF =CF 2-CD 2=5x. ∴tan ∠DCF =DF CD =5x 2x =52.人教版九年级数学下册《28.1锐角三角函数》检测题含答案3第3课时 特殊角的三角函数值01 基础题知识点1 特殊角的三角函数值1.(天津中考)cos 60°的值等于(D )A . 3B .1C .22D .122.计算2×tan 60°的值等于(D )A .53 B .63C . 5D .6 3.(防城港中考)计算:cos 245°+sin 245°=(B )A .12B .1C .14D .22 4.(百色中考)如图,△ABC 中,∠C =90°,∠A =30°,AB =12,则BC =(A )A .6B .6 2C .6 3D .12 5.求值:sin 60°·tan 30°=12.6.计算:(1)(安徽中考)|-2|×cos 60°-(13)-1;解:原式=2×12-3=-2.(2)(泸州中考)(-3)2+2 0170-18×sin 45°; 解:原式=9+1-32×22=7.(3)cos 30°·tan 30°-tan 45°; 解:原式=32×33-1=12-1=-12. (4)22sin 45°+sin 60°·cos 45°. 解:原式=22×22+32×22=2+64.知识点2 由三角函数值求特殊角7.(聊城中考)在Rt △ABC 中,cos A =12,那么sin A 的值是(B )A .22 B .32 C .33 D .128.(河北模拟)在△ABC中,若角A,B满足|cos A-32|+(1-tan B)2=0,则∠C的大小(D)A.45°B.60°C.75°D.105°9.如果在△ABC中,sin A=cos B=22,那么下列最确切的结论是(C)A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形10.在△ABC中,∠C=90°,AC=2,BC=23,则∠A=60°.知识点3用计算器计算三角函数值11.如图是科学计算器的面板,利用该型号计算器计算2cos55°,按键顺序正确的是(C)A.2×cos55=B.2cos550=C.2cos55=D.255cos=12.用计算器计算cos44°的结果(精确到0.01)是(B)A.0.90 B.0.72C.0.69 D.0.6613.已知sin A=0.370 6,则锐角A=21.75°.(保留两位小数)02中档题14.(厦门中考)已知sin6°=a,sin36°=b,则sin2 6°=(A)A.a2B.2a C.b2D.b15.李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是(D) A.40°B.30°C.20°D.10°16.(孝感中考)式子2cos30°-tan45°-(1-tan60°)2的值是(B)A.23-2 B.0C.2 3 D.217.(邢台县一模)关于x的一元二次方程x2-2x+cosα=0有两个相等的实数根,则锐角α等于(D )A .0°B .30°C .45°D .60° 18.(滨州中考)如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为(A )A .2+ 3B .23C .3+ 3D .3319.如图,有一滑梯AB ,其水平宽度AC 为5.3米,铅直高度BC 为2.8米,则∠A 的度数约为27.8°.(用科学计算器计算,结果精确到0.1°)20.利用计算器求∠A =18°36′的三个锐角三角函数值.解:sin A =sin 18°36′≈0.319 0, cos A =cos 18°36′≈0.947 8, tan A =tan 18°36′≈0.336 5.21.计算:(1)(唐山玉田县月考)tan 45°-3tan 30°+cos 45°; 解:原式=1-3×33+22=1-1+22=22. (2)2sin 60°+22cos 45°-32tan 60°-3cos 30°. 解:原式=2×32+22×22-32×3-3×32=62+12-32-32 =62-52.22.先化简,再求代数式a 2-ab a 2÷(a b -ba)的值,其中a =2cos 30°-tan 45°,b =2sin 30°.解:原式=a (a -b )a 2÷a 2-b 2ab=a (a -b )a 2·ab (a +b )(a -b )=b a +b. ∵a =2cos 30°-tan 45°=2×32-1=3-1, b =2sin 30°=2×12=1,∴原式=13-1+1=13=33.23.如图,一幢楼房前有一棵竹子,楼底到竹子的距离CB 为2米,一阵风吹过,竹子的顶端恰好到达楼顶,此时测得竹子与水平地面的夹角为75°,求这棵竹子比楼房高出多少米.(精确到0.1米)解:在Rt △ABC 中,∵∠ABC =75°,BC =2, ∴AB =2cos 75°≈7.727(米),AC =2×tan 75°≈7.464(米). ∴AB -AC =7.727-7.464 ≈0.3(米).答:这棵竹子比楼房高出0.3米.24.若tan A 的值是方程x 2-(1+3)x +3=0的一个根,求锐角A 的度数.解:解方程x 2-(1+3)x +3=0,得 x 1=1,x 2= 3.由题意知tan A =1或tan A = 3. ∴∠A =45°或60°.03 综合题25.如图,菱形ABCD 中,AB =4,∠B =60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则△AEF 的面积是(B )A .4 3B .3 3C .2 3D .3人教版九年级数学下册《解直角三角形》检测题含答案28.2 解直角三角形及其应用 28.2.1 解直角三角形01 基础题知识点1 已知两边解直角三角形1.在△ABC 中,∠C =90°,AC =3,AB =4,欲求∠A 的值,最适宜的做法是(C )A .计算tan A 的值求出B .计算sin A 的值求出C .计算cos A 的值求出D .先根据sin B 求出∠B ,再利用90°-∠B 求出2.(温州中考)如图,在△ABC 中,∠C =90°,AB =5,BC =3,则cos A 的值是(D )A .34B .43C .35D .453.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,则sin ∠ABD 的值是(D )A .43B .34C .35D .454.在等腰△ABC 中,AB =AC =5,BC =6,则cos A 2=45.5.在Rt △ABC 中,∠C =90°,a =20,c =202,则∠A =45°,∠B =45°,b =20. 6.如图,在Rt △ABC 中,∠C =90°,已知BC =26,AC =62,解此直角三角形.解:∵tan A =BC AC =2662=33,∴∠A =30°.∴∠B =90°-∠A =90°-30°=60°,AB =2BC =4 6.知识点2 已知一边和一锐角解直角三角形7.(兰州中考)在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =(D )A .4B .6C .8D .108.如果等腰三角形的底角为30°,腰长为6 cm ,那么这个三角形的面积为(B )A .4.5 cm 2B .9 3 cm 2C .18 3 cm 2D .36 cm 29.(保定月考)如图,在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB ,若BE =2,则AE 的长为(B )A . 3B .1C . 2D .210.(牡丹江中考)在Rt △ABC 中,CA =CB ,AB =92,点D 在BC 边上,连接AD ,若tan ∠CAD =13,则BD 的长为6.11.在Rt △ABC 中,∠C =90°,c =83,∠A =60°,解这个直角三角形.解:∵∠A =60°,∴∠B =90°-∠A =30°. ∵sin A =ac,∴a =c·sin A =83×sin 60°=83×32=12. ∴b =c 2-a 2=(83)2-122=4 3.12.如图,在Rt △ABC 中,∠C =90°,∠B =55°,AC =4,解此直角三角形.(结果保留小数点后一位)解:∠A =90°-∠B =90°-55°=35°. ∵tan B =ACBC ,∴BC =AC tan B =4tan 55°≈2.8. ∵sin B =ACAB ,∴AB =AC sin B =4sin 55°≈4.9.02 中档题13.如图,在△ABC 中,∠C =90°,∠B =50°,AB =10,则BC 的长为(B )A .10tan 50°B .10cos 50°C .10sin 50°D .10cos 50°14.(随州中考)如图,⊙O 是正五边形ABCDE 的外接圆,这个正五边形的边长为a ,半径为R ,边心距为r ,则下列关系式错误的是(A )A .R 2-r 2=a 2B .a =2R sin 36°C .a =2r tan 36°D .r =R cos 36°15.在△ABC 中,∠ACB =90°,∠A =30°,CD 是中线,若BC =5,则△ADC 的周长为(B )A .5+10 3B .10+53C .15 3D .20316.(保定月考)如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE =α,且sin α=45,AB =4,求AD 的长为(B )A .3B .163C .203D .16517.(河北模拟)如图,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF =4,BC =10,CD =6,则tan C 等于(A )A .43B .34C .35D .45提示:连接BD ,则△BCD 为直角三角形.18.如图,菱形ABCD 的边长为15,sin ∠BAC =35,则对角线AC 的长为24.19.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =33,则下底BC 的长为10.03 综合题20.探究:已知,如图1,在△ABC 中,∠A =α(0°<α<90°),AB =c ,AC =b ,试用含b ,c ,α的式子表示△ABC 的面积;图1图2应用:(孝感中考)如图2,在▱ABCD 中,对角线AC ,BD 相交成的锐角为α,若AC =a ,BD =b ,试用含b ,c ,α的式子表示▱ABCD 的面积.解:探究:过点B 作BD ⊥AC ,垂足为D. ∵AB =c ,∠A =α,∴BD =c sin α.∴S △ABC =12AC·BD =12bc sin α.应用:过点C 作CE ⊥DO 于点E. ∴sin α=ECCO.∵在▱ABCD 中,AC =a ,BD =b , ∴CO =12a ,DO =12b.∴S △BCD =12CE·BD =12×12a sin α·b=14ab sin α. ∴S ▱ABCD =2S △BCD =12ab sin α.人教版九年级数学下册《28构造基本图形解直角三角形的应用题》检测题含答案小专题(七)构造基本图形解直角三角形的应用题类型1构造单一直角三角形1.平放在地面上的直角三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示.量得∠A为54°,∠B为36°,斜边AB的长为2.1 m,BC边上露出部分BD的长为0.9 m.求铁板BC边被掩埋部分CD的长.(结果精确到0.1 m.参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38)解:由题意,得∠C=180°-∠B-∠A=180°-36°-54°=90°.在Rt△ABC中,sin A=BCAB,∴BC=AB·sin A=2.1×sin54°≈1.701(m),∴CD=BC-BD=1.701-0.9=0.801≈0.8(m).类型2母子三角形2.(重庆中考)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡长BC=10米,则此时AB的长约为(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)(A)A.5.1米B.6.3米C.7.1米D.9.2米3.(长沙中考)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?解:(1)在△APB中,∠PAB=30°,∠ABP=120°,∴∠APB=180°-30°-120°=30°.(2)过点P 作PH ⊥AB 于点H.在Rt △APH 中,∠PAH =30°,AH =3PH. 在Rt △BPH 中,∠PBH =60°,BH =33PH. ∴AB =AH -BH =233PH =50.∴PH =253>25.∴海监船继续向正东方向航行仍然安全.类型3 背靠背三角形4.(天津中考)如图,一艘海轮位于灯塔P 的北偏东64°方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,求BP 和BA 的长.(结果取整数,参考数据:sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05,2取1.414)解:过点P 作PC ⊥AB ,垂足为C.由题意可知,∠A =64°,∠B =45°,PA =120. 在Rt △APC 中,sin A =PC PA ,cos A =ACPA ,∴PC =PA·sin A =120×sin 64°.AC =PA·cos A =120×cos 64°.在Rt △BPC 中,sin B =PC BP ,tan B =PCBC ,∴BP =PC sin B =120×sin 64°sin 45°≈120×0.9022≈153.BC =PC tan B =PC tan 45°=PC =120×sin 64°.∴BA =BC +AC =120×sin 64°+120×cos 64° ≈120×0.90+120×0.44≈161.答:BP 的长约为153海里,BA 的长约为161海里.5.(宜宾中考)如图,某市对位于笔直公路AC 上两个小区A ,B 的供水路线进行优化改造.供水站M 在笔直公路AD 上,测得供水站M 在小区A 的南偏东60°方向,在小区B 的西南方向,小区A ,B 之间距离为300(3+1)米.求供水站M 分别到小区A ,B 的距离.(结果可保留根号)解:作ME ⊥AB ,垂足为E.设ME =x 米.在Rt △AME 中,∠MAE =90°-60°=30°, ∴AM =2ME =2x, AE =MEtan 30°=3x.在Rt △BME 中,∠MBE =90°-45°=45°, ∴ME =EB =x ,MB =2x.∵AE +BE =AB =300(3+1),即3x + x =300(3+1),解得x =300. ∴AM =2ME =2x =600,MB =2x =300 2.答:供水站M 到小区A ,B 的距离分别是600米、3002米.6.(德州中考)如图所示,某公路检测中心在一事故多发地带安装了一个测速仪,检测点设在距离公路10 m 的A 处,测得一辆汽车从B 处行驶到C 处所用的时间为0.9秒.已知∠B =30°,∠C =45°.(1)求B ,C 之间的距离;(保留根号) (2)如果此地限速为80 km /h ,那么这辆汽车是否超速?请说明理由.(参考数据:3≈1.7,2≈1,4)解:(1)过点A 作AD ⊥BC 于点D ,则AD =10 m . ∵在Rt △ACD 中,∠C =45°, ∴CD =AD =10 m .在Rt △ABD 中,tan B =ADBD ,∵∠B =30°, ∴33=10BD. ∴BD =10 3 m .∴BC =BD +DC =(103+10)m .答:B ,C 之间的距离是(103+10)m . (2)这辆汽车超速,理由如下: 由(1)知BC =(103+10)m ≈27 m . ∴汽车速度为270.9=30(m /s )=108 km /h .∵108>80,∴这辆汽车超速.类型4 与梯形有关的解直角三角形7.如图,梯形ABCD 是拦水坝的横断面图,斜面坡度i =1∶3是指坡面的铅直高度DE 与水平宽度CE 的比,∠B =60°,AB =6,AD =4,求拦水坝的横断面ABCD 的面积.(结果保留小数点后一位.参考数据:3≈1.732,2≈1.414)解:过点A 作AF ⊥BC ,垂足为点F. 在Rt △ABF 中,∠B =60°,AB =6, ∴AF =AB·sin B =6×sin 60°=33, BF =AB·cos B =6×cos 60°=3. ∵AD ∥BC ,AF ⊥BC ,DE ⊥BC , ∴四边形AFED 是矩形. ∴DE =AF =33,FE =AD =4.在Rt △CDE 中,i =ED EC =13,∴EC =3ED =3×33=9.∴BC =BF +FE +EC =3+4+9=16. ∴S 梯形ABCD =12(AD +BC)·DE=12×(4+16)×33 ≈52.0.答:拦水坝的横断面ABCD 的面积约为52.0.。
人教版初3数学9年级下册 第28章(锐角三角函数)正切函数专题练习(含答案)

人教版九年级数学下册第二十八章锐角三角函数之正切函数专题练习一、选择题1.如图,第一象限的点P的坐标是(a,b),则tan ∠POx等于( )A.abB.baC.aa2+b2D.ba2+b22.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=2,则t的值是( )A. 1B. 1.5C. 2D. 33.在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y 的值是( )A. 2B. 8C.-2D.-84.正比例函数y=kx的图象经过点(3,2),则它与x轴所夹锐角的正切值是( )A.23B.32C.132D.1335.根据图中的信息,经过估算,下列数值与tanα值最接近的是( )A. 0.26B. 0.43C. 0.90D. 2.236.如图,在2×3的正方形网格中,tan ∠ACB的值为( )A.223B.2105C.12D. 27.如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则tan ∠APB等于( )A. 1B.3C.33D.128.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tan B′的值为( )A.12B.13C.14D.249.在Rt△ABC中,∠C=90°,若AB=2,AC=1,则tan A的值为( )A.12B.32C.33D.310.如图,E在矩形ABCD的边CD上,AB=2BC,则tan ∠CBE+tan ∠DAE的值是( )A. 2B. 2+3C. 2-3D. 2+2311.在Rt△ABC中,∠A=90°,如果把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形中,∠B的正切值( )A.扩大2倍B.缩小2倍C.扩大4倍D.大小不变12.比较tan 20°,tan 50°,tan 70°的大小,下列不等式正确的是( )A. tan 70°<tan 50°<tan 20°B. tan 50°<tan 20°<tan 70°C. tan 20°<tan 50°<tan 70°D. tan 20°<tan 70°<tan 50°二、填空题13.如图,P(12,a)在反比例函数y=60图象上,PH⊥x轴于H,则tan ∠POH的值为__________.x14.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果2b=3a,则tan A=__________.15.在一个直角三角形中,如果各边的长度都扩大4倍,那么它的两个锐角的正切值__________.16.已知∠B是△ABC中最小的内角,则tan B的取值范围是____________.17.比较大小:tan 50°________tan 48°.三、解答题18.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.求tan ∠BOA的值.19.如图,在△ABC中,AB=8,BC=6,S△ABC=12.试求tan B的值.答案解析1.【答案】B【解析】如图因为第一象限的点P的坐标是(a,b),所以tan ∠POx=ba.故选B.2.【答案】B【解析】如图,tanα=ABOB =2,即3t=2,解得t=1.5.故选B.3.【答案】D【解析】如图,∵点P(4,y)在第四象限内,∴OA=4,PA=-y又OP与x轴正半轴的夹角的正切值是2,∴tan ∠AOP=2,∴PAOA=2,∴-y=2×4,∴y=-8.故选D.4.【答案】A【解析】如图,过A作AB⊥x轴于B,∵A(3,2),∴AB=2,OB=3,∵正比例函数y=kx的图象经过点(3,2),∴它与x轴所夹锐角的正切值是tan ∠AOB=ABOB =23,故选A.5.【答案】B【解析】如图,AB≈2.6,OB=6,tanα=ABOB ≈2.66≈0.43.故选B.6.【答案】D【解析】如图,过A作AD⊥BC于D,设每个小正方形边长为1,在Rt△ACD中,AD=2,CD=1,则tan ∠ACB=ADCD=2,故选D.7.【答案】A【解析】∵A、B、O是小正方形顶点,∴∠AOB=90°,∴∠APB=12∠AOB=45°,∴tan ∠APB=1.故选A.8.【答案】B【解析】设每个小正方形边长为1,过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,CD=1,BD=3,故tan B=CDBD =13,则tan B′=tan B=13.故选B.9.【答案】D【解析】∵AB=2,AC=1,∴CB=22−12=3,∴tan A=BCAC=3,故选D.10.【答案】【解析】∵四边形ABCD是矩形,∴tan ∠CBE=CEBC ,tan ∠DAE=DEAD,∵AD=BC,CE+DE=CD=AB=2AD,∴tan ∠CBE+tan ∠DAE=CEBC +DEAD=CDAD=2ADAD=2.故选A.11.【答案】D【解析】把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形与原来的三角形相似,则∠B的大小不变,则∠B的正切值不变.故选D.12.【答案】C【解析】由锐角的正切值随角增大而增大,得tan 20°<tan 50°<tan 70°,故C符合题意,故选C.13.【答案】512【解析】∵P(12,a)在反比例函数y=60x图象上,∴a=6012=5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan ∠POH=512.14.【答案】23【解析】∵∠C=90°,a,b,c分别是∠A,∠B,∠C对边,∴tan A=ab,∵2b=3a,∴a b =23,∴tan A =a b =23.15.【答案】不变【解析】∵锐角的正切值是该角的对边与邻边的比,∴当各边都扩大为原来的4倍时,比值不变.16.【答案】0<tan B ≤3【解析】根据三角形的内角和定理,易知三角形的最小内角不大于60°.根据题意,知:0°<∠B ≤60°.又tan 60°=3,故0<tan B ≤3.17.【答案】>【解析】根据锐角三角函数的增减性:正切值随着角度的增大(或减小)而增大(或减小),∵50°>48°,∴tan 50°>tan 48°.18.【答案】解 tan ∠BOA =AB OA =24=12.【解析】19.【答案】解 如图,过点A 作AD ⊥BC 的延长线于D ,S △ABC =12BC ·AD =12×6×AD =12,解得AD =4,在Rt △ABD 中,BD =AB 2−AD 2=82−42=43,tan B =AD BD =443=33.【解析】过点A作AD⊥BC的延长线于D,利用三角形的面积求出AD,再利用勾股定理列式求出BD,然后根据锐角的正切值等于对边比邻边列式计算即可得解.。
人教版九年级数学下第28章《锐角三角函数》基础测试题(带答案)

第28章《锐角三角函数》基础测试题一、选择题(本大题8小题,每小题4分,共32分.每小题只有一个选项是符合题意的)1.在Rt △ABC 中,∠C =90°,sinA =35,BC =6,则AB =()A.4B.6C.8D.103.在△ABC 中,若|cosA -2|+(1-tanB)2=0,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°4. 李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是()A .12B .2C D6.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( ) A .312 B .12 C .324 D .3487.如图,宽度都为1的纸条,交叉重叠放在一起,且它们的交角为 ,则它们重叠部分(图中阴影部分)的面积为( )8. 如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m A .4.5mB .4.6mC .6mD .25m二、填空题(每题3分,共18分)9.在Rt △ABC 中,∠C =900,5=a ,2=b ,则sinA = .10.在△ABC 中,∠B =90,cos A =32, a =3, 则b = .11.平行四边形ABCD 中,已知∠B=60°,AB=8cm ,BC=6cm ,则面积等于 cm 2.12.如图,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE =6,sinA =35,则菱形ABCD 的周长是_________。
13.如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8, AC ⊥CD ,若,31sin =∠ACB 则cos ∠ADC =______.14.直角三角形纸片的两直角边长分别为6,8, 现将ABC △如图那样折叠,使点A 与点B 重合, 折痕为DE ,则tan CBE ∠的值是 三、解答题(共50分)15. (5分)计算:tan30°cot60°+cos 230°-sin 245°tan45°16.(5分)如图,在△ABC 中,CD ⊥AB ,垂足为D.若AB =12,CD =6,tanA =32,求sinB 的值.AC第12题图17.(8分)如图,在直角坐标平面内,O 为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:(1)点B 的坐标;(2)cos BAO ∠的值.18. (8分)已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长.19.(8分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(8分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?21.(8分)如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE和Rt△OCD中的一个角相等?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,求t的值.答案: 1. D 2. A 3. C 4. D 5. B 6. A 7. A 8. D 9.35 10. 2 3 11. 24 3 12. 4013. 5414.247 15. 解:tan30°cot60°+cos 230°-sin 245°tan45°=33.33+2)23(-1)22(2 =31+43-21 =127;16.解:在Rt △ACD 中,CD =6,tanA =32,∴CD AD =6AD =32, 即AD =4.又AB =12,∴BD =AB -AD =8. 在Rt △BCD 中,BC =CD 2+BD 2=10. ∴sinB =CD BC =610=3517. (1) B(4,3) (2)552 3-5 BC=2519.解:在Rt △BCD 中,BD =9米,∠BCD =45°,则 BD =CD =9米, 所以AD =CD ·tan37°=6.75(米). 所以AB =AD +BD =15.75(米), 整个过程中国旗上升高度是: 15.75-2.25=13.5(米), 因为耗时45 s ,所以上升速度为13.545=0.3(米/秒).答:国旗应以0.3米/秒的速度匀速上升.20. 解:过A 作AC ⊥BD 于点C ,则AC 的长是A 到BD 的最短距离. ∵∠CAD =30°,∠CAB =60°,∴∠BAD =60°-30°=30°,∠ABD =90°-60°=30°. ∴∠ABD =∠BAD. ∴BD =AD =12海里.∵Rt △ACD 中,∠CAD =30°,∴AC =AD ·cos ∠CAD =63≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.21.(1)215463y x x =-++;(2)t=3;(3)103或203解:(1)在y =ax 2+bx +4中,令x =0可得y =4, ∴C (0,4),∵四边形OABC 为矩形,且A (10,0), ∴B (10,4),把B 、D 坐标代入抛物线解析式可得1001044{ 4240a b a b ++=-+=,解得16{ 53a b =-=,∴抛物线解析式为y =16-x 2+53x +4;(2)由题意可设P (t ,4),则E (t ,16-t 2+53t +4),∴PB =10﹣t ,PE =16-t 2+53t +4﹣4=16-t 2+53t ,∵∠BPE =∠COD =90°, 当∠PBE =∠OCD 时, 则△PBE ∽△OCD , ∴PE PB OD OC=,即BP •OD =CO •PE , ∴2(10﹣t )=4(16-t 2+53t ),解得t =3或t =10(不合题意,舍去),∴当t =3时,∠PBE =∠OCD ; 当∠PBE =∠CDO 时, 则△PBE ∽△ODC , ∴PE PB OC OD=,即BP •OC =DO •PE , ∴4(10﹣t )=2(16-t 2+53t ),解得t =12或t =10(均不合题意,舍去)综上所述∴当t =3时,∠PBE =∠OCD ;(3)当四边形PMQN 为正方形时,则∠PMC =∠PNB =∠CQB =90°,PM =PN , ∴∠CQO +∠AQB =90°, ∵∠CQO +∠OCQ =90°, ∴∠OCQ =∠AQB , ∴Rt △COQ ∽Rt △QAB ,∴CO OQAQ AB=,即OQ •AQ =CO •AB , 设OQ =m ,则AQ =10﹣m ,∴m (10﹣m )=4×4,解得m =2或m =8,①当m =2时,CQ BQ =∴sin ∠BCQ =BQ BC sin ∠CBQ =CQBC,∴PM =PC •sin∠PCQ ,PN =PB •sin∠CBQ 10﹣t ),10﹣t ),解得t =103, ②当m =8时,同理可求得t =203, ∴当四边形PMQN 为正方形时,t 的值为103或203。
人教新版九年级下《第28章锐角三角函数》单元测试卷含答案解析

第28章锐角三角函数单元测试卷一.选择题(共12小题)1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1C.D.2.如图,△ABC中,CD⊥AB,BE⊥AC,=,则sinA的值为()A.B.C.D.3.在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为()A.B.C.1D.4.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C 的坐标不能表示为()A.(b+2a,2b)B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c)D.(a﹣c,﹣2a﹣2c)5.如图,△ABC中,∠A=30°,,AC=,则AB的长为()A.B.C.5D.6.如图,长方形ABCD中,AB=2,BC=3;E是AB的中点,F是BC上的一点,且CF=BC,则图中线段AC与EF之间的最短距离是()A.0.5B.C.1D.7.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A.50m B.25m C.(50﹣)m D.(50﹣25)m8.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm9.今年,重庆被“抖音”抖成了“网红城市”,其中解放碑的游客数量明显高于去年同期,如图,小冉和小田决定用所学知识测量解放碑AB的高度,按照以下方式合作并记录所得数据:小冉从大厦DG的底端D点出发,沿直线步行10.2米到达E点,再沿坡度i=1:2.4的斜坡EF行走5.2米到达F点,最后沿直线步行30米到达解放碑底部B点,小田从大厦DG的底端乘直行电梯上行到离D点51.5米的顶端G点,从G点观测到解放碑顶端A点的俯角为26°,若A,B,C,D,E,F,G在同一平面内,且B,F和C,E,D分别在同一水平线上,则解放碑AB的高度约为()米.(精确到0.1米,参考数据:sin26°≈0.44,cos26°≈.90,tan26°≈0.49)A.29.0B.28.5C.27.5D.27.010.位于南开(融侨)中学旁边的“转转桥”是重庆市网红景点之一,在桥下人形天桥(如图1),其平面图如图2所示,天桥入口D点有一台阶DC,CD=0.5米,其坡度为i=1:0.75,在DC上方有一平层BC=1米,且BC与地面MN平行,在天桥顶端A点测得B点的俯角为63°,且AD⊥MN,为知道台阶AB的长度,请根据以上信息,帮小亮计算出台阶AB的长度,约为()精确到0.1米,参考数据:sin63°≈0.90,cos63°≈0.45,tan63°≈2.00A.1.4米B.2.5米C.2.8米D.2.9米11.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时12.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中错误的是()A.①②B.②④C.①③D.③④二.填空题(共12小题)13.在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边AB边上的高CD的长为14.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.15.如图在方格纸中α,β,γ这三个角的大小关系是.16.若0°<α<90°,tanα=1,则sinα=.17.△ABC中,∠C=90°,tanA=,则sinA+cosA=.18.设α是锐角,如果tanα=2,那么cotα=.19.在Rt△ABC中,∠C=90°,若sinA=,则cosB=.20.已知,在Rt△ABC中,∠C=90°,tanB=,则cosA=.21.计算:tan45°+=;22.已知∠A是锐角,且tanA=,则∠A=.23.请从以下两个小题中任选一个作答,若多选,则按所选的第一题记分.A.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.B.用科学计算器计算:sin69°≈(精确到0.01).24.在Rt△ABC中,∠C=90°,∠A=42°,BC=3,则AC的长为.(用科学计算器计算,结果精确到0.01)三.解答题(共26小题)25.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.26.计算:sin30°﹣cos45°+tan260°.27.计算:2sin30°﹣2cos45°.28.计算:2cos230°+﹣sin60°.29.计算:3tan30°+cos245°﹣sin60°.30.(1)计算与化简:cos60°•tan30°(2)因式分解:3a2﹣6a+3.31.计算:tan260°﹣2sin30°﹣cos45°.32.计算:(3﹣π)0+﹣2cos60°.33.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A落在∠ACB的外角平分线CD上,连结AA′.(1)判断四边形ACC′A的形状,并说明理由.(2)在△ABC中,∠B=90°,AB=24,cos∠BAC=,求CB的长.34.如图,在△ABC中,∠B为锐角,AB=3,AC=5,sinC=,求BC的长.35.在平面直角坐标系中,若△ABC的三个顶点的坐标分别为A(﹣4,1),B (﹣1,3),C(﹣4,3),求sinB的值.36.如图,在△ABC中,∠B=45°,∠C=60°,AC=20.(1)求BC的长度;(2)若∠ADC=75°,求CD的长.37.C919大型客机首飞成功,激发了同学们对航空科技的兴趣.如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM ∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)38.如图,为了测量某条河的宽度,在它的对岸岸边任取一点A,再在河的这边沿河边取两点B、C,使得∠ABC=60°,∠ACB=45°,量得BC的长为30m,求这条河的宽度(结果精确到1m).(参考数据:≈1.414,≈1.732.)39.清明节假期,小红和小阳随爸妈去旅游,他们在景点看到一棵古松树,小红惊讶的说:“呀!这棵树真高!有60多米.”小阳却不以为然:“60多米?我看没有.”两个人争论不休,爸爸笑着说:“别争了,正好我带了一副三角板,用你们学过的知识量一量、算一算,看谁说的对吧!”小红和小阳进行了以下测量:如图所示,小红和小阳分别在树的东西两侧同一地平线上,他们用手平托三角板,保持三角板的一条直角边与地平面平行,然后前后移动各自位置,使目光沿着三角板的斜边正好经过树的最高点,这时,测得小红和小阳之间的距离为135米,他们的眼睛到地面的距离都是1.6米.(1)请在指定区域内画出小红和小阳测量古松树高的示意图;(2)通过计算说明小红和小阳谁的说法正确(计算结果精确到0.1)(参考数据:≈1.41,≈1.73,≈2.24)40.如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)41.如图,某市为方便行人过马路,打算修建一座高为4x(m)的过街天桥.已知天桥的斜面坡度i=1:0.75是指坡面的铅直高度DE(CF)与水平宽度AE(BF)的比,其中DC∥AB,CD=8x(m).(1)请求出天桥总长和马路宽度AB的比;(2)若某人从A地出发,横过马路直行(A→E→F→B)到达B地,平均速度是2.5m/s;返回时从天桥由BC→CD→DA到达A地,平均速度是1.5m/s,结果比去时多用了12.8s,请求出马路宽度AB的长.42.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)43.电影《厉害了,我的国》震撼上演后,引起了大家的强烈共鸣,当“复兴号”一幕又一幕的奔驰在祖国广袤的大地上,中国高铁的车轮快速的滚出了崭新中国的新画卷.中国高铁的飞速发展,使越来越多的人选择高铁出行.为了保证市民出行方便,某市的高铁站出入口与地铁站出入口进行对接.已知某人沿着坡角为30°的楼梯AB从A行至B,后沿BC路线上斜坡CD,坡角为30°,再行走一段距离DE,到达高铁入口处.若入口处楼梯EF的坡角为45°,DE∥BC∥AF,AB=20米,CD=4米,那么EF的长度是多少米?(保留0.1米)(≈1.414)44.图1是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,AB ⊥BC,垂足为点B,CD∥AB,FG⊥DE,垂足为点G,若∠θ=37°50′,FG=30cm,CD=10cm,求CF的长(结果取整数,参考数据:sin37°50′≈0.6l,cos37°50′≈079,tan37°50′≈0.78)45.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)【参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70】46.如图,李强在教学楼的点P处观察对面的办公大楼,为了求得对面办公大楼的高度,李强测得办公大楼顶部点A的仰角为30°,测得办公大楼底部点B 的俯角为37°,已知测量点P到对面办公大楼上部AD的距离PM为30m,办公大楼平台CD=10m.求办公大楼的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,≈1.73)47.为了测量白塔的高度AB,在D处用高为1.5米的测角仪CD,测得塔顶A的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61°,求白塔的高度AB.(参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)48.如图是宁夏沙坡头的沙丘滑沙场景.已知滑沙斜坡AC的坡度是tanα=,在与滑沙坡底C距离20米的D处,测得坡顶A的仰角为26.6°,且点D、C、B 在同一直线上,求滑坡的高AB.(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).49.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A 南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)50.如图,在一次海警演习中,A、B两地分别同时派出甲、乙两快艇营救一货轮C,已知B地位于A地正西方向相距84海里位置,货轮C位于A地正北方向,位于B地北偏东48.2°方向(所有数据精确到个位,sin48.2°≈0.7,cos48.2°≈0.6,tan48.2°≈1.05)(1)求A、B两地分别与货轮C的距离;(2)若乙快艇每小时比甲快艇多行驶20海里,且它们同时达到货轮C位置,求甲、乙快艇的速度.答案一.选择题(共12小题)1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1C.D.【分析】若想利用tan∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ACD的中位线,可分别得到所求的角的正切值相关的线段的比.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tanA===,故选:A.【点评】本题涉及到三角形的中位线定理,锐角三角函数的定义,解答此题关键是作出辅助线构造直角三角形,再进行计算.2.如图,△ABC中,CD⊥AB,BE⊥AC,=,则sinA的值为()A.B.C.D.【分析】本题可以利用锐角三角函数的定义求解.【解答】解:∵CD⊥AB,BE⊥AC则易证△ABE∽△ACD,∴=,又∵∠A=∠A,∴△AED∽△ABC,∴==,设AD=2a,则AC=5a,根据勾股定理得到CD=a,因而sinA==.故选:B.【点评】求三角函数值的问题一般要转化为,直角三角形的边的比的问题,本题注意到△AED∽△ABC是解决本题的关键.3.在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为()A.B.C.1D.【分析】先过点A作AD⊥BC于D,构造直角三角形,结合∠B=60°,利用sin60°=,cos60°=可求DB=,AD=,把这两个表达式代入到另一个Rt△ADC的勾股定理表达式中,化简可得即a2+c2=b2+ac,再把此式代入通分后所求的分式中,可求其值等于1.【解答】解:过A点作AD⊥BC于D,在Rt△BDA中,由于∠B=60°,∴DB=,AD=c,在Rt△ADC中,DC2=AC2﹣AD2,∴(a﹣)2=b2﹣c2,即a2+c2=b2+ac,∴.故选:C.【点评】本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.4.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C 的坐标不能表示为()A.(b+2a,2b)B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c)D.(a﹣c,﹣2a﹣2c)【分析】作CH⊥x轴于H,AC交OH于F.由△CBH∽△BAO,推出===2,推出BH=﹣2a,CH=2b,推出C(b+2a,2b),由题意可证△CHF∽△BOD,可得=,推出=,推出FH=2c,可得C(﹣b﹣2c,2b),因为2c+2b=﹣2a,推出2b=﹣2a﹣2c,b=﹣a﹣c,可得C(a﹣c,﹣2a﹣2c),由此即可判断;【解答】解:作CH⊥x轴于H,AC交OH于F.∵tan∠BAC==2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO,∵∠CHB=∠AOB=90°,∴△CBH∽△BAO,∴===2,∴BH=﹣2a,CH=2b,∴C(b+2a,2b),由题意可证△CHF∽△BOD,∴=,∴=,∴FH=2c,∴C(﹣b﹣2c,2b),∵2c+2b=﹣2a,∴2b=﹣2a﹣2c,b=﹣a﹣c,∴C(a﹣c,﹣2a﹣2c),故选:C.【点评】本题考查解直角三角形、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题.5.如图,△ABC中,∠A=30°,,AC=,则AB的长为()A.B.C.5D.【分析】作CD⊥AB于D,构造两个直角三角形.根据锐角三角函数求得CD、AD的长,再根据锐角三角函数求得BD的长,从而求得AB的长.【解答】解:作CD⊥AB于D.在直角三角形ACD中,∠A=30°,AC=,∴CD=,AD=3.在直角三角形BCD中,,∴BD==2.∴AB=AD+BD=5.故选:C.【点评】巧妙构造直角三角形,熟练运用锐角三角函数的知识求解.6.如图,长方形ABCD中,AB=2,BC=3;E是AB的中点,F是BC上的一点,且CF=BC,则图中线段AC与EF之间的最短距离是()A.0.5B.C.1D.【分析】过F作FG⊥AC于G,然后连接AF,根据△ACF和△ABC底和高的比例可得出△ACF的面积,然后根据S ACF=AC×FG可求出FG的长,继而得出了答案.【解答】解:过F作FG⊥AC于G,连接AF,可得:△ACF和△ABC底之比为1:3;高之比为1:1;∴△ACF和△ABC的面积之比为1:3,又∵AB=2,BC=3,∴S△ABC =3,S△ACF=1,又∵S△ACF=AC×FG,∴FG=.故选:D.【点评】本题考查了解直角三角形的知识,难度较大,首先要判断出FG可表示最短距离,然后解答本题关键的一步是利用底与高的关系求出△AFC的面积.7.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A.50m B.25m C.(50﹣)m D.(50﹣25)m【分析】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.【解答】解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).则AB=MN=(50﹣)m.故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.8.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm【分析】根据OA=OB,可知△AOB是等腰三角形,作OG⊥AB于点G,从而可以得到AG=BG,∠AOB=2∠AOG,从而可以得到OG的长.【解答】解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答.9.今年,重庆被“抖音”抖成了“网红城市”,其中解放碑的游客数量明显高于去年同期,如图,小冉和小田决定用所学知识测量解放碑AB的高度,按照以下方式合作并记录所得数据:小冉从大厦DG的底端D点出发,沿直线步行10.2米到达E点,再沿坡度i=1:2.4的斜坡EF行走5.2米到达F点,最后沿直线步行30米到达解放碑底部B点,小田从大厦DG的底端乘直行电梯上行到离D点51.5米的顶端G点,从G点观测到解放碑顶端A点的俯角为26°,若A,B,C,D,E,F,G在同一平面内,且B,F和C,E,D分别在同一水平线上,则解放碑AB的高度约为()米.(精确到0.1米,参考数据:sin26°≈0.44,cos26°≈.90,tan26°≈0.49)A.29.0B.28.5C.27.5D.27.0【分析】作GH⊥BA于H,FM⊥CD于M.想办法求出BC、AH即可解决问题;【解答】解:作GH⊥BA于H,FM⊥CD于M.则四边形BCMF,四边形CDGH 是矩形.在Rt△FEM中,FM:EM=1:2.4,EF=5.2m,∴FM=BC=2m,EM=4.8m,CM=BF=30m,∴CD=CM+EM+DE=45m,∴GH=CD=45m,在Rt△AGH中,AH=GH•tan26°≈22.05m,∵CH=DG=51.5m,∴AB=CH﹣BC﹣AH=51.5﹣2﹣22.05≈27.5(m),故选:C.【点评】本题考查解直角三角形﹣仰角俯角问题,坡度坡角问题,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.10.位于南开(融侨)中学旁边的“转转桥”是重庆市网红景点之一,在桥下人形天桥(如图1),其平面图如图2所示,天桥入口D点有一台阶DC,CD=0.5米,其坡度为i=1:0.75,在DC上方有一平层BC=1米,且BC与地面MN平行,在天桥顶端A点测得B点的俯角为63°,且AD⊥MN,为知道台阶AB的长度,请根据以上信息,帮小亮计算出台阶AB的长度,约为()精确到0.1米,参考数据:sin63°≈0.90,cos63°≈0.45,tan63°≈2.00A.1.4米B.2.5米C.2.8米D.2.9米【分析】延长BC交AD于H.在Rt△DCH中,求出CH,再在Rt△ABH中求出AB即可;【解答】解:延长BC交AD于H.在Rt△CDH中,∵DH:CH=1:0.75,CD=0.5,∴DH=0.4,CH=0.3,∴BH=1.3,在Rt△ABH中,cos63°=,∴AB≈2.9(米),故选:D.【点评】本题考查解直角三角形的应用,解题的关键是理解仰角俯角的概念,理解坡度坡角的定义,学会添加常用辅助线,构造直角三角形解决问题.11.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时【分析】设巡逻船从出发到成功拦截所用时间为x小时,由题意得出∠ABC=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,由三角函数得出BD、AD的长度,得出CD=10x+6.在Rt△ACD中,由勾股定理得出方程,解方程即可.【解答】解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,AB=12,∠ABD=45°+(90°﹣75°)=60°,∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt△ACD中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.故选:B.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由三角函数和勾股定理得出方程是解决问题的关键.12.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中错误的是()A.①②B.②④C.①③D.③④【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【解答】解:如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故③正确;∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.故选:B.【点评】本题考查的是方向角,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.二.填空题(共12小题)13.在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边AB边上的高CD的长为【分析】作CD⊥AB于D,如图,在Rt△ACB中利用正弦的定义可计算出BC=,再利用勾股定理计算出AC=,然后利用面积法计算CD的长【解答】解:作CD⊥AB于D,如图,在Rt△ACB中,∵sinA==,∴BC=×4=,∴AC==,∵CD•AB=AC•BC,∴CD==,即斜边上的高为.故答案为:.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.14.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.【分析】根据正切函数是对边比邻边,可得答案.【解答】解:如图,tanα==故答案为:.【点评】本题考查了锐角三角函数,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.如图在方格纸中α,β,γ这三个角的大小关系是α=β>γ.【分析】首先根据锐角三角函数的概念表示出tan∠1=,tan∠4=,进一步分析平行线,再根据平行线的性质进行分析.【解答】解:如图所示,tan∠1=,tan∠4=,故∠1=∠4.根据两直线平行,内错角相等,得∠3=∠2,于是∠1+∠2=∠3+∠4,即α=β.根据两直线平行,内错角相等,得∠4=∠5,又∠3>∠6,故∠3+∠4>∠5+∠6,即β>γ.所以α=β>γ.【点评】考查了平行线的性质及识图分析能力.从图中找出同位角、内错角和同旁内角、根据平行线的性质解答.16.若0°<α<90°,tanα=1,则sinα=.【分析】由0°<α<90°、tanα=1知∠α=45°,据此可得sinα=.【解答】解:∵0°<α<90°,tanα=1,∴∠α=45°,则sinα=,故答案为:.【点评】本题主要考查特殊锐角三角函数值,解题的关键是熟记特殊锐角的三角函数值.17.△ABC中,∠C=90°,tanA=,则sinA+cosA=.【分析】根据tanA=和三角函数的定义画出图形,进而求出sinA和cosA的值,再求出sinA+cosA的值.【解答】解:如图,∵tanA==,∴设AB=5x,则BC=4x,AC=3x,则有:sinA+cosA=+=+=,故答案为:.【点评】此题考查了锐角三角函数的定义,只要画出图形,即可将正弦、余弦、正切函数联系起来,进而得出结论.18.设α是锐角,如果tanα=2,那么cotα=.【分析】根据一个角的余切等于它余角的正切,可得答案.【解答】解:由α是锐角,如果tanα=2,那么cotα=,故答案为:.【点评】本题考查了同角三角函数关系,利用一个角的余切等于它余角的正切是解题关键.19.在Rt△ABC中,∠C=90°,若sinA=,则cosB=.【分析】根据一个角的余弦等于它余角的正弦,可得答案.【解答】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案为:.【点评】本题考查了互余两角的三角函数,利用一个角的余弦等于它余角的正弦是解题关键.20.已知,在Rt△ABC中,∠C=90°,tanB=,则cosA=.【分析】根据正切的定义,可得直角边,根据勾股定理,可得斜边,根据余弦函数,可得答案.【解答】解:如图,由tanB=,得AC=4k,BC=3k,由勾股定理,得AB=5k,cosA===,故答案为:.【点评】本题考查了锐角三角函数的定义,利用正切的定义得出直角边是解题关键.21.计算:tan45°+=5;【分析】先代入三角函数值、计算算术平方根,再计算加法可得答案.【解答】解:tan45°+=1+4=5,故答案为:5.【点评】本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值和算术平方根的定义.22.已知∠A是锐角,且tanA=,则∠A=30°.【分析】将特殊角的三角函数值代入求解.【解答】解:∵∠A是锐角,tanA=,∴∠A=30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.23.请从以下两个小题中任选一个作答,若多选,则按所选的第一题记分.A.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.B.用科学计算器计算:sin69°≈ 2.47(精确到0.01).【分析】A.根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.B.直接使用科学计算器进行计算.【解答】解:A.∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,==π.∴S阴影=S扇形OBDB.sin69°≈2.47.故答案是:π;2.47.【点评】A.考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.B.考查了计算器的使用.24.在Rt△ABC中,∠C=90°,∠A=42°,BC=3,则AC的长为8.16.(用科学计算器计算,结果精确到0.01)【分析】根据计算器的使用,可得答案.【解答】解:tan 42≈0.9004,=0.9004,AC≈8.16,故答案为:8.16.【点评】本题考查了计算器,正确使用计算器是解题关键.三.解答题(共26小题)25.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.【分析】依题意设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,先证明△CEM是直角三角形,再利用三角函数的定义求解.【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∴sin∠ECM==.【点评】本题考查了锐角三角函数值的求法.关键是利用勾股定理的逆定理证明直角三角形,把问题转化到直角三角形中求解.26.计算:sin30°﹣cos45°+tan260°.【分析】将特殊角的三角函数值代入求值即可.【解答】解:原式=﹣×+×()2=﹣+×3=1.【点评】本题考查了特殊角的三角函数值.熟记特殊角的三角函数值即可解题,属于基础题型.27.计算:2sin30°﹣2cos45°.【分析】首先计算特殊角的三角函数,然后再计算乘法,后计算加减即可.【解答】解:原式=2×﹣2×=1﹣+2=1+.【点评】此题主要考查了特殊角的三角函数,关键是掌握30°、45°、60°角的各种三角函数值.28.计算:2cos230°+﹣sin60°.【分析】首先代入特殊角的三角函数值,然后再计算乘方,后算乘法,最后计算加减即可.【解答】解:原式=2×()2+﹣,=+﹣,=3﹣.【点评】此题主要考查了特殊角的三角函数值,关键是掌握30°、45°、60°角的各种三角函数值.29.计算:3tan30°+cos245°﹣sin60°.【分析】根据特殊角三角函数值,可得答案.【解答】解:3tan30°+cos245°﹣sin60°==.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.30.(1)计算与化简:cos60°•tan30°(2)因式分解:3a2﹣6a+3.【分析】(1)根据特殊角三角函数值,可得答案;(2)根据提公因式法、公式法,可得答案.【解答】解:(1)原式=×=;(2)3a2﹣6a+3=3(a2﹣2a+1)=3(a﹣1)2.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键,分解因式要彻底,分解到不能分解为止.31.计算:tan260°﹣2sin30°﹣cos45°.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=()2﹣2×﹣×=3﹣1﹣1=1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.32.计算:(3﹣π)0+﹣2cos60°.【分析】本题涉及实数运算、二次根式化简等多个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+3﹣=3.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.33.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A落在∠ACB的外角平分线CD上,连结AA′.(1)判断四边形ACC′A的形状,并说明理由.(2)在△ABC中,∠B=90°,AB=24,cos∠BAC=,求CB的长.【分析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.有一组邻边相等的平行四边形是菱形推知四边形ACC'A'是菱形.(2)通过解直角△ABC得到AC的长,利用勾股定理即可得到BC的长度.【解答】解:(1)四边形ACC'A'是菱形.理由如下:。
人教版九年级数学下册 28.1 锐角三角函数 练习及答案

人教版九年级数学下册 第28章 锐角三角函数 28.1 锐角三角函数1. 在Rt △ABC 中,若∠ACB=90°,AC =2,BC =3,则下列各式中成立的是( )A .sinB =23 B .cos B =23C .tan B =23D .sin A =232. 在△ABC 中,∠C=90°,AB =13,BC =5,则sinA 的值是( ) A.1312 B. 135 C.125 D.513 3.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则∠α的正弦值为( )A. 125 B.1312 C. 135 D.5124. 在Rt △ABC 中,若各边长度都扩大到原来的2倍,则锐角B 的正切值( ) A .扩大到原来的4倍 B .缩小到原来的12C .扩大到原来的2倍D .没有变化5. 如图,AB 为⊙O 的直径,点D 为BC ︵的中点,AD 交BC 于点M ,点E 为AM 的中点,若AB =5,BC =4,则tan ∠CEM 的值为( )A.43B.35C. 45D.346. 已知Rt △ABC ∽Rt △A ′B ′C ′,∠C=∠C ′=90°,且AB=2A ′B ′,则sinA 与sinA ′的关系为( )A.sinA=2sinA ′B.sinA=sinA ′C.2sinA=sinA ′D.不确定 7. 如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点,且AE∶BE =4∶1,EF ⊥AC 于点F ,连接BF ,则tan ∠CFB 的值是( )A.33B.233C.533D .5 38. 如图,已知Rt △ABC 中,∠C=90°,AC=4,tanA=21,则BC 的长是( )A. 45B. 25C.6D. 29.如图,△ABC 的三个顶点分别在正方形网格的格点上,则tanA 的值是( ) A. 65B.56 C.3102 D.1010310. 如果在△ABC 中,sinA=cosB=22,那么下列最确切的结论是( ) A.△ABC 是等腰直角三角形 B.△ABC 是等腰三角形 C.△ABC 是直角三角形 D.△ABC 是锐角三角形 11. 在Rt △ABC 中,∠C=90°,a=1,c=2,那么sinA= .12. 如图,在△ABC 中,∠C=90°,AC=2,BC=1,则tanA 的值是 .13. 在△ABC 中,∠A=75°,sinB=23,则tanC = .14. 计算:(1) (1+sin 40°)(1-cos 50°)+sin 240=________; (2) (4cos 30°sin 60°)2+(-2)-1-( 2 017-2 018)0=________. 15. 已知正方形ABCD 的边长为2,点P 是直线CD 上一点,若DP =1,则tan ∠BPC 的值是________.16.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,则tan B 的值为________.17. 如图,在平面直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点A 1处,已知OA =3,AB =1,则点A 1的坐标为________.18. 计算下列各式的值:(1) cos 60°-tan 60°+cos 30°+2sin 245°;(2) sin 30°sin 60°-cos 45°-(1-cos 30°)2-tan 45°.19. 如图,在四边形ABCD 中,∠A=∠C =90°,∠ABC=30°,AD =3,BC =15,求tan ∠ABD 的值.20. 如图,在Rt △ABC 中,∠ACB =90°,sin B =35,D 是BC 上一点,DE ⊥AB 于点E ,CD =DE ,AC +CD =9,求BC 的长.答案:1—10 CBCDA BCDBA11. 1212.1213. 1 14. (1) 1 (2) 152 15. 2或2316. 2317. ⎝ ⎛⎭⎪⎪⎫32,32 18.(1) 32-32(2)332+2-2 19. 解:如图,延长CD ,BA 交于点E.∵∠C =90°,∠ABC =30°,∴∠E =60°.在Rt △ADE 中,AD =3,∠E =60°, ∠DAE =90°,∴tan E =AD AE ,即tan 60°=3AE =3,∴AE = 3.在Rt △BCE 中,BC =15,∠ABC =30°,∴cos ∠ABC =BCBE,即cos 30°=15BE =32,∴BE =103,∴AB =BE -AE =103-3=93,∴tan ∠ABD =AD AB =393=39.20. 解:在Rt △BED 中,sin B =35,可设DE =3k ,则BD =5k ,CD =3k ,BC=8k ,BE =4k.∴tan B =3k 4k =34.在Rt △ACB 中,AC =BC·tan B =8k·34=6k.∵AC +CD =9,∴6k +3k =9,即k =1,∴BC =8k =8.。
2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。
人教版九年级数学下册第28章:锐角三角函数 全章测试含答案

人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正弦》基础训练知识点 1 正弦的定义1.[2018 安徽淮北相山区一模]在△ABC 中,∠C=90°,AB=3,BC=1,则 sinA 的值为( A.1 3)B.2 2C.2 3D.3 )2.[2017 山东日照中考]在 Rt△ABC 中,∠C=90°,AB=13,AC=5,则 sinA 的值为( A.5 13B.12 13C.5 12D.12 53.[2017 河南怀化中考]如图, 在平面直角坐标系中, 点 A 的坐标为(3, 4), 那么 sin 的值是()A.3 5B.3 4C.4 5D.4 34.在 Rt△ABC 中,如果各边长度都扩大 2 倍,则锐角 A 的正弦值( A.没有变化 B.扩大 2 倍 C.缩小 2 倍 D.不能确定)5.[2018 山东青岛平度期末改编]如图,△ABC 的顶点都是边长为 1 的小正方形组成的网格的格 点,则 sin∠BAC 的值为____.6.如图,在菱形 ABCD 中,AB=BD=2,则 sin∠CAB 的值为____. 7.如图,在 Rt△ABC 中,∠C=90°,AC:BC=3:2,求 sinA 和 sinB 的值.8.如图,在△ABC 中,AB=AC=3,BC=4,求 sinB 的值.知识点 2 正弦的应用3 9.[2018 江苏泰州兴化月考]在 Rt△ABC 中,∠C=90o,sinA= ,BC=6,则 AB=( 5)A.4B.6C.8D.102 ,则 BD 310.如图,在直角三角形 ABC 中,∠ACB=90°,CD 为斜边 AB 上的高,若 BC=4,sinA= 的长为____.11.如图,已知 AE,CF 是锐角三角形 ABC 的两条高,且 AE:CF=3:2,试求 sin∠BAC:sin∠ACB 的 值.参考答案 1.A【解析】∵∠C=90°,AB=3,BC=1,∴sinA= 2.B【解析】由勾股定理,得 BC=BC 1 = ,故选 A. AB 3AB2 AC2 =12,∴sinA=BC 12 = .故选 B AB 133.C【解析】如图,过点 A 作 AB⊥x 轴于点 B,因为点 A 的坐标为(3,4),所以 0B=3,AB=4,由勾股 定理,得似=AB2 OB2 =5,则 sina=AB 4 = .故选 C. OA 54.A【解析】若 Rt△ABC 的各边长度都扩大 2 倍,则所得新三角形与原三角形相似,故锐角 A 大 小不变,其正弦值也没有变化.故选 A. 5BD 5 【解析】如图,过点 B 作 BD⊥AC 于点 D,sin∠BAC=sin∠BAD= ,由图可得 BD=2,AD=4, AB 5则 AB=AD2 +BD2 =2 5 ,故 sin∠BAC=BD 5 = AB 56.1 1 BO 1 【解析】根据菱形的性质,可知 AC⊥BD,BO= BD=1,在 Rt△ABO 中,sin∠OAB= = , 2 2 AB 2∴sin∠CAB=1 . 27. 【解析】 设 AC=3a, BC=2a, 在 Rt△ABC 中, 由勾股定理, 得 AB= AC2+BC2 = ∴ sinA 3a 2 2a = 13a2BC 2a 2 13 AC 3a 3 13 , sinB AB 13 AB 13 13a 13a8.【解析】如图,过点 A 作 AD⊥BC 于点 D,∵AB=AC,∴BD=DC=2. 在 Rt△ABD 中,AB=3,BD=2,根据勾股定理,得 AD AB2 BD2 5 , ∴ sin B AD 5 . AB 39.D【解析】因为在 Rt△ABC 中,∠C=90°,所以 sinA=BC 6 3 .解得 AB=10.故选 D. ,所以 AB AB 58 10. 【解折】 ∵CD⊥AB,∴∠A+∠ACD=90°.∵∠ACB=90°, ∴∠ACD+∠BCD=90°,∴∠A=∠BCD, 3∴sin∠BCD=BD 2 2 2 8 =sinA= ,∴BD= BC= ×4= . BC 3 3 3 311.【解析】在 Rt△ACF 中,sin∠BAC= ∴sin∠BAC:sin∠ACB=CF AE ,在 Rt△ACE 中,sin∠ACB= , AC ACCF AE 2 : =CF:AE,又 AE:CF=3:2,∴sin∠BAC:sin∠ACB= AC AC 3《正弦》提升训练1.[2018 河南师大附中课时作业]如图,在 Rt△ABC 中,∠BAC=90°,AD 丄 BC 于点 D),则下列 结论不正确的是( )A.sinB=AD ABB.sinB=AC BCC.sinB=AD ACD.sinB=CD AC2.[2018 山西大同一中课时作业]如图,在下列网格中,小正方形的边长均为 1,点 A,B,O 都 在格点上,则的正弦值是( )A.3 10 10B.1 2C.1 3D.10 103.[2018 河北邯郸二十五中课时作业]如图,⊙O 是△ABC 的外接圆,AD 是⊙0 的直径,若⊙O 的 半径是 4,sinB=1 ,则线段 AC 的长为( 4)A.2B.4C.8D.1 44[2017 山东临沂中考]如图,在3 sin∠BDC= ,则 5ABCD 中,对角线 AC,BD 相交于点 0,若 AB=4,BD=10,ABCD 的面积是____.5.[2018 江西宜春实验中学课时作业]如图,在△ABC 中,∠C=90°点 D,E 分别在边 AB,AC 上, DE∥BC,DE=3,BC=9. (1)求AD 的值; AB(2)若 BD=10,求 sinA 的值.6.[2018 安徽合肥三十八中课时作业]如图 1,2,3,根据图中数据完成填空,再按要求答题: sin2A1+sin2B1=____;sin2A2+sin2B2=____;sin2A3+sin2B3=____.(1)观察上述等式,猜想:在 Rt△ABC 中,乙 C=90°,都有 sin2A+sin2B=____; (2)如图 4,在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别是 a,b,c,利用三角函数的 定义和勾股定理证明你的猜想; (3)已知∠A+∠B=90°,且 sinA=5 ,求 sinB 的值. 13参考答案 1.C【解析】在 Rt△ABD 中,sinB=AD AC ,所以 A 项正确;在 Rt△ABC 中,sinB= ,所以 B 项 AB BC正确;因为∠B+∠BAD=90°,∠BAD+∠DAC=90°,所以∠B=∠DAC,在 Rt△ADC 中, sin∠DAC=CD CD ,所以 sinB= ,所以 D 项正确.故选 C AC AC2.D【解析】如图,过点 B 作 BD⊥OA 于点 D,易得 AO=2 5 ,BO=2 2 ,由等积法可得2 5 1 1 BD 2 5 10 S△ABO= ×2×2= × 2 5 ×BD,解得 BD= ,所以 sin∠AOB= = 5 = ,故选 D. 2 2 BO 2 2 10 53.A【解析】如图,连接 CD,∵AD 是⊙O 的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB= 在 Rt△ACD 中,sinD=AC 1 1 1 = ,∴AC= AD= ×8=2.故选 A. AD 4 4 41 , 44.24【解析】过点 0 作 OE⊥CD 于点 E,∵四边形 ABCD 是平行四边形,∴OA=OC,OB=OD= CD=AB=4.∵sin∠BDC=1 BD=5, 2OE 3 = ,∴OE=3,∴ DE OD2-OE 2 =4,∵CD=4,∴点 E 与点 C 重合, OD 5∴AC⊥CD,OC=3,∴AC=20C=6,∴平行四边形 ABCD 的面积为 CD×AC=4×6=24. 5.【解析】(1)∵DE∥BC,∴△ADE∽△ABC,∴ (2)由(1)可知 ∴sinA=AD DE AD 3 1 = ;又 DE=3,BC=9,∴ = = . AB BC AB 9 3AD 1 AD 1 AD 1 = ,∴ = ,∵BD=10,∴ = ,解得 AD=5,∴AB=15. AB 3 AD BD 3 AD 10 3BC 9 3 = = . AB 15 56.【解析】1 (2)∵sinA= (3)∵sinA=11(1)1a b a 2 b2 a 2 b2 1. ,sinB= , a 2 b2 c2 ,∴sin2A+sin2B= 2 2 c c c c c2 5 5 12 ,sin2A+sin2B=1,∴sinB= 1 ( )2 . 13 13 13名师点睛:本题第(3)问也可用参数法,由 sinA= 定理得 b c2 a2 12k ,∴sinB=5 a 5 ,得 = ,设 a 5k , c 13k ,根据勾股 13 c 13b 12k 12 . a 13k 13。